CN111024793A - 生物分子完全免固定的纸基电化学传感器的构建 - Google Patents

生物分子完全免固定的纸基电化学传感器的构建 Download PDF

Info

Publication number
CN111024793A
CN111024793A CN202010021198.7A CN202010021198A CN111024793A CN 111024793 A CN111024793 A CN 111024793A CN 202010021198 A CN202010021198 A CN 202010021198A CN 111024793 A CN111024793 A CN 111024793A
Authority
CN
China
Prior art keywords
electrode
solution
paper
cucurbit
uril
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010021198.7A
Other languages
English (en)
Inventor
于京华
史慧慧
王衍虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010021198.7A priority Critical patent/CN111024793A/zh
Publication of CN111024793A publication Critical patent/CN111024793A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种完全免固定高效检测miRNA的分析策略。本方法首先在微流控纸芯片原位生长金纳米,随后通过羰基和金的相互作用将葫芦[7]脲固定在纸工作电极上。由于带负电荷的磷酸二酯主链与葫芦[7]脲的负羰基之间的排斥作用,亚甲基蓝标记的探针几乎不能与葫芦[7]脲形成配合物,因此不能有效地产生电化学响应。当目标物和外切酶加入到溶液后,亚甲基蓝标记的探针被外切酶剪切释放亚甲基蓝标记的单核苷酸。由于葫芦[7]脲的超分子识别能力和单核苷酸具有超低的负电荷,亚甲基蓝标记的单核苷酸被葫芦[7]脲捕获产生可检测的电信号实现对目标物的量化检测。本方法不具有复杂的材料生长和生物标记过程,省时省力,操作简单,检测快速,为其他疾病相关生物标记物的小型化检测提供一个途径。

Description

生物分子完全免固定的纸基电化学传感器的构建
技术领域
本发明涉及纳米材料技术,生物标记技术及纸芯片技术领域,更具体的说是生物分子完全免固定的纸基电化学传感器的构建。
背景技术
作为一种小的非编码的RNA分子,miRNA在细胞增值、遗传、基因分化等生物学过程中具有重要的作用。一些miRNA还与人类癌症的发生、病毒感染和肿瘤的治疗相关,是早期疾病的诊断、发病机制的研究的重要生物标志物。到目前为止,许多分析方法-化学发光、电致化学发光、光电化学、电化学-已经实现了对miRNA的检测。其中,电化学传感由于灵敏度高、选择性好、易于微型化等优点收到广泛关注。
对于大多数的电化学传感器,电化学材料和生物识别探针通过化学或物理作用固定在电极的表面,通过DNA结构的变化或电极表面电性质的变化实现对目标物的检测。固定过程存在良好的可重复性、灵敏度高等优点,也存在许多缺点,例如耗费时间长、操作复杂、用于连接基团的试剂增加了成本、固定条件的最优化、电极表面空间位阻可能导致探针几何变化等。因此,开发无固定化的电化学传感方法实现简单、快速、低成本的生物分析是最为理想的方法。
发明内容
针对现有技术不足,本发明提供了生物分子完全免固定的纸基电化学传感器的构建。本发明通过以下措施实现:
(1)在计算机上用Adobe illustrator CS4设计纸芯片的图案,将设计好的打印图案通过蜡打印机打印在A4色谱纸上,然后将打印过的色谱纸放在烘箱中,在100 ℃加热60 s形成疏水区域和亲水的工作区域;
(2)用丝网印刷技术在步骤(1)中获得的纸芯片上印刷三电极体系(碳工作电极、碳对电极和Ag/AgCl参比电极);
(3)利用原位还原法在碳电极的工作区域生长金纳米,其具体步骤为:首先,20 μL金纳米粒子溶液滴涂在电极表面,在室温下干燥,此过程重复三次,随后称取0.013 g盐酸羟胺溶解于1 mL去离子水中,加入1 mL质量分数1 %的氯金酸,充分摇晃后,量取20 μL滴在电极表面,室温下干燥即可,最后,将电极在1 mM葫芦[7]脲中培育1 h;
(4)取30 μL 10 μM亚甲基蓝标记的DNA 和20 μL 不同浓度的miRNA溶解在37 μLTris-HCl 缓冲液中,在37 ℃下培育2 h,然后将3 µL T7 核酸外切酶 (2 U/µL) 和 10 µL1× NEB 缓冲液加入到上述溶液中,在37 ℃下培育1 h;
(5)将步骤(4)中获得的溶液添加到磷酸盐缓冲溶液中,然后将上述溶液滴加到步骤(3)的电极的工作区域,利用三电极系统通过微分脉冲伏安法进行电化学信号检测。
本发明所述的金种子溶液合成过程是:取90 mL二次水置于三口烧瓶中并加热到90 ℃,然后加入0.5 - 0.8 mL质量分数为1 %的氯金酸溶液,持续加热至96 ℃,反应1 min后,加入2.5 mL质量分数为1 %的柠檬酸钠,在搅拌下反应15 min,得到金纳米粒子溶液。
本发明所述的1×NEB 缓冲液配制过程是取20 mM Tris-HAc缓冲液,依次加入0.2145g四水乙酸镁、0.49 g醋酸钾、0.0154 g的二硫苏糖醇,随后用醋酸调节溶液pH到7.9,定容到100 mL。
本发明的有益效果:
(1)该方法以色谱纸为基底,且不使用额外的试剂,成本低廉。
(2)该方法不具有复杂的材料生长和生物标记过程,操作简单,过程易控制。
(3)该方法分析快速,耗时少。
(4)该方法具有较高的灵敏度和可重复性,为其他疾病相关生物标记物的高效检测提供一个方式。
具体实施方式
为了进一步说明生物分子完全免固定的纸基电化学传感器的构建,本实施例按照本发明技术方案进行实施,给出具体的实施方式,但本发明不仅限于下面的实施例。
实施例1生物分子完全免固定的纸基电化学传感器的构建
((1)在计算机上用Adobe illustrator CS4设计纸芯片的图案,将设计好的打印图案通过蜡打印机打印在A4色谱纸上,然后将打印过的色谱纸放在烘箱中,在100 ℃加热60 s形成疏水区域和亲水的工作区域;
(2)用丝网印刷技术在步骤(1)中获得的纸芯片上印刷三电极体系(碳工作电极、碳对电极和Ag/AgCl参比电极);
(3)利用原位还原法在碳电极的工作区域生长金纳米,其具体步骤为:取90 mL二次水置于三口烧瓶中并加热到90 ℃,然后加入0.8 mL质量分数为1 %的氯金酸溶液,持续加热至96 ℃,反应1 min后,加入2.5 mL质量分数为1 %的柠檬酸钠,在搅拌下反应15 min,得到金纳米粒子溶液;取20 μL上述制备的金纳米粒子溶液滴涂在电极表面,在室温下干燥,此过程重复三次,随后称取0.013 g盐酸羟胺溶解于1 mL去离子水中,加入1 mL质量分数1 %的氯金酸,充分摇晃后,量取20 μL滴在电极表面,室温下干燥即可,最后,将电极在1 mM葫芦[7]脲中培育1 h;
(4)先配制1×NEB 缓冲液,取20 mM Tris-HAc缓冲液,依次加入0.2145g四水乙酸镁、0.49 g醋酸钾、0.0154 g的二硫苏糖醇,随后用醋酸调节溶液pH到7.9,定容到100 mL;然后取30 μL 10 μM亚甲基蓝标记的DNA 和20 μL 不同浓度的miRNA溶解在37 μL Tris-HCl 缓冲液中,在37 ℃下培育2 h,然后将3 µL T7 核酸外切酶 (2 U/µL) 和 10 µL 1× NEB 缓冲液加入到上述溶液中,在37℃下培育1 h;
(5)将步骤(4)中获得的溶液添加到磷酸盐缓冲溶液中,然后将上述溶液滴加到步骤(3)的电极的工作区域,利用三电极系统通过微分脉冲伏安法进行电化学信号检测。
序列表
<110> 济南大学
<120> 生物分子完全免固定的纸基电化学传感器的构建
<130> 2020
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
mbacccctat cacgattag 19
<210> 2
<211> 23
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
uuaaugcuaa ucgugauagg ggu 23

Claims (3)

1.生物分子完全免固定的纸基电化学传感器的构建,其特征在于该方法包括以下步骤:
(1)在计算机上用Adobe illustrator CS4设计纸芯片的图案,将设计好的打印图案通过蜡打印机打印在A4色谱纸上,然后将打印过的色谱纸放在烘箱中,在100 ℃加热60 s形成疏水区域和亲水的工作区域;
(2)用丝网印刷技术在步骤(1)中获得的纸芯片上印刷三电极体系(碳工作电极、碳对电极和Ag/AgCl参比电极);
(3)利用原位还原法在碳电极的工作区域生长金纳米,其具体步骤为:首先,20 μL金纳米粒子溶液滴涂在电极表面,在室温下干燥,此过程重复三次,随后称取0.013 g盐酸羟胺溶解于1 mL去离子水中,加入1 mL质量分数1 %的氯金酸,充分摇晃后,量取20 μL滴在电极表面,室温下干燥即可,最后,将电极在1 mM葫芦[7]脲中培育1 h;
(4)取30 μL 10 μM亚甲基蓝标记的DNA 和20 μL 不同浓度的miRNA溶解在37 μLTris-HCl 缓冲液中,在37℃下培育2 h,然后将3 µL T7 核酸外切酶 (2 U/µL) 和 10 µL1× NEB 缓冲液加入到上述溶液中,在37 ℃下培育1 h;
(5)将步骤(4)中获得的溶液添加到磷酸盐缓冲溶液中,然后将上述溶液滴加到步骤(3)的电极的工作区域,利用三电极系统通过微分脉冲伏安法进行电化学信号检测。
2.根据权利要求1所述的生物分子完全免固定的纸基电化学传感器的构建,其特征是金种子溶液合成过程是:取90 mL二次水置于三口烧瓶中并加热到90 ℃,然后加入0.5 -0.8 mL质量分数为1 %的氯金酸溶液,持续加热至96 ℃,反应1 min后,加入2.5 mL质量分数为1 %的柠檬酸钠,在搅拌下反应15 min,得到金纳米粒子溶液。
3.根据权利要求1所述的生物分子完全免固定的纸基电化学传感器的构建,其特征是1×NEB 缓冲液配制过程是取20 mM Tris-HAc缓冲液,依次加入0.2145g四水乙酸镁、0.49 g醋酸钾、0.0154 g的二硫苏糖醇,随后用醋酸调节溶液pH到7.9,定容到100 mL。
CN202010021198.7A 2020-01-09 2020-01-09 生物分子完全免固定的纸基电化学传感器的构建 Pending CN111024793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010021198.7A CN111024793A (zh) 2020-01-09 2020-01-09 生物分子完全免固定的纸基电化学传感器的构建

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010021198.7A CN111024793A (zh) 2020-01-09 2020-01-09 生物分子完全免固定的纸基电化学传感器的构建

Publications (1)

Publication Number Publication Date
CN111024793A true CN111024793A (zh) 2020-04-17

Family

ID=70202683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010021198.7A Pending CN111024793A (zh) 2020-01-09 2020-01-09 生物分子完全免固定的纸基电化学传感器的构建

Country Status (1)

Country Link
CN (1) CN111024793A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235697A (zh) * 2021-12-20 2022-03-25 大连理工大学 一种基于蛋白酶控制释放比色检测藻类碱性磷酸酶的纸基器件与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267192A (zh) * 2014-03-06 2015-01-07 上海大学 检测凝血酶用生物电化学传感器其制备方法及应用
CN107271511A (zh) * 2016-12-19 2017-10-20 上海大学 检测肽酰基精氨酸脱亚氨酶用生物传感器及其制备方法和应用
CN108333241A (zh) * 2017-01-20 2018-07-27 中国人民解放军国防科学技术大学 电化学生物传感器用修饰电极及其制备方法、电化学生物传感器及其制备方法和应用
CN109709167A (zh) * 2018-11-21 2019-05-03 上海大学 基于三维金纳米结构的检测毒品类似物用传感器的制备方法
CN110376259A (zh) * 2019-07-18 2019-10-25 济南大学 一种用于检测microRNA的纸基光电阴极生物传感器的制备方法
CN110412097A (zh) * 2019-08-12 2019-11-05 济南大学 一种超灵敏检测microRNA的光电化学传感器的制备方法
CN110530950A (zh) * 2019-09-26 2019-12-03 济南大学 基于激子等离子体相互作用高效检测psa的纸基传感器的构建

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267192A (zh) * 2014-03-06 2015-01-07 上海大学 检测凝血酶用生物电化学传感器其制备方法及应用
CN107271511A (zh) * 2016-12-19 2017-10-20 上海大学 检测肽酰基精氨酸脱亚氨酶用生物传感器及其制备方法和应用
CN108333241A (zh) * 2017-01-20 2018-07-27 中国人民解放军国防科学技术大学 电化学生物传感器用修饰电极及其制备方法、电化学生物传感器及其制备方法和应用
CN109709167A (zh) * 2018-11-21 2019-05-03 上海大学 基于三维金纳米结构的检测毒品类似物用传感器的制备方法
CN110376259A (zh) * 2019-07-18 2019-10-25 济南大学 一种用于检测microRNA的纸基光电阴极生物传感器的制备方法
CN110412097A (zh) * 2019-08-12 2019-11-05 济南大学 一种超灵敏检测microRNA的光电化学传感器的制备方法
CN110530950A (zh) * 2019-09-26 2019-12-03 济南大学 基于激子等离子体相互作用高效检测psa的纸基传感器的构建

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANGFANG WANG 等: "Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155", 《BIOSENSORS AND BIOELECTRONICS》 *
JIXIAN YAN 等: "A microfluidic origami electrochemiluminescence aptamer-device based on a porous Au-paper electrode and a phenyleneethynylene derivative", 《CHEM. COMMUN.》 *
RIHAM EL KURDI 等: "Capping of supramolecular curcubit[7]uril facilitates formation of Au nanorods during pre-reduction by curcumin", 《COLLOIDS AND SURFACES A》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235697A (zh) * 2021-12-20 2022-03-25 大连理工大学 一种基于蛋白酶控制释放比色检测藻类碱性磷酸酶的纸基器件与应用

Similar Documents

Publication Publication Date Title
US11099150B1 (en) Method for preparing ratiometric electrochemical miR3123 aptasensor based on metal-organic framework composite
CN107574227B (zh) 一种基于级联杂交链式反应的核酸分析方法
Xia et al. Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles
Kilic et al. Electrochemical based detection of microRNA, mir21 in breast cancer cells
WO2022095373A1 (zh) 一种检测miRNA的自产生共反应剂信号放大电化学发光体系
Zhou et al. Amplified electrochemical microRNA biosensor using a hemin-G-quadruplex complex as the sensing element
CN107478701B (zh) 一种金属有机框架材料信号放大电化学分析纸芯片传感器
Feng et al. Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction
Farshchi et al. Flexible paper-based label-free electrochemical biosensor for the monitoring of miRNA-21 using core–shell Ag@ Au/GQD nano-ink: a new platform for the accurate and rapid analysis by low cost lab-on-paper technology
CN115850203B (zh) 一种半胱氨酸选择性探针及其制备方法
CN113740398B (zh) 一种比率型生物传感器及用于检测muc1的方法
CN111024793A (zh) 生物分子完全免固定的纸基电化学传感器的构建
Lv et al. Aptamer based strategy for cytosensing and evaluation of HER-3 on the surface of MCF-7 cells by using the signal amplification of nucleic acid-functionalized nanocrystals
CN110029150A (zh) 用于检测微小rna的小分子金属螯合剂标记寡核苷酸探针的制备方法
Wang et al. Microfabricated thick-film electrochemical sensor for nucleic acid determination
CN110553991B (zh) 基于中空金纳米粒-dna复合物的生物/化学检测试剂和检测方法
CN110749635B (zh) 纳米复合材料、电化学microRNA生物传感器的制备方法及应用
CN111020006B (zh) 一种测定三磷酸腺苷的电化学发光传感器系统及其制备方法和应用
Cui et al. Smart Engineering of a Self-Powered and Integrated Nanocomposite for Intracellular MicroRNA Imaging
CN109270144B (zh) 一种基于非标记、非固定化的电化学磁性生物传感器检测5-羟甲基胞嘧啶的方法
Li et al. A DNA tetrahedral scaffolds-based electrochemical biosensor for simultaneous detection of AFB1 and OTA
Wang Label-Free Electrochemical Sensor for MicroRNA Detection Based on a Gold Nanoparticles@ Poly (Methylene Blue)-Modified Electrode and a Target Cyclic Amplification Strategy
CN114252485B (zh) 用于结核分枝杆菌mpt64检测的电化学适体传感器及其检测方法
Zheng et al. Label-free fluorescent aptasensor for chloramphenicol based on hybridization chain reaction amplification and G-quadruplex/N-methyl mesoporphyrin IX complexation
CN114527186B (zh) 一种基于Ti3C2-Au的microRNA电化学生物传感器及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200417