CN111029589A - 一种复合锂金属负极材料的制备方法及应用 - Google Patents

一种复合锂金属负极材料的制备方法及应用 Download PDF

Info

Publication number
CN111029589A
CN111029589A CN201911337786.5A CN201911337786A CN111029589A CN 111029589 A CN111029589 A CN 111029589A CN 201911337786 A CN201911337786 A CN 201911337786A CN 111029589 A CN111029589 A CN 111029589A
Authority
CN
China
Prior art keywords
current collector
lithium metal
composite
negative electrode
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911337786.5A
Other languages
English (en)
Inventor
张义永
李雪
张英杰
倪志聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201911337786.5A priority Critical patent/CN111029589A/zh
Publication of CN111029589A publication Critical patent/CN111029589A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开一种复合锂金属负极材料的制备方法及应用,将负载材料均匀沉积在集流体表面,得到复合集流体;以复合集流体作为负极,加上隔膜、锂片、电解液组装成锂电池,进行充放电,在复合集流体上沉积锂金属,同时在高电位区负载材料被还原,原位形成人工SEI膜,形成复合锂金属负极材料;本发明复合集流体制备方法简单,材料易得等优点;得到的人工SEI膜保护层具有良好的锂离子导电性、高的弹性模量和电化学稳定性,能有效抑制锂枝晶的形成和界面副反应,提高锂金属负极的安全性和循环稳定性。

Description

一种复合锂金属负极材料的制备方法及应用
技术领域
本发明涉及一种复合锂金属负极材料的制备方法,属于材料合成及化学电源领域。
背景技术
锂离子电池是一种高能量密度、高效率的电能存储装置,已被广泛应用于小型可移动电子设备。锂离子电池主要由负极、正极、隔膜和电解液四大关键部件构成,材料的性质与锂离子电池的性能有着非常重要的关系。
锂离子电池负极材料为能可逆地嵌入-脱嵌锂离子/锂化-去锂化的化合物,铜箔为常用负极集流体。锂金属负极由于具有高的理论比容量和低的电位平台,被认为是锂电池负极材料的终极目标。然而,锂金属负极在长循环过程会出现锂金属的不均匀沉积,这将导致锂枝晶的生长,不断生长的锂枝晶会破坏固态电解质膜(SEI膜),使得副反应增多,造成活性材料和电池容量的损失;甚至可能会刺穿隔膜,导致电池短路,出现安全事故。
发明内容
针对现有技术存在的问题,本发明提供一种复合锂金属负极材料的制备方法,具体步骤如下:
(1)将负载材料均匀沉积在集流体表面,得到复合集流体;
(2)以复合集流体作为负极,加上隔膜、锂片、电解液组装成锂电池,进行充放电,在复合集流体上沉积锂金属,同时在高电位区复合集流体上的负载材料被还原,原位形成人工SEI膜,形成包含集流体、SEI膜和锂金属沉积的复合锂金属负极材料。
步骤(1)沉积方法为原子层沉积法、喷射沉积法、物理气相沉积法、化学气相沉积法、电泳沉积法或低能团簇束沉积法等。
步骤(1)集流体为Cu箔、Cu合金箔(CuAl合金箔,CuSn箔及CuSi合金箔等)或碳基集流体,碳基集流体为碳纸、碳纳米管纸、石墨烯纸或各种碳纤维纸。
步骤(1)负载材料为硫粉(S)或过渡金属硫化物(MSx);所述过渡金属硫化物(MSx)为SnS2、In2S3、CoSx(1≤x≤2)、NiS和CuSx(1≤x≤2)等。
步骤(1)负载材料的沉积厚度为2nm~20nm。
步骤(2)电解液的电解质盐为双三氟甲基磺酰亚胺锂(LiTFSI),溶剂为1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)=1:1(体积比),电解质盐LiTFSI的浓度为1 mol/L。
步骤(2)充放电电流密度为0.5~1mA/cm2,充放电截止条件按容量截止,具体截止容量据实际需要决定,一般为3~5mAh,循环10~15次。
本发明复合锂金属负极材料在应用时,作为锂电池负极材料使用,循环性能好。
本发明的有益效果:
(1)本发明的复合集流体具备制备方法简单,材料易得等优点。
(2)本发明负极材料上生成的人工SEI膜保护层具有良好的锂离子导电性、高的弹性模量和电化学稳定性,能有效抑制锂枝晶的形成和界面副反应,提高锂金属负极的安全性和循环稳定性。
附图说明
图1为本发明实施例1制备流程图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种复合锂金属负极材料的制备方法,如图1所示,具体步骤如下:
(1)通过原子层沉积法(ALD)将负载材料均匀沉积在集流体表面,集流体为Cu箔,负载材料为硫粉(S),得到复合集流体;
具体步骤:
1)将Cu箔进行清洗、烘干,放入原子层沉积设备的反应室中;
2)将反应室真空度抽到0.5Pa以下,设置反应室温度为150℃;
3)通入S粉作为前驱体,沉积到Cu箔表面,制备得到复合集流体;负载材料的沉积厚度为2nm~10nm;
(2)以复合集流体作为负极,加上隔膜、锂片、电解液,在充满氩气的手套箱中组装扣式电池,电解液的电解质盐为双三氟甲基磺酰亚胺锂(LiTFSI),溶剂为1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)=1:1(体积比),LiTFSI的浓度为1mol/L;隔膜PP/PE/PP;进行充放电,充放电电流密度为0.5mA/cm2,充放电截止容量为5mAh,在复合集流体上沉积锂金属,同时在高电位区复合集流体上的负载材料被还原,并在充放电过程中原位电化学形成Li2Sn(n=1或2)人工SEI膜和沉积锂金属,循环10次得到包含集流体、SEI膜和锂金属沉积的复合锂金属负极材料。
将复合锂金属负极材料应用在锂电池上,组装成电池,循环性能好。
实施例2
一种复合锂金属负极材料的制备方法,具体步骤如下:
(1)通过物理气相沉积法(PVD)将负载材料均匀沉积在集流体表面,集流体为CuAl合金箔,负载材料为SnS2,得到复合集流体;
具体步骤:
1)将厚度为0.03mm的CuAl合金箔,在室温下依次用丙酮、1 mol/L稀盐酸、去离子水和乙醇各超声清洗5min,然后用高纯氮气将CuAl合金箔吹干;
2)将吹干的CuAl合金箔作为基片固定在溅射腔体样品台上,并安装好SnS2靶;
3)将腔体抽真空至1×10-4Pa后通入高纯氩气,在氩气气氛下进行沉积镀膜;
4)镀膜时溅射压力为1Pa,功率25W,溅射时间10min~30min,最终得到镀SnS2膜的CuAl合金箔复合集流体,SnS2膜的厚度为10nm~20nm;
(2)以复合集流体作为负极,加上隔膜、锂片、电解液,在充满氩气的手套箱中组装扣式电池,电解液的电解质盐为双三氟甲基磺酰亚胺锂(LiTFSI),溶剂为1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)=1:1(体积比),LiTFSI的浓度为1mol/L;隔膜PP/PE/PP;进行充放电,充放电电流密度为1mA/cm2,充放电截止容量为3mAh,在复合集流体上沉积锂金属,同时在高电位区复合集流体上的负载材料被还原,并在充放电过程中原位电化学形成Sn/Li2Sn(n=1或2)人工SEI膜和沉积锂金属,循环15次得到包含集流体、SEI膜和锂金属沉积的复合锂金属负极材料。
将复合锂金属负极材料应用在锂电池上,组装成电池,循环性能好。
实施例3
一种复合锂金属负极材料的制备方法,具体步骤如下:
(1)通过喷射沉积法将负载材料均匀沉积在集流体表面,集流体为碳纳米管纸,负载材料为In2S3,得到复合集流体;
具体步骤:
1)将碳纳米管纸进行清洗、烘干;
2)将In2S3粉末装入喷射沉积装置中在碳纳米管纸进行喷射沉积In2S3,在碳纳米管纸上制备In2S3膜,In2S3膜的厚度为5nm~10nm;
(2)以复合集流体作为负极,加上隔膜、锂片、电解液,在充满氩气的手套箱中组装扣式电池,电解液的电解质盐为双三氟甲基磺酰亚胺锂(LiTFSI),溶剂为1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)=1:1(体积比),LiTFSI的浓度为1mol/L;隔膜PP/PE/PP;进行充放电,充放电电流密度为1mA/cm2,充放电截止容量为3mAh,在复合集流体上沉积锂金属,同时在高电位区复合集流体上的负载材料被还原,并利用电池测试系统原位电化学形成In/Li2Sn(n=1或2)人工SEI膜和沉积锂金属,循环15次得到包含集流体、SEI膜和锂金属沉积的复合锂金属负极材料。
将复合锂金属负极材料应用在锂电池上,组装成电池,循环性能好。
实施例4
一种复合锂金属负极材料的制备方法,具体步骤如下:
(1)通过原子层沉积法(ALD)将负载材料均匀沉积在集流体表面,集流体为Cu箔,负载材料为CoS,得到复合集流体;
具体步骤:
1)将厚度为0.05mm的Cu箔,在室温下依次用丙酮、1mol/L稀盐酸、去离子水和乙醇各超声清洗5min,然后用高纯氮气将Cu箔吹干;
2)将吹干后的Cu箔作为衬底,放入原子层沉积设备的腔体中,腔体压强维持在4hPa,腔体温度150℃;
3)先向腔体内通入CoS-乙酸溶液(浓度为1mol/L),脉冲时间为1.6s,然后向腔体内通入高纯氩气,去除多余CoS-乙酸溶液,通入时间10s;
4)沉积结束,取出Cu箔,得到复合集流体,Co沉积厚度为10nm~20nm;
(2)以复合集流体作为负极,加上隔膜、锂片、电解液,在充满氩气的手套箱中组装扣式电池,电解液的电解质盐为双三氟甲基磺酰亚胺锂(LiTFSI),溶剂为1,3-二氧戊环(DOL)/乙二醇二甲醚(DME)=1:1(体积比),LiTFSI的浓度为1mol/L;隔膜PP/PE/PP;进行充放电,充放电电流密度为0.8mA/cm2,充放电截止容量为4mAh,在复合集流体上沉积锂金属,同时在高电位区复合集流体上的负载材料被还原,并利用电池测试系统原位电化学形成Co/Li2Sn(n=1或2)人工SEI膜和沉积锂金属,循环12次得到包含集流体、SEI膜和锂金属沉积的复合锂金属负极材料。
将复合锂金属负极材料应用在锂电池上,组装成电池,循环性能好。

Claims (8)

1.一种复合锂金属负极材料的制备方法,其特征在于,具体步骤如下:
(1)将负载材料均匀沉积在集流体表面,得到复合集流体;
(2)以复合集流体作为负极,加上隔膜、锂片、电解液组装成锂电池,进行充放电,在复合集流体上沉积锂金属,同时在高电位区复合集流体上的负载材料被还原,原位形成SEI膜,形成复合锂金属负极材料。
2.根据权利要求1所述复合锂金属负极材料的制备方法,其特征在于,步骤(1)沉积方法为原子层沉积法、喷射沉积法、物理气相沉积法、化学气相沉积法、电泳沉积法或低能团簇束沉积法。
3.根据权利要求1所述复合锂金属负极材料的制备方法,其特征在于,步骤(1)集流体为Cu箔、Cu合金箔或碳基集流体,碳基集流体为碳纸、碳纳米管纸或石墨烯纸。
4.根据权利要求1所述复合锂金属负极材料的制备方法,其特征在于,步骤(1)负载材料为硫粉或过渡金属硫化物;过渡金属硫化物为SnS2、In2S3、CoSx(1≤x≤2)、NiS或CuSx(1≤x≤2)。
5.根据权利要求1所述复合锂金属负极材料的制备方法,其特征在于,步骤(1)负载材料的沉积厚度为2nm~20nm。
6.根据权利要求1所述复合锂金属负极材料的制备方法,其特征在于,步骤(2)电解液的电解质盐为双三氟甲基磺酰亚胺锂,溶剂为1,3-二氧戊环和乙二醇二甲醚体积比1:1混合得到,电解质盐双三氟甲基磺酰亚胺锂的浓度为1mol/L。
7.根据权利要求1所述复合锂金属负极材料的制备方法,其特征在于,步骤(2)充放电电流密度为0.5~1mA/cm2,充放电截止容量为3~5mAh,循环10~15次。
8.权利要求1所述复合锂金属负极材料的应用。
CN201911337786.5A 2019-12-23 2019-12-23 一种复合锂金属负极材料的制备方法及应用 Pending CN111029589A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911337786.5A CN111029589A (zh) 2019-12-23 2019-12-23 一种复合锂金属负极材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911337786.5A CN111029589A (zh) 2019-12-23 2019-12-23 一种复合锂金属负极材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN111029589A true CN111029589A (zh) 2020-04-17

Family

ID=70211658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911337786.5A Pending CN111029589A (zh) 2019-12-23 2019-12-23 一种复合锂金属负极材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111029589A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106263A1 (de) 2022-03-17 2023-09-21 Volkswagen Aktiengesellschaft Gestapelte Lithium-Ionen-Batterie mit Hybridanode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367756A (zh) * 2013-07-22 2013-10-23 山东大学 一种基于多孔铜的锂离子电池负极材料的制备方法
CN108493454A (zh) * 2018-01-29 2018-09-04 东莞市航盛新能源材料有限公司 一种过渡金属硫化物修饰的铜集流体及其制备方法
CN109659487A (zh) * 2018-12-18 2019-04-19 华中科技大学 一种用于锂金属负极保护的预锂化方法
CN110190243A (zh) * 2019-05-29 2019-08-30 华中科技大学 一种具有复合膜的锂金属负极的制备及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367756A (zh) * 2013-07-22 2013-10-23 山东大学 一种基于多孔铜的锂离子电池负极材料的制备方法
CN108493454A (zh) * 2018-01-29 2018-09-04 东莞市航盛新能源材料有限公司 一种过渡金属硫化物修饰的铜集流体及其制备方法
CN109659487A (zh) * 2018-12-18 2019-04-19 华中科技大学 一种用于锂金属负极保护的预锂化方法
CN110190243A (zh) * 2019-05-29 2019-08-30 华中科技大学 一种具有复合膜的锂金属负极的制备及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106263A1 (de) 2022-03-17 2023-09-21 Volkswagen Aktiengesellschaft Gestapelte Lithium-Ionen-Batterie mit Hybridanode

Similar Documents

Publication Publication Date Title
CN108461715B (zh) 一种固态电池锂负极的制备方法
CN101420047B (zh) 一种锂硫二次电池的制备方法
CN107785603B (zh) 锂硫电池电解液及其制备方法以及使用所述电解液的电池
CN108232117A (zh) 一种锂金属电池用负极材料及其制备方法和应用
CN109004173B (zh) 一种锂硫电池正极及其制造方法
CN108631010A (zh) 一种一体化二次电池及其制备方法
CN110676433B (zh) 一种复合锂负极及其制备方法和锂电池
CN108258241A (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
WO2020094090A1 (zh) 离子选择性复合隔膜及其制备方法和应用
CN109449376B (zh) 一种复合锂金属电极及其制备方法
CN112216818A (zh) 一种锂离子电池负极及其制备方法、锂离子电池和电池模组
CN110911689A (zh) 集流体及其制备方法、电极片和二次电池
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN111370791A (zh) 一种锂硫电池化成方法及该化成方法制备的锂硫电池
Li et al. Unlocking cycling longevity in micro-sized conversion-type FeS2 cathodes
CN105489892B (zh) 一种锂硫电池复合正极片及其制备方法
Zhong et al. Effective suppression of lithium dendrite growth using fluorinated polysulfonamide-containing single-ion conducting polymer electrolytes
CN109244335A (zh) 一种聚酰亚胺隔膜锂硫电池及其制备方法
CN100594628C (zh) 一种锂电池正极的制备方法
CN111029589A (zh) 一种复合锂金属负极材料的制备方法及应用
CN112209366A (zh) 一种锂硫电池电极材料的制备方法
US20230006209A1 (en) Anode plate, and battery and electronic apparatus using such electrode plate
CN115810710A (zh) 一种一次锂电池锂合金负极的表面修饰方法
CN113451547B (zh) 一种复合金属锂负极及包括该复合金属锂负极的锂离子电池
CN108807916B (zh) 碳纳米管薄膜在锂离子电池负极中的应用、对称电池、半电池及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200417

RJ01 Rejection of invention patent application after publication