CN110938630B - 人b3gnt5基因的用途及相关产品 - Google Patents

人b3gnt5基因的用途及相关产品 Download PDF

Info

Publication number
CN110938630B
CN110938630B CN201911327831.9A CN201911327831A CN110938630B CN 110938630 B CN110938630 B CN 110938630B CN 201911327831 A CN201911327831 A CN 201911327831A CN 110938630 B CN110938630 B CN 110938630B
Authority
CN
China
Prior art keywords
b3gnt5
gene
liver cancer
strand
shrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911327831.9A
Other languages
English (en)
Other versions
CN110938630A (zh
Inventor
陶开山
汪建林
张洪涛
彭伟
李艺杰
林志斌
杨龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fourth Military Medical University FMMU
Original Assignee
Fourth Military Medical University FMMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fourth Military Medical University FMMU filed Critical Fourth Military Medical University FMMU
Priority to CN201911327831.9A priority Critical patent/CN110938630B/zh
Publication of CN110938630A publication Critical patent/CN110938630A/zh
Application granted granted Critical
Publication of CN110938630B publication Critical patent/CN110938630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明属于生物医药研究领域,具体涉及人B3GNT5基因作为靶标在制备肝癌治疗药物中的用途。本发明经过广泛而深入的研究发现,采用RNAi方法下调人B3GNT5基因的表达后可有效地抑制肝癌细胞的增殖、促进细胞凋亡,可以有效地控制肝癌的生长进程。本发明提供的siRNA或者包含该siRNA序列的核酸构建体、慢病毒能够特异性抑制肝癌细胞的增殖速率、促进肝癌细胞凋亡、抑制肝癌细胞克隆、抑制肝癌生长,从而治疗肝癌,为肝癌治疗开辟新的方向。

Description

人B3GNT5基因的用途及相关产品
技术领域
本发明属于生物医药研究领域,具体涉及人B3GNT5基因的用途及相关产品。
背景技术
B3GNT5基因编码β-1,3-N-乙酰氨基葡萄糖基转移酶家族中的一员,将N-乙酰氨基葡萄糖与乳糖酰氨基神经酰胺连接,生成前体乳糖酰基神经酰胺(LC3),用于合成一型乳糖酰胺和二型乳糖酰胺(doi:10.1074/jbc.M011369200)。这种酶对糖脂糖上Lewis X表位的表达至关重要。B3GNT5及其相关的糖苷产物(LC3)在人类恶性疾病、胚胎发育和细胞分化中发挥作用。
B3GNT5与乳腺癌的分型和生存期相关(PMID:25655580)。在顺铂耐药卵巢癌细胞株中,通过表达谱芯片发现B3GNT5存在高表达。B3GNT5的表达在急性骨髓性白血病患者相应升高(doi:10.1093/glycob/cws061)。全基因组甲基化以及基因表达谱整合分析发现,在胶质母细胞瘤组织中,与对照脑组织相比B3GNT5基因显示过表达,并伴有低甲基化启动子。在下咽癌的一个研究中发现,miRNA-203的高表达通过靶向TP63和B3GNT5促进了下咽癌的发生发展。
目前还未有B3GNT5基因用于肝癌治疗的相关报道。
发明内容
为了克服现有技术中所存在的问题,本发明的目的在于提供人B3GNT5基因的用途及相关产品。
为了实现上述目的以及其他相关目的,本发明采用如下技术方案:
本发明的第一方面,提供人B3GNT5基因作为靶标在制备肝癌治疗药物中的用途。
所述人B3GNT5基因作为靶标在制备肝癌治疗药物具体是指:将B3GNT5基因作为作用对象,对药物或制剂进行筛选,以找到可以抑制人B3GNT5基因表达的药物作为肝癌治疗备选药物。如本发明所述的B3GNT5基因小分子干扰RNA(siRNA)即是以人B3GNT5基因为作用对象筛选获得的,可用作具有抑制肝癌细胞增殖作用的药物。除此之外,诸如抗体药物,小分子药物等也可将B3GNT5基因作为作用对象。
所述肝癌治疗药物为能够特异性抑制B3GNT5基因的转录或翻译,或能够特异性抑制B3GNT5蛋白的表达或活性的分子,从而降低肝癌细胞中B3GNT5基因的表达水平,达到抑制肝癌细胞的增殖、生长、分化和/或存活的目的。
所述通过B3GNT5基因制备获得的肝癌治疗药物包括但不限于:核酸分子、碳水化合物、脂类、小分子化学药、抗体药、多肽、蛋白或干扰慢病毒。
所述核酸包括但不限于:反义寡核苷酸、双链RNA(dsRNA)、核酶、核糖核酸内切酶III制备的小干扰RNA或者短发夹RNA(shRNA)。
所述肝癌治疗药物的施用量为足够降低人B3GNT5基因的转录或翻译,或者足够降低人B3GNT5蛋白的表达或活性的剂量。以使人B3GNT5基因的表达至少被降低50%、80%、90%、95%或99%。
采用前述肝癌治疗药物治疗肝癌的方法,主要是通过降低人B3GNT5基因的表达水平抑制肝癌细胞的增殖来达到治疗的目的。具体的,治疗时,将能有效降低人B3GNT5基因表达水平的物质给药于患者。
在一种实施方式中,所述B3GNT5基因的靶标序列如SEQ ID NO:1所示。具体为:5’-TTGGAAGAATGCTACAGAT-3’。
本发明的第二方面,提供B3GNT5抑制剂在制备至少具备以下功效之一的产品中的用途:
治疗肝癌;
抑制肝癌细胞的增殖速率;
促进肝癌细胞凋亡;
抑制肝癌细胞克隆;
抑制肝癌生长。
所述产品必然包括B3GNT5抑制剂,并以B3GNT5抑制剂作为前述功效的有效成分。
所述产品中,发挥前述功用的有效成分可仅为B3GNT5抑制剂,亦可包含其他可起到前述功用的分子。
亦即,B3GNT5抑制剂为所述产品的唯一有效成分或有效成分之一。
所述产品可以为单成分物质,亦可为多成分物质。
所述产品的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述产品主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。
所述产品包括但不限于药物、保健品、食品等。
所述B3GNT5抑制剂可以为核酸分子、抗体、小分子化合物。
如本发明实施例列举的,所述B3GNT5抑制剂可以为降低肝癌细胞中B3GNT5基因表达的核酸分子。具体的,可以是双链RNA或shRNA。
本发明的第三方面,提供了一种治疗肝癌的方法,为向对象施用B3GNT5抑制剂。
所述的对象可以为哺乳动物或哺乳动物的肝癌细胞。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。所述肝癌细胞可以为离体肝癌细胞。
所述对象可以是罹患肝癌的患者或者期待治疗的肝癌的个体。或者所述对象为肝癌患者或者期待治疗肝癌的个体的离体肝癌细胞。
所述B3GNT5抑制剂可以在接受肝癌治疗前、中、后向对象施用。
本发明第四方面公开了一种降低肝癌细胞中B3GNT5基因表达的核酸分子,所述核酸分子包含双链RNA或shRNA。
其中,所述双链RNA中含有能够与B3GNT5基因杂交的核苷酸序列;
所述shRNA中含有能够与B3GNT5基因杂交的核苷酸序列。
进一步的,所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,并且所述第一链的序列与B3GNT5基因中的靶序列基本相同。
所述B3GNT5基因中的靶序列即为核酸分子用于特异性沉默B3GNT5基因表达时,被所述核酸分子识别并沉默的mRNA片段所对应的B3GNT5基因中的片段。
进一步的,所述双链RNA的靶序列如SEQ ID NO:1所示。具体为:5’-TTGGAAGAATGCTACAGAT-3’。更进一步的,所述双链RNA第一链的序列如SEQ ID NO:2所示。具体为5’-UUGGAAGAAUGCUACAGAU-3’。
进一步的,所述双链RNA为小干扰RNA(siRNA)。
SEQ ID NO:2为以SEQ ID NO:1所示的序列为RNA干扰靶序列设计的、针对人B3GNT5基因的小干扰RNA的一条链,另一条链即第二链的序列与第一链序列互补,该siRNA可以起到特异性沉默肝癌细胞中内源B3GNT5基因表达的作用。
所述shRNA包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,并且所述正义链片段的序列与B3GNT5基因中的靶序列基本相同。
进一步的,所述shRNA的靶序列如SEQ ID NO:1所示。
所述shRNA经酶切加工后可成为小干扰RNA(siRNA)进而起到特异性沉默肝癌细胞中内源B3GNT5基因表达的作用。
进一步的,所述shRNA的茎环结构的序列可选自以下任一:UUCAAGAGA、AUG、CCC、UUCG、CCACC、CTCGAG、AAGCUU和CCACACC。
更进一步的,所述shRNA的序列如SEQ ID NO:3所示。具体为5’-CUUUGGAAGAAUGCUACAGAUCUCGAGAUCUGUAGCAUUCUUCCAAAG-3’。
进一步的,所述B3GNT5基因来源于人。
本发明第五方面,公开了一种B3GNT5基因干扰核酸构建体,含有编码前述核酸分子中的shRNA的基因片段,能表达所述shRNA。
所述的B3GNT5基因干扰核酸构建体可以是将编码前述人B3GNT5基因shRNA的基因片段克隆入已知载体获得。
进一步的,所述B3GNT5基因干扰核酸构建体为B3GNT5基因干扰慢病毒载体。
本发明公开的B3GNT5基因干扰慢病毒载体是将编码前述B3GNT5基因shRNA的DNA片段克隆入已知载体获得,所述已知载体多为慢病毒载体,所述B3GNT5基因干扰慢病毒载体经过病毒包装成为有感染力的病毒颗粒后,感染肝癌细胞,进而转录出本发明所述shRNA,通过酶切加工等步骤,最终获得所述siRNA,用于特异性沉默B3GNT5基因的表达。
进一步的,所述B3GNT5基因干扰慢病毒载体还含有启动子序列和/或编码肝癌细胞中可被检测的标记物的核苷酸序列;较优的,所述可被检测的标记物如绿色荧光蛋白(GFP)。
进一步的,所述慢病毒载体可以选自:pLKO.1-puro、pLKO.1-CMV-tGFP、pLKO.1-puro-CMV-tGFP、pLKO.1-CMV-Neo、pLKO.1-Neo、pLKO.1-Neo-CMV-tGFP、pLKO.1-puro-CMV-TagCFP、pLKO.1-puro-CMV-TagYFP、pLKO.1-puro-CMV-TagRFP、pLKO.1-puro-CMV-TagFP635、pLKO.1-puro-UbC-TurboGFP、pLKO.1-puro-UbC-TagFP635、pLKO-puro-IPTG-1xLacO、pLKO-puro-IPTG-3xLacO、pLP1、pLP2、pLP/VSV-G、pENTR/U6、pLenti6/BLOCK-iT-DEST、pLenti6-GW/U6-laminshrna、pcDNA1.2/V5-GW/lacZ、pLenti6.2/N-Lumio/V5-DEST、pGCSIL-GFP或pLenti6.2/N-Lumio/V5-GW/lacZ中的任一。
本发明实施例具体列举了以pGCSIL-GFP为载体构建的人B3GNT5基因干扰慢病毒载体,命名为pGCSIL-GFP-B3GNT5-siRNA。
本发明的B3GNT5基因siRNA可用于抑制肝癌细胞的增殖,进一步地可以用作治疗肝癌的药物或制剂。B3GNT5基因干扰慢病毒载体则可用于制备所述B3GNT5基因siRNA。当用作治疗肝癌的药物或制剂时,是将安全有效量的所述核酸分子施用于哺乳动物。具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
本发明第六方面,公开了一种B3GNT5基因干扰慢病毒,由前述B3GNT5基因干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。该慢病毒可感染肝癌细胞并产生针对B3GNT5基因的小分子干扰RNA,从而抑制肝癌细胞的增殖。该B3GNT5基因干扰慢病毒可用于制备预防或治疗肝癌的药物。
本发明的第七方面,提供前述核酸分子,或前述B3GNT5基因干扰核酸构建体,或前述B3GNT5基因干扰慢病毒的用途,为:用于制备预防或治疗肝癌的药物,或用于制备降低肝癌细胞中B3GNT5基因表达的试剂盒。
所述预防或治疗肝癌的药物的应用为肝癌的治疗提供了一种方法,具体为一种预防或治疗对象体内肝癌的方法,包括将有效剂量的所述的药物施用于对象中。
进一步的,所述药物用于预防或治疗对象体内肝癌时,需要将有效剂量的所述的药物施用于对象中。采用该方法,所述肝癌的生长、增殖、复发和/或转移被抑制。进一步的,所述肝癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。
所述方法的对象可以为人。
本发明的第八方面,提供一种用于预防或治疗肝癌的组合物,其有效物质含有:
前述的核酸分子;和/或,前述B3GNT5基因干扰核酸构建体;和/或,前述B3GNT5基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。
所述组合物可以为药物组合物。
当所述组合物用于预防或治疗对象体内肝癌时,需要将有效剂量的所述的组合物施用于对象中。采用该方法,所述肝癌的生长、增殖、复发和/或转移被抑制。进一步的,所述肝癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。
所述组合物的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述组合物主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。
综上所述,本发明设计了针对人B3GNT5基因的RNAi靶点序列,构建相应的B3GNT5RNAi载体,其中RNAi载体pGCSIL-GFP-B3GNT5-siRNA能够显著下调B3GNT5基因在mRNA水平和蛋白水平的表达。使用慢病毒(lentivirus,简写为Lv)作为基因操作工具携带RNAi载体pGCSIL-GFP-B3GNT5-siRNA能够靶向地将针对B3GNT5基因的RNAi序列高效导入肝癌BEL-7404和SMMC-7721细胞,降低B3GNT5基因的表达水平,显著抑制上述肿瘤细胞的增殖能力。因此慢病毒介导的B3GNT5基因沉默是恶性肿瘤潜在的临床非手术治疗方式。
与现有技术相比,本发明具有如下有益效果:
本发明经过广泛而深入的研究发现,采用RNAi方法下调人B3GNT5基因的表达后可有效地抑制肝癌细胞的增殖、促进细胞凋亡,可以有效地控制肝癌的生长进程。本发明提供的siRNA或者包含该siRNA序列的核酸构建体、慢病毒能够特异性抑制肝癌细胞的增殖速率、促进肝癌细胞凋亡、抑制肝癌细胞克隆、抑制肝癌生长,从而治疗肝癌,为肝癌治疗开辟新的方向。
附图说明
图1-1:Western Blot检测BEL-7404细胞靶点降低B3GNT5基因蛋白水平表达情况。
图1-2:Western Blot检测SMMC-7721细胞靶点降低B3GNT5基因蛋白水平表达情况。
图2:RT-PCR检测BEL-7404细胞mRNA水平靶基因消减效率。
图3-1:Celigo细胞自动分析结果揭示B3GNT5基因的消减抑制BEL-7404肝癌细胞的增殖(病毒感染后3天铺板,铺板后的第1,2,3,4以及5天分别用celigo扫板)。
图3-2:Celigo细胞自动分析结果揭示B3GNT5基因的消减抑制BEL-7404肝癌细胞的增殖(折线图记录了铺板后的第1~5天celigo分析得到的细胞数量、细胞数量变化倍数的情况)。
图4-1:细胞克隆形成法检测B3GNT5基因对BEL-7404细胞增殖能力的影响,shRNA慢病毒感染BEL-7404细胞,培养8天后数码相机记录图。
图4-2:细胞克隆形成法检测B3GNT5基因对BEL-7404细胞增殖能力的影响,shRNA慢病毒感染BEL-7404细胞,培养8天后检测,柱状结果以细胞克隆数量平均值±标准差显示。
图4-3:细胞克隆形成法检测B3GNT5基因对SMMC-7721细胞增殖能力的影响,shRNA慢病毒感染SMMC-7721细胞,培养8天后数码相机记录图。
图4-4:细胞克隆形成法检测B3GNT5基因对SMMC-7721细胞增殖能力的影响,shRNA慢病毒感染SMMC-7721细胞,培养8天后检测,柱状结果以细胞克隆数量平均值±标准差显示。
图5-1:Annexin V-APC流式细胞凋亡检测shB3GNT5对BEL-7404细胞凋亡影响的峰图。
图5-2:Annexin V-APC流式细胞凋亡检测shB3GNT5对BEL-7404细胞凋亡影响的柱状图。
图5-3:Annexin V-APC流式细胞凋亡检测shB3GNT5对SMMC-7721细胞凋亡影响的峰图。
图5-4:Annexin V-APC流式细胞凋亡检测shB3GNT5对SMMC-7721细胞凋亡影响的柱状图。
图6-1:caspase3/7酶活检测shB3GNT5对BEL-7404细胞凋亡的影响,柱状结果以细胞百分比平均值±标准差显示。
图6-2:caspase3/7酶活检测shB3GNT5对SMMC-7721细胞凋亡的影响,柱状结果以细胞百分比平均值±标准差显示。
附图中,
柱形图代表三次实验的平均值,误差线表示标准偏差(SD)。
**,shCtrl与目的基因shRNA慢病毒处理组相比,P<0.01。
*,shCtrl与目的基因shRNA慢病毒处理组相比,0.01≤P<0.05。
具体实施方式
本发明从细胞功能学角度出发证实B3GNT5基因在肝癌发生中的作用。通过构建目的基因shRNA慢病毒后转染肝癌细胞,与转染对照慢病毒做对比,检测两组肝癌细胞系内mRNA及蛋白质水平目的基因的表达情况;随后通过细胞功能学实验进行细胞增殖、凋亡等检测,结果显示shRNA组与对照组对比,shRNA组肝癌细胞增殖抑制程度明显高于对照组,细胞凋亡率增加程度较对照组高。
B3GNT5抑制剂
指对于B3GNT5具有抑制效果的分子。对于B3GNT5具有抑制效果包括但不限于:抑制B3GNT5的表达或活性。
抑制B3GNT5活性是指使B3GNT5活力下降。优选地,相比抑制前,B3GNT5活力下降至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,最佳的降低至少90%。
抑制B3GNT5表达具体的可以是抑制B3GNT5基因的转录或翻译,具体的,可以是指:使B3GNT5的基因不转录,或降低B3GNT5的基因的转录活性,或者使B3GNT5的基因不翻译,或降低B3GNT5的基因的翻译水平。
本领域技术人员可以使用常规方法对B3GNT5的基因表达进行调节,如基因敲除、同源重组,干扰RNA等。
B3GNT5的基因表达的抑制可以通过PCR及Western Blot检测表达量验证。
优选地,与野生型相比,B3GNT5基因表达降低至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,又佳的降低至少90%,最佳地B3GNT5基因完全没有表达。
小分子化合物
本发明中指由几个或几十个原子组成,分子质量在1000以下的化合物。
制备预防或治疗肝癌的药物
可以利用降低肝癌细胞中B3GNT5基因表达的核酸分子;和/或,B3GNT5基因干扰核酸构建体;和/或,B3GNT5基因干扰慢病毒,作为有效成分,制备预防或治疗肝癌的药物。通常,所述药物中除了有效成分外,根据不同剂型的需要,还会包括一种或多种药学上可接受的载体或辅料。
“药学上可接受的”是指当分子本体和组合物适当地给予动物或人时,它们不会产生不利的、过敏的或其它不良反应。
“药学上可接受的载体或辅料”应当与所述有效成分相容,即能与其共混而不会在通常情况下大幅度降低药物的效果。可作为药学上可接受的载体或辅料的一些物质的具体例子是糖类,如乳糖、葡萄糖和蔗糖;淀粉,如玉米淀粉和土豆淀粉;纤维素及其衍生物,如甲基纤维素钠、乙基纤维素和甲基纤维素;西黄蓍胶粉末;麦芽;明胶;滑石;固体润滑剂,如硬脂酸和硬脂酸镁;硫酸钙;植物油,如花生油、棉籽油、芝麻油、橄榄油、玉米油和可可油;多元醇,如丙二醇、甘油、山梨糖醇、甘露糖醇和聚乙二醇;海藻酸;乳化剂,如Tween;润湿剂,如月桂基硫酸钠;着色剂;调味剂;压片剂、稳定剂;抗氧化剂;防腐剂;无热原水;等渗盐溶液;和磷酸盐缓冲液等。这些物质根据需要用于帮助配方的稳定性或有助于提高活性或它的生物有效性或在口服的情况下产生可接受的口感或气味。
本发明中,除非特别说明,药物剂型并无特别限定,可以被制成针剂、口服液、片剂、胶囊、滴丸、喷剂等剂型,可通过常规方法进行制备。药物剂型的选择应与给药方式相匹配。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本技术领域常规的分子生物学、生物化学、染色质结构和分析、分析化学、细胞培养、重组DNA技术及相关领域的常规技术。
实施例1针对人B3GNT5基因RNAi慢病毒的制备
1.筛选针对人B3GNT5基因的有效的siRNA靶点
从Genbank调取B3GNT5(NM_032047)基因信息;设计针对B3GNT5基因的有效的siRNA靶点。表1-1列出了筛选出的针对B3GNT5基因的有效siRNA靶点序列。
表1-1靶向于人B3GNT5基因的siRNA靶点序列
SEQ ID NO TargetSeq(5’-3’)
1 TTGGAAGAATGCTACAGAT
2.慢病毒载体的制备
针对siRNA靶点(以SEQ ID NO:1为例)合成两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo序列(表1-2);以Age I和EcoR I限制性内切酶作用于pGCSIL-GFP载体(上海吉凯基因化学技术有限公司提供),使其线性化,琼脂糖凝胶电泳鉴定酶切片段。
表1-2两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo
通过T4 DNA连接酶将双酶切线性化(酶切体系如表1-4所示,37℃,反应1h)的载体DNA和纯化好的双链DNA Oligo连接,在适当的缓冲体系(连接体系如表1-5所示)中于16℃连接过夜,回收连接产物。将连接产物转化氯化钙制备的新鲜的大肠杆菌感受态细胞(转化操作参考:分子克隆实验指南第二版55-56页)。在连接转化产物长出菌克隆表面沾一下,溶于10μl LB培养基,混匀取1μl作为模板;在以慢病毒载体中RNAi序列的上下游,设计通用PCR引物,上游引物序列:5’-CCTATTTCCCATGATTCCTTCATA-3’(SEQ ID NO:6);下游引物序列:5’-GTAATACGGTTATCCACGCG-3’(SEQ ID NO:7),进行PCR鉴定实验(PCR反应体系如表1-6,反应条件如表1-7)。对PCR鉴定阳性的克隆进行测序和比对分析,比对正确的克隆即为构建成功的针对SEQ ID NO:1的表达RNAi的载体,命名为pGCSIL-GFP-B3GNT5-siRNA。
构建pGCSIL-GFP-Scr-siRNA阴性对照质粒,阴性对照siRNA靶序列为5’-TTCTCCGAACGTGTCACGT-3’(SEQ ID NO:8)。构建pGCSIL-GFP-Scr-siRNA阴性对照质粒时,针对Scr siRNA靶点合成两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo序列(表1-3),其余构建方法、鉴定方法及条件均同pGCSIL-GFP-B3GNT5-siRNA。
表1-3两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo
表1-4pGCSIL-GFP质粒酶切反应体系
试剂 体积(μl)
pGCSIL-GFP质粒(1μg/μl) 2.0
10×buffer 5.0
100×BSA 0.5
Age I(10U/μl) 1.0
EcoR I(10U/μl) 1.0
dd H2O 40.5
Total 50.0
表1-5载体DNA和双链DNA Oligo连接反应体系
试剂 阳性对照(μl) 自连对照(μl) 连接组(μl)
线性化的载体DNA(100ng/μl) 1.0 1.0 1.0
退火的双链DNAOligo(100ng/μl) 1.0 - 1.0
10×T4噬菌体DNA连接酶缓冲液 1.0 1.0 1.0
T4噬菌体DNA连接酶 1.0 1.0 1.0
dd H2O 16.0 17.0 16.0
Total 20.0 20.0 20.0
表1-6PCR反应体系
试剂 体积(μl)
10×buffer 2.0
dNTPs(2.5mM) 0.8
上游引物 0.4
下游引物 0.4
Taq聚合酶 0.2
模板 1.0
ddH2O 15.2
Total 20.0
表1-7PCR反应体系程序设定
3.包装B3GNT5-shRNA慢病毒
以Qiagen公司的质粒抽提试剂盒提取RNAi质粒pGCSIL-GFP-B3GNT5-siRNA的DNA,配制成100ng/μl储存液。
转染前24h,用胰蛋白酶消化对数生长期的人胚肾细胞293T细胞,以含10%胎牛血清的DMEM完全培养基调整细胞密度为1.5×105细胞/ml,接种于6孔板,37℃,5%CO2培养箱内培养。待细胞密度达70%-80%时即可用于转染。转染前2h,吸出原有培养基,加入1.5ml新鲜的完全培养基。按照Sigma-aldrich公司的MISSION Lentiviral Packaging Mix试剂盒的说明,向一灭菌离心管中加入Packing Mix(PVM)20μl,PEI 12μl,无血清DMEM培养基400μl,取20μl上述抽提的质粒DNA,加至上述PVM/PEI/DMEM混合液。
将上述转染混和物在室温下孵育15min,转移至人胚肾细胞293T细胞的培养基中,37℃,5%CO2培养箱内培养16h。弃去含有转染混和物的培养介质,PBS溶液洗涤,加入完全培养基2ml,继续培养48h。收集细胞上清液,Centricon Plus-20离心超滤装置(Millipore)纯化和浓缩慢病毒,步骤如下:(1)4℃,4000g离心10min,除去细胞碎片;(2)0.45μm滤器过滤上清液于40ml超速离心管中;(3)4000g离心,10-15min,至需要的病毒浓缩体积;(4)离心结束后,将过滤杯和下面的滤过液收集杯分开,将过滤杯倒扣在样品收集杯上,离心2min离心力不超过1000g;(5)把离心杯从样品收集杯上移开,样品收集杯中的即为病毒浓缩液。将病毒浓缩液分装后于-80摄氏度保存。病毒浓缩液中含有的siRNA的第一链的序列如SEQ IDNO:2所示。对照慢病毒的包装过程同B3GNT5-shRNA慢病毒,仅以pGCSIL-GFP-Scr-siRNA载体代替pGCSIL-GFP-B3GNT5-siRNA载体。
实施例2Western Blotting法检测基因的沉默效率
1.细胞总蛋白抽提
1)将对照病毒和针对B3GNT5干扰靶点的RNAi病毒,分别根据侵染复数值侵染目的细胞(BEL-7404人肝癌细胞侵染复数为10,SMMC-7721人非小细胞性肝癌细胞为20,以下实施例均采用此侵染复数)。
2)感染5天后,收集细胞样品,取适当量的RIPA裂解液(碧云天,P0013C),使用前数分钟内加入PMSF,使PMSF的最终浓度为1mM。
3)加入适当量的RIPA裂解液,冰上裂解10-15min。细胞刮刮下细胞转移入新的EP管中,然后超声破碎细胞(40W共20次,每次1s,间隔2s)。
4)4℃、12000g,离心15min,取上清用BCA Protein Assay Kit(厂家:碧云天,货号:P0010S)测定蛋白浓度。
5)加入新的裂解液将每个样品蛋白浓度调为一致,一般为2μg/μL。然后加入1/5体积的6Xlodding buffer混匀,100度金属浴煮10min,短暂离心后-80℃保存备用。
2.SDS-PAGE
1)制胶:根据目的蛋白分子量大小配制不同浓度的胶,具体体系如表3-1、表3-2、表3-3所示:
表3-1SDS-PAGE分离胶(8mL体系)
分离胶(8mL体系) 8% 9% 10% 12% 13% 15%
H2O 3.7 3.4 3.1 2.6 2.3 1.8
30%PAGE 2.1 2.4 2.7 3.2 3.5 4
1.5mol/L Tris(pH 8.8) 2 2 2 2 2 2
10%SDS 0.08 0.08 0.08 0.08 0.08 0.08
10%APS 0.08 0.08 0.08 0.08 0.08 0.08
TEMED 0.005 0.004 0.004 0.004 0.004 0.004
表3-2SDS-PAGE分离胶(10mL体系)
分离胶(10mL体系) 8% 9% 10% 12% 13% 15%
H2O 4.6 4.3 4 3.3 2.9 2.3
30%PAGE 2.7 3 3.3 4 4.4 5
1.5mol/L Tris(pH 8.8) 2.5 2.5 2.5 2.5 2.5 2.5
10%SDS 0.1 0.1 0.1 0.1 0.1 0.1
10%APS 0.1 0.1 0.1 0.1 0.1 0.1
TEMED 0.006 0.004 0.004 0.004 0.004 0.004
表3-3SDS-PAGE浓缩胶(不同体系)
浓缩胶(5%) 3mL 4mL 5mL
H2O 2.1 2.7 3.4
30%PAGE 0.5 0.67 0.83
1.0mol/L Tris(pH6.8) 0.38 0.5 0.63
10%SDS 0.03 0.04 0.05
10%APS 0.03 0.04 0.05
TEMED 0.003 0.004 0.005
2)上样:胶凝固后,拔去梳子,电泳缓冲液清洗上样孔,将准备好的样品上样。
3)电泳:浓缩胶80mA,20min;分离胶120mA,1h。
3.免疫印迹(湿转)
电泳结束后,使用转移电泳装置,在4℃、300mA恒流条件下电转150min,将蛋白转移到PVDF膜上。
4.抗体杂交:
1)封闭:用封闭液(含5%脱脂牛奶的TBST溶液)室温封闭PVDF膜1h或4℃过夜。
2)一抗孵育:用封闭液按照1:500稀释B3GNT5(SIGMA)一抗,1:4000稀释GAPDH(SantaCruz),然后与封闭好的PVDF膜室温孵育2h或4℃过夜,并用TBST洗膜4次,每次8min。
3)二抗孵育:用封闭液按照1:5000稀释rabbit IgG(Santa Cruz)、mouse IgG(Santa Cruz)
二抗,室温下孵育PVDF膜1.5h,并用TBST洗膜4次,每次8min。
5.X光显影:
1)采用CST公司20XReagent and 20X Peroxide#7003试剂盒,将试剂盒中A液和B液按1:1比例混合颠倒混匀,放置数分钟后可使用。
2)将膜取出,吸水纸擦干,平铺入暗盒,滴加适量混匀的ECL发光液,铺上保鲜膜(避免产生气泡),放上X光片(避免X光片的移动),关上暗盒,曝光1s至数分钟(曝光时间需要多尝试几次,根据肉眼能否看见荧光以及荧光的强弱无适当调整曝光时间)。
3)取出X光片,放入显影液中,出现条带后取出,在清水中漂洗几秒钟,后放入定影液中至少2min。
4)取出X光片,晾干,分析。
结果如图1-1和1-2所示,Western Blot实验表明靶点对B3GNT5基因的内源表达有敲减作用,因而是有效靶点。
实施例3实时荧光定量RT-PCR法检测基因的沉默效率
处于对数生长期的人肝癌BEL-7404细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数值,加入适宜量的实施例1制备的慢病毒,培养24h后更换培养基,待侵染时间达到5天后,收集细胞。根据Invitrogen公司的Trizol操作说明书,抽提总RNA。根据Promega公司的M-MLV操作说明书,将RNA逆转录获得cDNA(逆转录反应体系见表2-1,42℃反应1h,然后在70℃水浴锅中水浴10min使逆转录酶失活)。
采用TP800型Real time PCR仪(TAKARA)进行实时定量检测。CSPG5基因的引物如下:上游引物5’-CCTGCTCAAGACGGAGAATAC-3’(SEQ ID NO:11)和下游引物5’-GAGCACTAGGATCATCATTTGG-3’(SEQ ID NO:12)。以管家基因GAPDH为内参,引物序列如下:上游引物5’-TGACTTCAACAGCGACACCCA-3’(SEQ ID NO:13)和下游引物5’-CACCCTGTTGCTGTAGCCAAA-3’(SEQ ID NO:14)。按表2-2中的比例配置反应体系。
表2-1逆转录反应体系
试剂 体积(μl)
5×RT buffer 4.0
10mM dNTPs 2.0
RNasin 0.4
M-MLV-RTase 1.0
RNase-Free 2.6
Total 10.0
表2-2Real-time PCR反应体系
试剂 体积(μl)
SYBR premix ex taq 6.0
引物MIX(5μM) 0.3
cDNA 0.6
ddH2O 5.1
Total 12.0
设定程序为两步法Real-time PCR:预变性95℃,30s;之后每一步变性95℃,5s;退火延伸60℃,30s;共进行40个循环。每次在延伸阶段读取吸光值。PCR结束后,95℃变性15s,然后冷却至60℃,使DNA双链充分结合。从60℃开始到95℃,每一步增加0.5℃,保持4s,同时读取吸光值,制作熔解曲线。采用2-ΔΔCt分析法计算侵染了慢病毒的细胞B3GNT5 mRNA的表达丰度。侵染对照病毒的细胞作为对照。
实验结果如图2所示,表明人肝癌BEL-7404细胞中B3GNT5 mRNA的表达水平下调了35.6%。
实施例4检测侵染了B3GNT5-shRNA慢病毒的肿瘤细胞的增殖能力
处于对数生长期的人肝癌BEL-7404细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数,加入适宜量的病毒,培养24h后更换培养基,待侵染时间达到3天后,收集处于对数生长期的各实验组细胞。完全培养基重悬成细胞悬液(2×104/ml),以细胞密度约为1500个/孔,接种96孔板。每组3个复孔,每孔100μl。铺好板后,置37℃、5%CO2培养箱培养。从铺板后第二天开始,每天用Celigo仪器(Nexcelom)检测读板一次,连续检测读板5天。通过调整analysis settings的输入参数,准确地计算出每次扫描孔板中的带绿色荧光的细胞的数量,对数据进行统计绘图,绘出细胞增殖曲线。
结果如图3-1和3-2所示,结果表明慢病毒侵染组各肿瘤在细胞体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,活力细胞数目下降比例为37.02%,表明B3GNT5基因沉默导致人肝癌BEL-7404细胞增殖能力被抑制。
实施例5侵染B3GNT5-shRNA慢病毒的肿瘤细胞克隆形成能力的检测
将BEL-7404和SMMC-7721细胞胰酶消化后接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5μg/ml polybrene。将B3GNT5-shRNA慢病毒按照侵染复数加入到培养板中,感染12-24h后换新鲜的培养基。感染72h后,荧光显微镜下观察荧光,感染效率达到80%。
将处于对数生长期的感染病毒后的细胞胰酶消化后,完全培养基重悬成细胞悬液;细胞计数后接种于6孔板中(500个细胞/孔),将接种好的细胞于培养箱中继续培养到8天,中途隔3day进行换液并观察细胞状态;实验终止前荧光显微镜下对细胞克隆进行拍照;实验终止时用多聚甲醛固定细胞,PBS洗涤细胞后,Giemsa染色,拍照。
结果如图4-1至4-4所示,与对照干扰(shCtrl组)相比,RNA干扰降低基因的表达(shB3GNT5组)后,人肝癌BEL-7404和SMMC-7721细胞形成的克隆数目显著减少、克隆的体积明显减小;表明B3GNT5基因沉默导致人肝癌细胞形成克隆的能力下降。平板克隆形成实验检测降低基因的表达后,肿瘤细胞的克隆形成能力下降。
实施例6FACS检测侵染B3GNT5-shRNA慢病毒的肿瘤细胞凋亡水平
BEL-7404和SMMC-7721细胞用胰酶消化后分别接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5μg/ml polybrene。将B3GNT5-shRNA慢病毒按照侵染复数加入到培养板中,感染12-24h后换新鲜的培养基。感染第三天传代,第5天检测,荧光显微镜下观察荧光,感染效率达到90%。
将处于对数生长期的细胞胰酶消化后,完全培养基重悬成细胞悬液;与上清细胞收集于同一5mL离心管中,每组设三个复孔(为保证上机细胞数足够,细胞数目≥5×105/孔)。1300rpm离心5min,弃上清,用4℃预冷的PBS洗涤细胞沉淀。1×binding buffer(eBioscience,88-8007-74)洗涤细胞沉淀一次,1300rpm、3min离心,收集细胞。200μL 1×binding buffer重悬细胞沉淀。加入10μLAnnexin V-APC(eBioscience,88-8007)染色,室温避光10-15min。根据细胞量,补加400-800μL1×binding buffer,上流式细胞仪进行检测。对结果进行分析。
如图5-1至图5-4为Annexin V单染法检测降低基因的表达后,人肝癌BEL-7404和SMMC-7721细胞的凋亡比例的变化。发现下调基因表达后两株肿瘤细胞的凋亡比例均增加。与对照干扰(shCtrl组),RNA干扰降低基因的表达(shB3GNT5组)后,凋亡肿瘤细胞数显著增多;由此可见B3GNT5基因沉默导致肿瘤细胞凋亡。
实施例7caspase3/7酶活检测侵染B3GNT5-shRNA慢病毒的肿瘤细胞凋亡水平
处于对数生长期的BEL-7404和SMMC-7721肿瘤细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数,加入适宜量的病毒,培养24h后更换培养基,待侵染时间达到3天后,收集处于对数生长期的各实验组细胞。将Caspase-Glo3/7缓冲液和Caspase-Glo3/7(Promega,G8091)冻干粉置于18-22℃(室温)环境下平衡,待温度平衡后将10ml Caspase-Glo3/7缓冲液加入装有Caspase-Glo3/7底物的棕瓶中,涡旋或反复颠倒直至底物完全溶解,形成Caspase-Glo反应液。细胞计数后,在室温中调整细胞悬液浓度至1×104细胞/孔,并将实验组细胞、阴性对照细胞按照每孔1×104加入新的96孔板中,同时设置一组不含细胞的空对照组(只加入培养基100μl/孔),每孔中加入100μl Caspase-Glo反应液,加样过程中注意更换枪头,严格避免交叉污染。将加有细胞的培养板置于摇板机上以300-500rpm的转速轻摇30分钟混匀。然后根据细胞状况18-22℃室温孵育0.5-3小时(以1-2小时为宜)。使用仪器测定信号强度。数据分析。
结果如图6-1和6-2所示,与对照干扰(shCtrl组)相比,RNA干扰降低基因的表达(shB3GNT5组)使Caspase3/7活性增加,表明凋亡细胞数增多。由此可见B3GNT5基因沉默导致肿瘤细胞凋亡。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。
序列表
<110> 中国人民解放军第四军医大学
<120> 人B3GNT5基因的用途及相关产品
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ttggaagaat gctacagat 19
<210> 2
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
uuggaagaau gcuacagau 19
<210> 3
<211> 48
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 3
cuuuggaaga augcuacaga ucucgagauc uguagcauuc uuccaaag 48
<210> 4
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ccggctttgg aagaatgcta cagatctcga gatctgtagc attcttccaa agtttttg 58
<210> 5
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aattcaaaaa ctttggaaga atgctacaga tctcgagatc tgtagcattc ttccaaag 58
<210> 6
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cctatttccc atgattcctt cata 24
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gtaatacggt tatccacgcg 20
<210> 8
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ttctccgaac gtgtcacgt 19
<210> 9
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ccggttctcc gaacgtgtca cgtctcgaga cgtgacacgt tcggagaatt tttg 54
<210> 10
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aattcaaaaa ttctccgaac gtgtcacgtc tcgagacgtg acacgttcgg agaa 54
<210> 11
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cctgctcaag acggagaata c 21
<210> 12
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gagcactagg atcatcattt gg 22
<210> 13
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tgacttcaac agcgacaccc a 21
<210> 14
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
caccctgttg ctgtagccaa a 21

Claims (7)

1.B3GNT5抑制剂在制备至少具备以下功效之一的产品中的用途:
治疗肝癌;
抑制肝癌细胞的增殖速率;
促进肝癌细胞凋亡;
抑制肝癌细胞克隆;
抑制肝癌生长;
所述B3GNT5抑制剂选自双链RNA或shRNA,所述shRNA或双链RNA靶序列如SEQID NO:1所示;所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,所述第一链的序列如SEQ ID NO:2所示;所述shRNA的核苷酸序列如SEQ ID NO:3所示。
2.根据权利要求1所述的用途,其特征在于,还包括以下特征中的一项或多项:
1)所述B3GNT5抑制剂是指对B3GNT5具有抑制效果的分子;
2)所述B3GNT5抑制剂为产品的唯一有效成分或有效成分之一。
3.一种降低肝癌细胞中B3GNT5基因表达的核酸分子,所述核酸分子包含:
a.双链RNA,所述双链RNA中含有能够与B3GNT5基因杂交的核苷酸序列;或者
b.shRNA,所述shRNA中含有能够与B3GNT5基因杂交的核苷酸序列;
其中,所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体;所述shRNA包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,所述shRNA或双链RNA靶序列如SEQ ID NO:1所示;所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,所述第一链的序列如SEQ ID NO:2所示;所述shRNA的核苷酸序列如SEQID NO:3所示。
4.一种B3GNT5基因干扰核酸构建体,含有编码权利要求3任一权利要求所述核酸分子中的shRNA的基因片段,能表达所述shRNA。
5.一种B3GNT5基因干扰慢病毒,由权利要求4所述干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。
6.根据权利要求3所述的核酸分子,或权利要求4所述B3GNT5基因干扰核酸构建体,或权利要求5所述的B3GNT5基因干扰慢病毒的用途,为:用于制备预防或治疗肝癌的药物,或用于制备降低肝癌细胞中B3GNT5基因表达的试剂盒。
7.一种用于预防或治疗肝癌的组合物,其有效物质含有:
权利要求3所述的核酸分子;和/或,权利要求4所述B3GNT5基因干扰核酸构建体;
和/或,权利要求5所述的B3GNT5基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。
CN201911327831.9A 2019-12-20 2019-12-20 人b3gnt5基因的用途及相关产品 Active CN110938630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911327831.9A CN110938630B (zh) 2019-12-20 2019-12-20 人b3gnt5基因的用途及相关产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911327831.9A CN110938630B (zh) 2019-12-20 2019-12-20 人b3gnt5基因的用途及相关产品

Publications (2)

Publication Number Publication Date
CN110938630A CN110938630A (zh) 2020-03-31
CN110938630B true CN110938630B (zh) 2023-07-28

Family

ID=69912594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911327831.9A Active CN110938630B (zh) 2019-12-20 2019-12-20 人b3gnt5基因的用途及相关产品

Country Status (1)

Country Link
CN (1) CN110938630B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622348A (zh) * 2006-12-08 2010-01-06 奥斯瑞根公司 作为治疗性干预靶标的miR-20调节的基因和途径
CN101998964A (zh) * 2008-02-15 2011-03-30 太平洋艾瑞有限公司 阻止癌细胞的转移的新化合物及其应用
CN105779576A (zh) * 2014-12-25 2016-07-20 中国人民解放军第四军医大学 人tnfrsf12a基因的用途及其相关药物
CN105979958A (zh) * 2013-10-11 2016-09-28 基因泰克公司 Cbp/ep300布罗莫结构域抑制剂用于癌症免疫疗法的用途
WO2017147600A1 (en) * 2016-02-25 2017-08-31 Briacell Therapeutics Corp. Whole-cell cancer vaccines and methods for selection thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1639090A4 (en) * 2003-06-09 2008-04-16 Univ Michigan COMPOSITIONS AND METHODS FOR TREATING AND DIAGNOSING CANCER
EP2760457A4 (en) * 2011-09-28 2015-07-08 Agency Science Tech & Res METHOD AND PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF CANCER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622348A (zh) * 2006-12-08 2010-01-06 奥斯瑞根公司 作为治疗性干预靶标的miR-20调节的基因和途径
CN101998964A (zh) * 2008-02-15 2011-03-30 太平洋艾瑞有限公司 阻止癌细胞的转移的新化合物及其应用
CN105979958A (zh) * 2013-10-11 2016-09-28 基因泰克公司 Cbp/ep300布罗莫结构域抑制剂用于癌症免疫疗法的用途
CN105779576A (zh) * 2014-12-25 2016-07-20 中国人民解放军第四军医大学 人tnfrsf12a基因的用途及其相关药物
WO2017147600A1 (en) * 2016-02-25 2017-08-31 Briacell Therapeutics Corp. Whole-cell cancer vaccines and methods for selection thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Effect of GnT-V knockdown on the proliferation, migration and invasion of the SMMC7721/R human hepatocellular carcinoma drug-resistant cell line;Bo Li等;《MOLECULAR MEDICINE REPORTS》;第13卷(第1期);摘要、第470页右栏第2段 *
N-乙酰氨基葡萄糖基转移酶Ⅲ,Ⅳ及Ⅴ在7721人肝癌细胞周期中的变化;郭华北等;《实验生物学报》;第31卷(第04期);第383-391页 *
Transcriptome analysis identifies metallothionein as biomarkers to predict recurrence in hepatocellular cacinoma;Sufang Wang等;《Molecular genetics&genomic medicine》;第7卷(第6期);第1-10页 *
全反式维甲酸通过内质网应激诱导N-乙酰氨基葡萄糖基转移酶V受阻的人肝癌SMMC-7721细胞凋亡;陆等;《复旦学报(医学版)》;第33卷(第03期);第285-290页 *

Also Published As

Publication number Publication date
CN110938630A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN104225617B (zh) 人aurka基因治疗肿瘤的用途及其相关药物
CN110791566B (zh) 人shcbp1基因的用途及相关产品
CN111518802A (zh) 人ddx10基因的用途及相关产品
CN110904104B (zh) 人hist1h2bk基因的用途及相关产品
CN110938691B (zh) 人dus4l基因的用途及相关产品
CN111349701B (zh) Rsph14基因用途、rsph14抑制剂用途、核酸分子、构建体及组合物
CN110917357B (zh) 人gsdmb基因的用途及相关产品
CN103305596B (zh) 人rnf138基因的用途及其相关药物
CN110938630B (zh) 人b3gnt5基因的用途及相关产品
CN110904107B (zh) 人tmeff1基因的用途及相关产品
CN110819631B (zh) 人dmbx1基因的用途及相关产品
CN111803633A (zh) 人psmd7基因的用途及相关产品
CN111269910B (zh) 人depdc1基因的用途及相关产品
CN111926010A (zh) 人uap1l1基因的用途及相关产品
CN111073889B (zh) 人cspg5基因的用途及相关产品
CN113917145A (zh) 人capn7基因的用途及相关产品
CN110938628B (zh) 人urb1基因的用途及相关产品
CN110938692A (zh) 人impa2基因的用途及相关产品
CN110863047B (zh) 人ccdc154基因的用途及相关产品
CN111304327B (zh) 人grpel2基因的用途及相关产品
CN111035762B (zh) 人eddm3a基因的用途及相关产品
CN103667422A (zh) 人cul4b基因的用途及其相关药物
CN103623427A (zh) 人usp14基因的用途及其相关药物
CN103656673B (zh) 人ywhaq基因的用途及其相关药物
CN110882390B (zh) 人lsm5基因的用途及相关产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant