CN110863050A - 人eme1基因的用途及相关产品 - Google Patents
人eme1基因的用途及相关产品 Download PDFInfo
- Publication number
- CN110863050A CN110863050A CN201911259199.9A CN201911259199A CN110863050A CN 110863050 A CN110863050 A CN 110863050A CN 201911259199 A CN201911259199 A CN 201911259199A CN 110863050 A CN110863050 A CN 110863050A
- Authority
- CN
- China
- Prior art keywords
- eme1
- gene
- nasopharyngeal carcinoma
- seq
- strand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15021—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Virology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Plant Pathology (AREA)
- Hospice & Palliative Care (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于生物医药研究领域,具体涉及人EME1基因作为靶标在制备鼻咽癌治疗药物中的用途。本发明经过广泛而深入的研究发现,采用RNAi方法下调人EME1基因的表达后可有效地抑制鼻咽癌细胞的增殖、促进细胞凋亡,可以有效地控制鼻咽癌的生长进程。本发明提供的siRNA或者包含该siRNA序列的核酸构建体、慢病毒能够特异性抑制鼻咽癌细胞的增殖速率、促进鼻咽癌细胞凋亡、抑制鼻咽癌细胞转移、抑制鼻咽癌细胞侵袭、抑制鼻咽癌生长,从而治疗鼻咽癌,为鼻咽癌治疗开辟新的方向。
Description
技术领域
本发明属于生物医药研究领域,具体涉及人EME1基因的用途及相关产品。
背景技术
EME1是一个核酸内切酶,被鉴定为XPF内切酶家族的成员。EME1在拓扑异构酶1抑制后的DNA修复过程中起重要作用,其上调对多种DNA损伤剂具有抗性(doi:10.1016/j.dnarep.2007.02.019)。该蛋白与甲醇磺酸盐敏感的uv敏感81蛋白配合形成一个内切酶复合物。Mus81-Eme1复合物通过结构特异性的核酸内切酶活性在ICL(interstrandcrosslinks,ICL)附近诱导DNA双键断裂,提示该复合物在ICL的修复中起重要作用(doi:10.1038/sj.emboj.7601344)。与这一发现相一致的是,Mus81或Eme1基因缺陷的小鼠正常细胞对丝裂霉素和顺铂超敏(doi.org/10.1093/emboj/cdg580;doi.10.1126/science.1094557)。在有细胞周期S期时,与EME1结合的MUS81在87位丝氨酸磷酸化被抑制,而且在G2期,以及轻微的复制压力下,MUS81可被CK2磷酸化。结肠癌HCT116细胞中EME1低表达,其对化疗药物顺铂的敏感性更高(doi:10.1002/ijc.24268.)。EME1变异体Ile350Thr有助于增加患乳腺癌的风险和早期发作(doi:10.7555/JBR.27.20130013)。EME1高表达,是肿瘤对西妥昔单抗不敏感的原因之一(doi:10.1016/j.neo.2014.03.004.)。以上均提示EME1可能是人类肿瘤中顺铂耐药的潜在标志物,但目前EME1在鼻咽癌中的作用尚无报道。
发明内容
为了克服现有技术中所存在的问题,本发明的目的在于提供人EME1基因的用途及相关产品。
为了实现上述目的以及其他相关目的,本发明采用如下技术方案:
本发明的第一方面,提供人EME1基因作为靶标在制备鼻咽癌治疗药物中的用途。
所述人EME1基因作为靶标在制备鼻咽癌治疗药物具体是指:将EME1基因作为作用对象,对药物或制剂进行筛选,以找到可以抑制人EME1基因表达的药物作为鼻咽癌治疗备选药物。如本发明所述的EME1基因小分子干扰RNA(siRNA)即是以人EME1基因为作用对象筛选获得的,可用作具有抑制鼻咽癌细胞增殖作用的药物。除此之外,诸如抗体药物,小分子药物等也可将EME1基因作为作用对象。
所述鼻咽癌治疗药物为能够特异性抑制EME1基因的转录或翻译,或能够特异性抑制EME1蛋白的表达或活性的分子,从而降低鼻咽癌细胞中EME1基因的表达水平,达到抑制鼻咽癌细胞的增殖、生长、分化和/或存活的目的。
所述通过EME1基因制备获得的鼻咽癌治疗药物包括但不限于:核酸分子、碳水化合物、脂类、小分子化学药、抗体药、多肽、蛋白或干扰慢病毒。
所述核酸包括但不限于:反义寡核苷酸、双链RNA(dsRNA)、核酶、核糖核酸内切酶III制备的小干扰RNA或者短发夹RNA(shRNA)。
所述鼻咽癌治疗药物的施用量为足够降低人EME1基因的转录或翻译,或者足够降低人EME1蛋白的表达或活性的剂量。以使人EME1基因的表达至少被降低50%、80%、90%、95%或99%。
采用前述鼻咽癌治疗药物治疗鼻咽癌的方法,主要是通过降低人EME1基因的表达水平抑制鼻咽癌细胞的增殖来达到治疗的目的。具体的,治疗时,将能有效降低人EME1基因表达水平的物质给药于患者。
在一种实施方式中,所述EME1基因的靶标序列如SEQ ID NO:1和SEQ ID NO:2所示。具体为:
5’-GATAAAGAACGCCAGAATT-3’(SEQ ID NO:1),
5’-CTGAGAAGACAGGAAAGAA-3’(SEQ ID NO:2)。
本发明的第二方面,提供EME1抑制剂在制备至少具备以下功效之一的产品中的用途:
治疗鼻咽癌;
抑制鼻咽癌细胞的增殖速率;
促进鼻咽癌细胞凋亡;
抑制鼻咽癌细胞转移;
抑制鼻咽癌细胞侵袭;
抑制鼻咽癌生长。
所述产品必然包括EME1抑制剂,并以EME1抑制剂作为前述功效的有效成分。
所述产品中,发挥前述功用的有效成分可仅为EME1抑制剂,亦可包含其他可起到前述功用的分子。
亦即,EME1抑制剂为所述产品的唯一有效成分或有效成分之一。
所述产品可以为单成分物质,亦可为多成分物质。
所述产品的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述产品主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。
所述产品包括但不限于药物、保健品、食品等。
所述EME1抑制剂可以为核酸分子、抗体、小分子化合物。
如本发明实施例列举的,所述EME1抑制剂可以为降低鼻咽癌细胞中EME1基因表达的核酸分子。具体的,可以是双链RNA或shRNA。
本发明的第三方面,提供了一种治疗鼻咽癌的方法,为向对象施用EME1抑制剂。
所述的对象可以为哺乳动物或哺乳动物的鼻咽癌细胞。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。所述鼻咽癌细胞可以为离体鼻咽癌细胞。
所述对象可以是罹患鼻咽癌的患者或者期待治疗的鼻咽癌的个体。或者所述对象为鼻咽癌患者或者期待治疗鼻咽癌的个体的离体鼻咽癌细胞。
所述EME1抑制剂可以在接受鼻咽癌治疗前、中、后向对象施用。
本发明第四方面公开了一种降低鼻咽癌细胞中EME1基因表达的核酸分子,所述核酸分子包含双链RNA或shRNA。
其中,所述双链RNA中含有能够与EME1基因杂交的核苷酸序列;
所述shRNA中含有能够与EME1基因杂交的核苷酸序列。
进一步的,所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,并且所述第一链的序列与EME1基因中的靶序列基本相同。
所述EME1基因中的靶序列即为核酸分子用于特异性沉默EME1基因表达时,被所述核酸分子识别并沉默的mRNA片段所对应的EME1基因中的片段。
进一步的,所述双链RNA的靶序列如SEQ ID NO:1和SEQ ID NO:2所示。具体为:
5’-GATAAAGAACGCCAGAATT-3’(SEQ ID NO:1),
5’-CTGAGAAGACAGGAAAGAA-3’(SEQ ID NO:2)。
更进一步的,针对SEQ ID NO:1和SEQ ID NO:2靶序列的双链RNA第一链的序列分别如SEQ ID NO:3和SEQ ID NO:4所示。具体为
5’-GAUAAAGAACGCCAGAAUU-3’(SEQ ID NO:3),
5’-CUGAGAAGACAGGAAAGAA-3’(SEQ ID NO:4)。
进一步的,所述双链RNA为小干扰RNA(siRNA)。
SEQ ID NO:3和4分别为以SEQ ID NO:1和2所示的序列为RNA干扰靶序列设计的、针对人EME1基因的小干扰RNA的一条链,另一条链即第二链的序列与第一链序列互补,该siRNA可以起到特异性沉默鼻咽癌细胞中内源EME1基因表达的作用。
所述shRNA包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,并且所述正义链片段的序列与EME1基因中的靶序列基本相同。
进一步的,所述sh RNA的靶序列如SEQ ID NO:1和2所示。
所述shRNA经酶切加工后可成为小干扰RNA(siRNA)进而起到特异性沉默鼻咽癌细胞中内源EME1基因表达的作用。
进一步的,所述shRNA的茎环结构的序列可选自以下任一:UUCAAGAGA、AUG、CCC、UUCG、CCACC、CTCGAG、AAGCUU和CCACACC。
更进一步的,针对SEQ ID NO:1和2的shRNA序列分别如SEQ ID NO:5和6所示。
具体为
5’-CGGAUAAAGAACGCCAGAAUUCUCGAGAAUUCUGGCGUUCUUUAUCCG-3’(SEQ ID NO:5);
5’-CCCUGAGAAGACAGGAAAGAACUCGAGUUCUUUCCUGUCUUCUCAGGG-3’(SEQ ID NO:6)。
进一步的,所述EME1基因来源于人。
本发明第五方面,公开了一种EME1基因干扰核酸构建体,含有编码前述核酸分子中的shRNA的基因片段,能表达所述shRNA。
所述的EME1基因干扰核酸构建体可以是将编码前述人EME1基因shRNA的基因片段克隆入已知载体获得。
进一步的,所述EME1基因干扰核酸构建体为EME1基因干扰慢病毒载体。
本发明公开的EME1基因干扰慢病毒载体是将编码前述EME1基因shRNA的DNA片段克隆入已知载体获得,所述已知载体多为慢病毒载体,所述EME1基因干扰慢病毒载体经过病毒包装成为有感染力的病毒颗粒后,感染鼻咽癌细胞,进而转录出本发明所述shRNA,通过酶切加工等步骤,最终获得所述siRNA,用于特异性沉默EME1基因的表达。
进一步的,所述EME1基因干扰慢病毒载体还含有启动子序列和/或编码鼻咽癌细胞中可被检测的标记物的核苷酸序列;较优的,所述可被检测的标记物如绿色荧光蛋白(GFP)。
进一步的,所述慢病毒载体可以选自:pLKO.1-puro、pLKO.1-CMV-tGFP、pLKO.1-puro-CMV-tGFP、pLKO.1-CMV-Neo、pLKO.1-Neo、pLKO.1-Neo-CMV-tGFP、pLKO.1-puro-CMV-TagCFP、pLKO.1-puro-CMV-TagYFP、pLKO.1-puro-CMV-TagRFP、pLKO.1-puro-CMV-TagFP635、pLKO.1-puro-UbC-TurboGFP、pLKO.1-puro-UbC-TagFP635、pLKO-puro-IPTG-1xLacO、pLKO-puro-IPTG-3xLacO、pLP1、pLP2、pLP/VSV-G、pENTR/U6、pLenti6/BLOCK-iT-DEST、pLenti6-GW/U6-laminshrna、pcDNA1.2/V5-GW/lacZ、pLenti6.2/N-Lumio/V5-DEST、pGCSIL-GFP或pLenti6.2/N-Lumio/V5-GW/lacZ中的任一。
本发明实施例具体列举了以pGCSIL-GFP为载体构建的两个人EME1基因干扰慢病毒载体,分别命名为pGCSIL-GFP-EME1-siRNA-1和pGCSIL-GFP-EME1-siRNA-2。
本发明的EME1基因siRNA可用于抑制鼻咽癌细胞的增殖,进一步地可以用作治疗鼻咽癌的药物或制剂。EME1基因干扰慢病毒载体则可用于制备所述EME1基因siRNA。当用作治疗鼻咽癌的药物或制剂时,是将安全有效量的所述核酸分子施用于哺乳动物。具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
本发明第六方面,公开了一种EME1基因干扰慢病毒,由前述EME1基因干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。该慢病毒可感染鼻咽癌细胞并产生针对EME1基因的小分子干扰RNA,从而抑制鼻咽癌细胞的增殖。该EME1基因干扰慢病毒可用于制备预防或治疗鼻咽癌的药物。
本发明的第七方面,提供前述核酸分子,或前述EME1基因干扰核酸构建体,或前述EME1基因干扰慢病毒的用途,为:用于制备预防或治疗鼻咽癌的药物,或用于制备降低鼻咽癌细胞中EME1基因表达的试剂盒。
所述预防或治疗鼻咽癌的药物的应用为鼻咽癌的治疗提供了一种方法,具体为一种预防或治疗对象体内鼻咽癌的方法,包括将有效剂量的所述的药物施用于对象中。
进一步的,所述药物用于预防或治疗对象体内鼻咽癌时,需要将有效剂量的所述的药物施用于对象中。采用该方法,所述鼻咽癌的生长、增殖、复发和/或转移被抑制。进一步的,所述鼻咽癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。
所述方法的对象可以为人。
本发明的第八方面,提供一种用于预防或治疗鼻咽癌的组合物,其有效物质含有:
前述的核酸分子;和/或,前述EME1基因干扰核酸构建体;和/或,前述EME1基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。
所述组合物可以为药物组合物。
当所述组合物用于预防或治疗对象体内鼻咽癌时,需要将有效剂量的所述的组合物施用于对象中。采用该方法,所述鼻咽癌的生长、增殖、复发和/或转移被抑制。进一步的,所述鼻咽癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。
所述组合物的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述组合物主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。
综上所述,本发明设计了针对人EME1基因的RNAi靶点序列,构建相应的EME1 RNAi载体,其中RNAi载体pGCSIL-GFP-EME1-siRNA-1和pGCSIL-GFP-EME1-siRNA-2能够显著下调EME1基因在mRNA水平和蛋白水平的表达。使用慢病毒(lentivirus,简写为Lv)作为基因操作工具分别携带RNAi载体pGCSIL-GFP-EME1-siRNA-1pGCSIL-GFP-EME1-siRNA-2能够靶向地将针对EME1基因的RNAi序列高效导入鼻咽癌CNE-2Z细胞,降低EME1基因的表达水平,显著抑制上述肿瘤细胞的增殖能力。因此慢病毒介导的EME1基因沉默是恶性肿瘤潜在的临床非手术治疗方式。
与现有技术相比,本发明具有如下有益效果:
本发明经过广泛而深入的研究发现,采用RNAi方法下调人EME1基因的表达后可有效地抑制鼻咽癌细胞的增殖、促进细胞凋亡,可以有效地控制鼻咽癌的生长进程。本发明提供的siRNA或者包含该siRNA序列的核酸构建体、慢病毒能够特异性抑制鼻咽癌细胞的增殖速率、促进鼻咽癌细胞凋亡、抑制鼻咽癌细胞转移、抑制鼻咽癌细胞侵袭、抑制鼻咽癌生长,从而治疗鼻咽癌,为鼻咽癌治疗开辟新的方向。
附图说明
图1-1:RT-PCR检测CNE-2Z细胞侵染EME1-shRNA慢病毒1后mRNA水平靶基因消减效率。
图1-2:RT-PCR检测CNE-2Z细胞侵染EME1-shRNA慢病毒2后mRNA水平靶基因消减效率。
图2-1:Celigo细胞自动分析结果揭示侵染EME1-shRNA慢病毒1后抑制鼻咽癌细胞的增殖。(细胞系为CNE-2Z细胞,病毒感染后1,2,3,4以及5天分别对细胞数量拍照得到上图,细胞数量统计图为左下图,细胞数量变化倍数为右下图)
图2-2:Celigo细胞自动分析结果揭示侵染EME1-shRNA慢病毒2后抑制鼻咽癌细胞的增殖。(细胞系为CNE-2Z细胞,病毒感染后1,2,3,4以及5天分别对细胞数量拍照得到上图,细胞数量统计图为左下图,细胞数量变化倍数为右下图)
图3-1:MTT法检测侵染EME1-shRNA慢病毒1后对CNE-2Z细胞增殖能力的影响,在酶标仪对波长490nm的吸光度(左图)及吸光度变化倍数(右图)随时间变化的对比。OD490在这里反映了具有活力的细胞的数量。
图3-2:MTT法检测侵染EME1-shRNA慢病毒2后对CNE-2Z细胞增殖能力的影响,在酶标仪对波长490nm的吸光度(左图)及吸光度变化倍数(右图)随时间变化的对比。OD490在这里反映了具有活力的细胞的数量。
图4-1:Annexin V-APC流式细胞凋亡检测侵染EME1-sh EME1慢病毒1对CNE-2Z细胞凋亡的影响。
图4-2:Annexin V-APC流式细胞凋亡检测侵染EME1-sh EME1慢病毒1对CNE-2Z细胞凋亡的影响,柱状结果以细胞百分比平均值±标准差显示。
图4-3:Annexin V-APC流式细胞凋亡检测侵染EME1-sh EME1慢病毒2对CNE-2Z细胞凋亡的影响。
图4-4:Annexin V-APC流式细胞凋亡检测侵染EME1-sh EME1慢病毒2对CNE-2Z细胞凋亡的影响,柱状结果以细胞百分比平均值±标准差显示。
图5-1:Transwell侵袭检测侵染EME1-sh EME1慢病毒1的人鼻咽癌CNE-2Z细胞各组侵袭照片。
图5-2:Transwell侵袭检测侵染EME1-sh EME1慢病毒1人鼻咽癌CNE-2Z细胞各组侵袭水平统计图。(柱形图中为共3次实验,每次实验9张代表图片的平均值)
图5-3:Transwell侵袭检测侵染EME1-sh EME1慢病毒2的人鼻咽癌CNE-2Z细胞各组侵袭照片。
图5-4:Transwell侵袭检测侵染EME1-sh EME1慢病毒2的人鼻咽癌CNE-2Z细胞各组侵袭水平统计图。(柱形图中为共3次实验,每次实验9张代表图片的平均值)
图6-1:侵染EME1-sh EME1慢病毒1的人鼻咽癌CNE-2Z细胞各组在transwell小室转移细胞数与对照组对比图。
图6-2:侵染EME1-sh EME1慢病毒1人鼻咽癌CNE-2Z细胞各组在transwell小室转移细胞数相比shCtrl的变化值对比。(柱形图中为共3次实验,每次实验9张代表图片的平均值)
图6-3:侵染EME1-sh EME1慢病毒2的人鼻咽癌CNE-2Z细胞各组在transwell小室转移细胞数对比图。
图6-4:侵染EME1-sh EME1慢病毒2的人鼻咽癌CNE-2Z细胞各组在transwell小室转移细胞数相比shCtrl的变化值对比。(柱形图中为共3次实验,每次实验9张代表图片的平均值)
附图中,
柱形图代表三次实验的平均值,误差线表示标准偏差(SD)。
**,shCtrl与目的基因shRNA慢病毒处理组相比,P<0.01。
*,shCtrl与目的基因shRNA慢病毒处理组相比,0.01≤P<0.05。
具体实施方式
本发明从细胞功能学角度出发证实EME1基因在鼻咽癌发生中的作用。通过构建目的基因shRNA慢病毒后转染鼻咽癌细胞,与转染对照慢病毒做对比,检测两组鼻咽癌细胞系内mRNA及蛋白质水平目的基因的表达情况;随后通过细胞功能学实验进行细胞增殖、凋亡等检测,结果显示shRNA组与对照组对比,shRNA组鼻咽癌细胞增殖抑制程度明显高于对照组,细胞凋亡率增加程度较对照组高。
EME1抑制剂
指对于EME1具有抑制效果的分子。对于EME1具有抑制效果包括但不限于:抑制EME1的表达或活性。
抑制EME1活性是指使EME1活力下降。优选地,相比抑制前,EME1活力下降至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,最佳的降低至少90%。
抑制EME1表达具体的可以是抑制EME1基因的转录或翻译,具体的,可以是指:使EME1的基因不转录,或降低EME1的基因的转录活性,或者使EME1的基因不翻译,或降低EME1的基因的翻译水平。
本领域技术人员可以使用常规方法对EME1的基因表达进行调节,如基因敲除、同源重组,干扰RNA等。
EME1的基因表达的抑制可以通过PCR及Western Blot检测表达量验证。
优选地,与野生型相比,EME1基因表达降低至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,又佳的降低至少90%,最佳地EME1基因完全没有表达。
小分子化合物
本发明中指由几个或几十个原子组成,分子质量在1000以下的化合物。
制备预防或治疗鼻咽癌的药物
可以利用降低鼻咽癌细胞中EME1基因表达的核酸分子;和/或,EME1基因干扰核酸构建体;和/或,EME1基因干扰慢病毒,作为有效成分,制备预防或治疗鼻咽癌的药物。通常,所述药物中除了有效成分外,根据不同剂型的需要,还会包括一种或多种药学上可接受的载体或辅料。
“药学上可接受的”是指当分子本体和组合物适当地给予动物或人时,它们不会产生不利的、过敏的或其它不良反应。
“药学上可接受的载体或辅料”应当与所述有效成分相容,即能与其共混而不会在通常情况下大幅度降低药物的效果。可作为药学上可接受的载体或辅料的一些物质的具体例子是糖类,如乳糖、葡萄糖和蔗糖;淀粉,如玉米淀粉和土豆淀粉;纤维素及其衍生物,如甲基纤维素钠、乙基纤维素和甲基纤维素;西黄蓍胶粉末;麦芽;明胶;滑石;固体润滑剂,如硬脂酸和硬脂酸镁;硫酸钙;植物油,如花生油、棉籽油、芝麻油、橄榄油、玉米油和可可油;多元醇,如丙二醇、甘油、山梨糖醇、甘露糖醇和聚乙二醇;海藻酸;乳化剂,如Tween;润湿剂,如月桂基硫酸钠;着色剂;调味剂;压片剂、稳定剂;抗氧化剂;防腐剂;无热原水;等渗盐溶液;和磷酸盐缓冲液等。这些物质根据需要用于帮助配方的稳定性或有助于提高活性或它的生物有效性或在口服的情况下产生可接受的口感或气味。
本发明中,除非特别说明,药物剂型并无特别限定,可以被制成针剂、口服液、片剂、胶囊、滴丸、喷剂等剂型,可通过常规方法进行制备。药物剂型的选择应与给药方式相匹配。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本技术领域常规的分子生物学、生物化学、染色质结构和分析、分析化学、细胞培养、重组DNA技术及相关领域的常规技术。
实施例1针对人EME1基因RNAi慢病毒的制备
1.筛选针对人EME1基因的有效的siRNA靶点
从Genbank调取EME1(NM_152463)基因信息;设计针对EME1基因的有效的siRNA靶点。表1-1列出了筛选出的针对EME1基因的有效siRNA靶点序列。
表1-1靶向于人EME1基因的siRNA靶点序列
SEQ ID NO | TargetSeq(5’-3’) |
1 | GATAAAGAACGCCAGAATT |
2 | CTGAGAAGACAGGAAAGAA |
2.慢病毒载体的制备
针对siRNA靶点(以SEQ ID NO:1和2为例)分别合成两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo序列(表1-2);以Age I和EcoR I限制性内切酶作用于pGCSIL-GFP载体(上海吉凯基因化学技术有限公司提供),使其线性化,琼脂糖凝胶电泳鉴定酶切片段。
表1-2两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo
通过T4 DNA连接酶将双酶切线性化(酶切体系如表1-4所示,37℃,反应1h)的载体DNA和纯化好的双链DNA Oligo连接,在适当的缓冲体系(连接体系如表1-5所示)中于16℃连接过夜,回收连接产物。将连接产物转化氯化钙制备的新鲜的大肠杆菌感受态细胞(转化操作参考:分子克隆实验指南第二版55-56页)。在连接转化产物长出菌克隆表面沾一下,溶于10μl LB培养基,混匀取1μl作为模板;在以慢病毒载体中针对SEQ ID NO:1的RNAi序列的上下游,设计通用PCR引物,上游引物序列:5’-CCTATTTCCCATGATTCCTTCATA-3’(SEQ ID NO:11);下游引物序列:5’-GTAATACGGTTATCCACGCG-3’(SEQ ID NO:12),针对SEQ ID NO:2的上游引物序列为:5’-CCTATTTCCCATGATTCCTTCATA-3’(SEQ ID NO:13),下游引物序列为:5’-GTAATACGGT TATCCACGCG-3’(SEQ ID NO:14)。进行PCR鉴定实验(PCR反应体系如表1-6,反应条件如表1-7)。对PCR鉴定阳性的克隆进行测序和比对分析,比对正确的克隆即为构建成功的针对SEQ ID NO:1的表达RNAi的载体,命名为pGCSIL-GFP-EME1-siRNA-1,针对SEQ IDNO:2的表达RNAi的载体,命名为pGCSIL-GFP-EME1-siRNA-2。
构建pGCSIL-GFP-Scr-siRNA阴性对照质粒,阴性对照siRNA靶序列为5’-TTCTCCGAACGTGTCACGT-3’(SEQ ID NO:15)。构建pGCSIL-GFP-Scr-siRNA阴性对照质粒时,针对Scr siRNA靶点合成两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo序列(表1-3),其余构建方法、鉴定方法及条件均同pGCSIL-GFP-EME1-siRNA-1。
表1-3两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo
表1-4 pGCSIL-GFP质粒酶切反应体系
试剂 | 体积(μl) |
pGCSIL-GFP质粒(1μg/μl) | 2.0 |
10×buffer | 5.0 |
100×BSA | 0.5 |
Age I(10U/μl) | 1.0 |
EcoR I(10U/μl) | 1.0 |
dd H<sub>2</sub>O | 40.5 |
Total | 50.0 |
表1-5载体DNA和双链DNA Oligo连接反应体系
试剂 | 阳性对照(μl) | 自连对照(μl) | 连接组(μl) |
线性化的载体DNA(100ng/μl) | 1.0 | 1.0 | 1.0 |
退火的双链DNA Oligo(100ng/μl) | 1.0 | - | 1.0 |
10×T4噬菌体DNA连接酶缓冲液 | 1.0 | 1.0 | 1.0 |
T4噬菌体DNA连接酶 | 1.0 | 1.0 | 1.0 |
dd H<sub>2</sub>O | 16.0 | 17.0 | 16.0 |
Total | 20.0 | 20.0 | 20.0 |
表1-6 PCR反应体系
试剂 | 体积(μl) |
10×buffer | 2.0 |
dNTPs(2.5mM) | 0.8 |
上游引物 | 0.4 |
下游引物 | 0.4 |
Taq聚合酶 | 0.2 |
模板 | 1.0 |
ddH<sub>2</sub>O | 15.2 |
Total | 20.0 |
表1-7 PCR反应体系程序设定
3.包装EME1-shRNA慢病毒
以Qiagen公司的质粒抽提试剂盒提取RNAi质粒pGCSIL-GFP-EME1-siRNA-1和pGCSIL-GFP-EME1-siRNA-2的DNA,配制成100ng/μl储存液。
转染前24h,用胰蛋白酶消化对数生长期的人胚肾细胞293T细胞,以含10%胎牛血清的DMEM完全培养基调整细胞密度为1.5×105细胞/ml,接种于6孔板,37℃,5%CO2培养箱内培养。待细胞密度达70%-80%时即可用于转染。转染前2h,吸出原有培养基,加入1.5ml新鲜的完全培养基。按照Sigma-aldrich公司的MISSION Lentiviral Packaging Mix试剂盒的说明,向一灭菌离心管中加入Packing Mix(PVM)20μl,PEI 12μl,无血清DMEM培养基400μl,取20μl上述抽提的质粒DNA,加至上述PVM/PEI/DMEM混合液。
将上述转染混和物在室温下孵育15min,转移至人胚肾细胞293T细胞的培养基中,37℃,5%CO2培养箱内培养16h。弃去含有转染混和物的培养介质,PBS溶液洗涤,加入完全培养基2ml,继续培养48h。收集细胞上清液,Centricon Plus-20离心超滤装置(Millipore)纯化和浓缩慢病毒,步骤如下:(1)4℃,4000g离心10min,除去细胞碎片;(2)0.45μm滤器过滤上清液于40ml超速离心管中;(3)4000g离心,10-15min,至需要的病毒浓缩体积;(4)离心结束后,将过滤杯和下面的滤过液收集杯分开,将过滤杯倒扣在样品收集杯上,离心2min离心力不超过1000g;(5)把离心杯从样品收集杯上移开,样品收集杯中的即为病毒浓缩液,针对SEQ ID NO:1的慢病毒命名为EME1-shRNA慢病毒1,针对SEQ ID NO:2的慢病毒命名为EME1-shRNA慢病毒2。将病毒浓缩液分装后于-80摄氏度保存。EME1-shRNA慢病毒1的浓缩液中含有的siRNA的第一链的序列如SEQ ID NO:3所示,EME1-shRNA慢病毒2的的浓缩液中含有的siRNA的第一链的序列如SEQ ID NO:4所示。对照慢病毒的包装过程同EME1-shRNA慢病毒1或2,仅以pGCSIL-GFP-Scr-siRNA载体代替pGCSIL-GFP-EME1-siRNA载体。
实施例2实时荧光定量RT-PCR法检测基因的沉默效率
处于对数生长期的人鼻咽癌CNE-2Z细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数值(MOI=10,以下实施例均为10),加入适宜量的实施例1制备的慢病毒,培养24h后更换培养基,待侵染时间达到5天后,收集细胞。根据Invitrogen公司的Trizol操作说明书,抽提总RNA。根据Promega公司的M-MLV操作说明书,将RNA逆转录获得cDNA(逆转录反应体系见表2-1,42℃反应1h,然后在70℃水浴锅中水浴10min使逆转录酶失活)。
采用TP800型Real time PCR仪(TAKARA)进行实时定量检测。针对慢病毒EME1-shRNA慢病毒1的EME1基因的引物如下:
上游引物5’-TCTGAGGAGTTGCCAACATTTG-3’(SEQ ID NO:18)
下游引物5’-GGCTTCACAATCTGAGATGTCAA-3’(SEQ ID NO:19),
针对慢病毒EME1-shRNA慢病毒2的EME1基因的引物如下:
上游引物:5’-TCTGAGGAGTTGCCAACATTTG-3’(SEQ ID NO:20)
下游引物:5’-GGCTTCACAATCTGAGATGTCAA-3’(SEQ ID NO:21)。
以管家基因GAPDH为内参,针对慢病毒EME1-shRNA慢病毒1的引物序列如下:
上游引物5’-TGACTTCAACAGCGACACCCA-3’(SEQ ID NO:22),
下游引物5’-CACCCTGTTGCTGTAGCCAAA-3’(SEQ ID NO:23)。
针对EME1-shRNA慢病毒2的引物序列如下:
上游引物:5’-TGACTTCAACAGCGACACCCA-3’(SEQ ID NO:24),
下游引物:5’-CACCCTGTTGCTGTAGCCAAA-3’(SEQ ID NO:25)。
按表2-2中的比例配置反应体系。
表2-1逆转录反应体系
试剂 | 体积(μl) |
5×RT buffer | 4.0 |
10mM dNTPs | 2.0 |
RNasin | 0.4 |
M-MLV-RTase | 1.0 |
RNase-Free | 2.6 |
Total | 10.0 |
表2-2 Real-time PCR反应体系
试剂 | 体积(μl) |
SYBR premix ex taq | 6.0 |
引物MIX(5μM) | 0.3 |
cDNA | 0.6 |
ddH<sub>2</sub>O | 5.1 |
Total | 12.0 |
设定程序为两步法Real-time PCR:预变性95℃,30s;之后每一步变性95℃,5s;退火延伸60℃,30s;共进行40个循环。每次在延伸阶段读取吸光值。PCR结束后,95℃变性15s,然后冷却至60℃,使DNA双链充分结合。从60℃开始到95℃,每一步增加0.5℃,保持4s,同时读取吸光值,制作熔解曲线。采用2-ΔΔCt分析法计算侵染了慢病毒的细胞EME1 mRNA的表达丰度。侵染对照病毒的细胞作为对照。实验结果如图1-1和图1-2所示,表明侵染EME1-shRNA慢病毒1的人鼻咽癌CNE-2Z细胞中EME1 mRNA的表达水平下调了50.9%,侵染EME1-shRNA慢病毒2的人鼻咽癌CNE-2Z细胞中EME1 mRNA的表达水平下调了68.7%。
实施例3 Celigo实验检测侵染了EME1-shRNA慢病毒的肿瘤细胞的增殖能力
处于对数生长期的人鼻咽癌CNE-2Z细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数,加入适宜量的病毒,培养24h后更换培养基,待侵染时间达到5天后,收集处于对数生长期的各实验组细胞。完全培养基重悬成细胞悬液(2×104/ml),以细胞密度约为2000个/孔,接种96孔板。每组5个复孔,每孔100μl。铺好板后,置37℃、5%CO2培养箱培养。从铺板后第二天开始,每天用Celigo仪器(Nexcelom)检测读板一次,连续检测读板5天。通过调整analysis settings的输入参数,准确地计算出每次扫描孔板中的带绿色荧光的细胞的数量,对数据进行统计绘图,绘出细胞增殖曲线。
结果如图2-1和2-2所示,慢病毒侵染组各肿瘤在细胞体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,EME1-shRNA慢病毒1组和2组活力细胞数目下降比例分别为38.15%和47.05%,表明EME1基因沉默导致人鼻咽癌CNE-2Z细胞增殖能力被抑制。
实施例4 MTT实验检测侵染了EME1-shRNA慢病毒的肿瘤细胞的增殖能力
处于对数生长期的肿瘤细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数,加入适宜量的病毒,培养24h后更换培养基,收集处于对数生长期的各实验组细胞胰酶消化后,完全培养基重悬成细胞悬液,并计数。根据细胞生长快慢决定在96孔板中的铺板细胞密度(2000cell/well),每组3孔重复,统一铺好后,待细胞完全沉淀下来后,在显微镜下观察各实验组的细胞密度,如果密度不均匀,则固定一组,微调其他组细胞的量再次铺板(如:发现Con组细胞较多,降低细胞量再次铺板),放入细胞培养箱中培养。从铺板后第二天开始,培养终止前4h加入20μL 5mg/mL的MTT于孔中,无需换液。4h后完全吸去培养液,注意不要吸掉孔板底部的甲瓒颗粒,加100μLDMSO溶解甲瓒颗粒。振荡器振荡2-5min,酶标仪490/570nm检测OD值。数据统计分析。
EME1-shRNA慢病毒1组和2组细胞的检测结果分别如图3-1和3-2所示,慢病毒侵染组各肿瘤在细胞体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,EME1-shRNA慢病毒1组和2组活力细胞数目下降比例分别为44.09%和51.42%,表明EME1基因沉默导致人鼻咽癌CNE-2Z细胞增殖能力被抑制。
实施例5 FACS检测侵染EME1-shRNA慢病毒的肿瘤细胞凋亡水平
人鼻咽癌CNE-2Z细胞用胰酶消化后分别接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5μg/ml polybrene。将EME1-shRNA慢病毒按照侵染复数加入到培养板中,感染12-24h后换新鲜的培养基。感染72h后,荧光显微镜下观察荧光,感染效率达到90%。
将处于对数生长期的细胞胰酶消化后,完全培养基重悬成细胞悬液;与上清细胞收集于同一5mL离心管中,每组设三个复孔(为保证上机细胞数足够,细胞数目≥5×105/孔)。1300rpm离心5min,弃上清,用4℃预冷的PBS洗涤细胞沉淀。1×binding buffer(eBioscience,88-8007-74)洗涤细胞沉淀一次,1300rpm、3min离心,收集细胞。200μL 1×binding buffer重悬细胞沉淀。加入10μL Annexin V-APC(eBioscience,88-8007)染色,室温避光10-15min。根据细胞量,补加400-800μL 1×binding buffer,上流式细胞仪进行检测。对结果进行分析。
图4-1至图4-4所示分别为Annexin V单染法检测降低基因的表达后,EME1-shRNA慢病毒1组和2组肿瘤细胞的细胞凋亡比例的变化。发现下调基因表达后两株肿瘤细胞的凋亡比例均增加。与对照干扰(shCtrl组),RNA干扰降低基因的表达(sh EME1组)后,凋亡肿瘤细胞数显著增多;表明基因沉默导致肿瘤细胞凋亡。
实施例7侵染EME1-shRNA慢病毒的肿瘤细胞侵袭水平检测
侵袭室放到培养箱中使其达到室温;用70%乙醇消毒镊子,用镊子处理transwell小室;加300μl温无血清培养基到小室内,室温放置1~2h使ECM层(Extracellular Matrix)再水化;准备5×104/孔(用无血清培养基)细胞悬液;在ECM层再水化后,从小室内小心移去培养基;加500μl含10%FBS的培养基于下室中;加300μl准备好的细胞悬液到每个小室中;在组织培养箱中培养30h;用棉拭子轻轻移去非侵袭细胞;加500μl染色液到板的空孔中;将小室浸泡在染色液中20min,在膜的下表面染色侵入细胞;浸泡小室在一个大的水杯中,冲洗数次。空气中晾干小室;每个小室随机选取视野,拍100X照片4张,200X照片9张。以200X的照片来计数,进行数据分析,比较实验组与对照组细胞侵袭能力的差异:计算各组侵袭转移细胞数(Migratory cells per field),标准差,T-Test分析得到p值,判断是否有显著性差异。
结果如图5-1至5-4所示,与对照干扰(shCtrl组)相比,EME1-shRNA慢病毒1组和2组RNA干扰降低EME1基因的表达(sh EME1组)后,发现下调EME1基因表达后肿瘤细胞的侵袭能力降低。
实施例8 Transwell转移检测侵染慢病毒的肿瘤细胞转移水平
取出Transwell小室(Corning),将所需数目的小室置于新的24孔板中,上室加100μL无血清培养基,37℃培养箱中放置1h。分别制备侵染EME1-shRNA慢病毒1和2的无血清细胞悬浮液,并计数,细胞数根据预实验调整为5*104/孔(24孔板)。小心除去上室中培养基并加入100μL细胞悬液,下室内加入600μL 30%FBS培养基。同时,使用该细胞悬液铺一块MTS96孔板,每孔约接种5000个细胞,接种后即测定OD570,作为转移参照。37℃培养箱培养16h。倒扣小室于吸水纸上以去除培养基,用棉拭子轻轻移去小室内非转移细胞,滴2-3滴Giemsa染色液到膜的下表面染色转移细胞3-5min后,将小室浸泡冲洗数次,空气晾干。显微镜拍照:每个transwell小室,随机选取视野,拍100X照片4张,200X照片9张。以200X的照片来计数,进行数据分析,比较实验组与对照组细胞转移能力的差异:计算各组转移细胞数(Migratory cells per field),标准差,T-Test分析得到p值,判断是否有显著性差异(p<0.05,有显著性差异,否则无显著性差异)。
细胞的转移结果如图6-1至6-4所示,EME1-shRNA慢病毒1组、2组与相应的对照干扰(shCtrl组)相比,RNA干扰降低EME1基因的表达(shEME1组)后,肿瘤细胞的转移能力降低。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。
序列表
<110> 广州医科大学附属肿瘤医院
<120> 人EME1基因的用途及相关产品
<160> 25
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
gataaagaac gccagaatt 19
<210> 2
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ctgagaagac aggaaagaa 19
<210> 3
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 3
gauaaagaac gccagaauu 19
<210> 4
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 4
cugagaagac aggaaagaa 19
<210> 5
<211> 48
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 5
cggauaaaga acgccagaau ucucgagaau ucuggcguuc uuuauccg 48
<210> 6
<211> 48
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 6
cccugagaag acaggaaaga acucgaguuc uuuccugucu ucucaggg 48
<210> 7
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ccggcggata aagaacgcca gaattctcga gaattctggc gttctttatc cgtttttg 58
<210> 8
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
aattcaaaaa cggataaaga acgccagaat tctcgagaat tctggcgttc tttatccg 58
<210> 9
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ccggccctga gaagacagga aagaactcga gttctttcct gtcttctcag ggtttttg 58
<210> 10
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aattcaaaaa ccctgagaag acaggaaaga actcgagttc tttcctgtct tctcaggg 58
<210> 11
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cctatttccc atgattcctt cata 24
<210> 12
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gtaatacggt tatccacgcg 20
<210> 13
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
cctatttccc atgattcctt cata 24
<210> 14
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
gtaatacggt tatccacgcg 20
<210> 15
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
ttctccgaac gtgtcacgt 19
<210> 16
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
ccggttctcc gaacgtgtca cgtctcgaga cgtgacacgt tcggagaatt tttg 54
<210> 17
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
aattcaaaaa ttctccgaac gtgtcacgtc tcgagacgtg acacgttcgg agaa 54
<210> 18
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
tctgaggagt tgccaacatt tg 22
<210> 19
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
ggcttcacaa tctgagatgt caa 23
<210> 20
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
tctgaggagt tgccaacatt tg 22
<210> 21
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
ggcttcacaa tctgagatgt caa 23
<210> 22
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
tgacttcaac agcgacaccc a 21
<210> 23
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
caccctgttg ctgtagccaa a 21
<210> 24
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
tgacttcaac agcgacaccc a 21
<210> 25
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
caccctgttg ctgtagccaa a 21
Claims (10)
1.人EME1基因作为靶标在制备鼻咽癌治疗药物中的用途。
2.EME1抑制剂在制备至少具备以下功效之一的产品中的用途:
治疗鼻咽癌;
抑制鼻咽癌细胞的增殖速率;
促进鼻咽癌细胞凋亡;
抑制鼻咽癌细胞转移;
抑制鼻咽癌细胞侵袭;
抑制鼻咽癌生长。
3.根据权利要求2所述的用途,其特征在于,还包括以下特征中的一项或多项:
1)所述EME1抑制剂是指对EME1具有抑制效果的分子;
2)所述EME1抑制剂为产品的唯一有效成分或有效成分之一;
3)所述EME1抑制剂选自双链RNA、shRNA、抗体或小分子化合物。
4.根据权利要求3所述的用途,其特征在于,还包括以下特征中的一项或多项:
1)所述shRNA或双链RNA靶序列如SEQ ID NO:1和SEQ ID NO:2所示;
2)所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,所述第一链针对SEQ ID NO:1和SEQ ID NO:2的序列分别如SEQ ID NO:3和SEQ ID NO:4所示;
3)所述shRNA针对SEQ ID NO:1和SEQ ID NO:2的核苷酸序列分别如SEQ ID NO:5和SEQID NO:6所示。
5.一种降低鼻咽癌细胞中EME1基因表达的核酸分子,所述核酸分子包含:
a.双链RNA,所述双链RNA中含有能够与EME1基因杂交的核苷酸序列;或者
b.shRNA,所述shRNA中含有能够与EME1基因杂交的核苷酸序列;
其中,所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,并且所述第一链的序列与EME1基因中的靶序列基本相同;所述shRNA包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,并且所述正义链片段的序列与EME1基因中的靶序列基本相同。
6.根据权利要求5所述的降低鼻咽癌细胞中EME1基因表达的核酸分子,其特征在于,还包括以下特征中的一项或多项:
1)所述shRNA或双链RNA靶序列如SEQ ID NO:1和SEQ ID NO:2所示;
2)所述双链RNA为siRNA,所述siRNA第一链针对SEQ ID NO:1和SEQ ID NO:2的序列分别如SEQ ID NO:3和SEQ ID NO:4所示;
3)所述shRNA针对SEQ ID NO:1和SEQ ID NO:2的核苷酸序列分别如SEQ ID NO:5和SEQID NO:6所示。
7.一种EME1基因干扰核酸构建体,含有编码权利要求5-6任一权利要求所述核酸分子中的shRNA的基因片段,能表达所述shRNA。
8.一种EME1基因干扰慢病毒,由权利要求7所述干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。
9.根据权利要求5-6任一权利要求所述的核酸分子,或权利要求7所述EME1基因干扰核酸构建体,或权利要求8所述的EME1基因干扰慢病毒的用途,为:用于制备预防或治疗鼻咽癌的药物,或用于制备降低鼻咽癌细胞中EME1基因表达的试剂盒。
10.一种用于预防或治疗鼻咽癌的组合物,其有效物质含有:
权利要求5-6任一权利要求所述的核酸分子;和/或,权利要求7所述EME1基因干扰核酸构建体;和/或,权利要求8所述的EME1基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911259199.9A CN110863050A (zh) | 2019-12-10 | 2019-12-10 | 人eme1基因的用途及相关产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911259199.9A CN110863050A (zh) | 2019-12-10 | 2019-12-10 | 人eme1基因的用途及相关产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110863050A true CN110863050A (zh) | 2020-03-06 |
Family
ID=69658701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911259199.9A Withdrawn CN110863050A (zh) | 2019-12-10 | 2019-12-10 | 人eme1基因的用途及相关产品 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110863050A (zh) |
-
2019
- 2019-12-10 CN CN201911259199.9A patent/CN110863050A/zh not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110917357B (zh) | 人gsdmb基因的用途及相关产品 | |
CN110791566B (zh) | 人shcbp1基因的用途及相关产品 | |
CN111518802A (zh) | 人ddx10基因的用途及相关产品 | |
CN110904104B (zh) | 人hist1h2bk基因的用途及相关产品 | |
CN111349701B (zh) | Rsph14基因用途、rsph14抑制剂用途、核酸分子、构建体及组合物 | |
CN110938691B (zh) | 人dus4l基因的用途及相关产品 | |
CN111926010A (zh) | 人uap1l1基因的用途及相关产品 | |
CN113917145A (zh) | 人capn7基因的用途及相关产品 | |
CN111803633A (zh) | 人psmd7基因的用途及相关产品 | |
CN113913423A (zh) | 人cfap65基因的用途及相关产品 | |
CN110863050A (zh) | 人eme1基因的用途及相关产品 | |
CN111041028B (zh) | 人ttll4基因的用途及相关产品 | |
CN110863047B (zh) | 人ccdc154基因的用途及相关产品 | |
CN110938692A (zh) | 人impa2基因的用途及相关产品 | |
CN110938630B (zh) | 人b3gnt5基因的用途及相关产品 | |
CN111035762B (zh) | 人eddm3a基因的用途及相关产品 | |
CN110938628B (zh) | 人urb1基因的用途及相关产品 | |
CN111304327B (zh) | 人grpel2基因的用途及相关产品 | |
CN111073889B (zh) | 人cspg5基因的用途及相关产品 | |
CN110882390B (zh) | 人lsm5基因的用途及相关产品 | |
CN110819631B (zh) | 人dmbx1基因的用途及相关产品 | |
CN110643705A (zh) | 人dgkz基因的用途及其相关药物 | |
CN113917144A (zh) | 人sh2d2a基因的用途及相关产品 | |
CN113917146A (zh) | 人pole2基因的用途及相关产品 | |
CN111269910B (zh) | 人depdc1基因的用途及相关产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200306 |