CN111009422A - 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法 - Google Patents

一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法 Download PDF

Info

Publication number
CN111009422A
CN111009422A CN201911255198.7A CN201911255198A CN111009422A CN 111009422 A CN111009422 A CN 111009422A CN 201911255198 A CN201911255198 A CN 201911255198A CN 111009422 A CN111009422 A CN 111009422A
Authority
CN
China
Prior art keywords
nico
nickel
core
nano material
aniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911255198.7A
Other languages
English (en)
Other versions
CN111009422B (zh
Inventor
崔丹凤
薛晨阳
李渊凯
陈红梅
范燕云
陈奕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201911255198.7A priority Critical patent/CN111009422B/zh
Publication of CN111009422A publication Critical patent/CN111009422A/zh
Application granted granted Critical
Publication of CN111009422B publication Critical patent/CN111009422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,进一步提高NiCo2O4/聚苯胺复合材料在超级电容器电极材料领域的比电容值。本发明方法采用泡沫镍为基底,通过水热法在基底上制备NiCo2O4纳米材料,接着通过原位聚合法,低温下在该材料表面直接聚合苯胺,然后取出材料,洗涤并干燥即得到了本发明所述的镍基核壳结构NiCo2O4/聚苯胺纳米材料。该复合纳米材料制备简单、成本低廉,在超级电容器电极材料应用中性能优异,比电容值在扫描速率为5mA/cm2时,可达14F/cm2

Description

一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法
技术领域
本发明涉及电极材料制备技术领域,具体是一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,进一步提高NiCo2O4/聚苯胺复合材料在超级电容器电极材料领域的比电容值。
背景技术
超级电容器具有比能高、循环能力强、充放电速率快等优点,作为一种极具发展前景的储能元件引起了广泛的关注。电极材料是提高超级电容器性能的关键因素。NiCo2O4得益于其独特的双离子结构,具有更高的导电性和电化学活性,在过渡金属氧化物中表现出较好的性能。同时,聚苯胺因其独特的质子化机理、固有电导率和易于合成的优点,在现有的导电聚合物中脱颖而出。然而聚苯胺的机械稳定性和循环稳定性较差,再去掺杂态时电导率较低。
基于二者协同效应,NiCo2O4与聚苯胺复合之后,一方面NiCo2O4提供快速的离子传输路径,可以减弱PANI的极化,另一方面,聚苯胺聚合过程中掺杂了Ni2+/Ni3+,Co2+/Co3+金属离子,可以促进电荷沿聚合物链的局部转移,进一步提升材料的电容性能。但基于这两种材料在超级电容器电极的研究还很少,且比电容值还有很大提升空间。
发明内容
本发明目的是为了进一步提高NiCo2O4/聚苯胺电极材料的比电容,提供一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法。在该制备方法中,NiCo2O4/聚苯胺纳米材料是直接生长在泡沫镍基底上的,同时也解决了活性材料在电极组装过程中的性能弱化的问题。
本发明是采用如下技术方案实现的:
一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,包括如下步骤:
1)、取CoCl2·6H2O,NiCl2·6H2O,CO(NH2)2,NH4F摩尔量比为2:1:3:3~9,并加去离子水搅拌溶解,之后将泡沫镍同上述溶液共同加入到聚四氟乙烯内衬的反应釜中,100℃~150℃水热6~10h,之后将泡沫镍取出冲洗并干燥,然后将泡沫镍在300℃~500℃退火2h,得到产物镍基NiCo2O4纳米材料;
2)、配置100ml HCl溶液,加入氧化剂(NH4)2S2O8,低温下磁力搅拌10~30min之后,取1ml苯胺逐滴加入上述溶液,并继续低温搅拌2h;HCl、(NH4)2S2O8和苯胺物质的量比为1~10:1:1;
3)、取步骤1)中产物镍基NiCo2O4纳米材料加入到步骤2)所得溶液中,在常温下反应4~8h;
4)、反应完毕后,将泡沫镍取出,用去离子水洗涤,然后在60℃真空干燥24h,即得到了镍基核壳结构NiCo2O4/聚苯胺纳米材料。
进一步优选的,步骤1)中,CoCl2·6H2O、NiCl2·6H2O、CO(NH2)2、NH4F摩尔量比为2:1:3:9,150℃水热6h,泡沫镍在400℃退火2h。
进一步优选的,步骤2)中,HCl、(NH4)2S2O8和苯胺物质的量比为10:1:1。
本发明方法采用泡沫镍为基底,通过水热法在基底上制备NiCo2O4纳米材料,接着通过原位聚合法,低温下在该材料表面直接聚合苯胺,然后取出材料,洗涤并干燥即得到了本发明所述的镍基核壳结构NiCo2O4/聚苯胺纳米材料。该复合纳米材料制备简单、成本低廉,在超级电容器电极材料应用中性能优异,比电容值在扫描速率为5mA/cm2时,可达14F/cm2
附图说明
图1表示本发明方法实施例2制备过程中的NiCo2O4纳米材料的SEM图。
图2表示本发明方法实施例2制备过程中的NiCo2O4纳米材料的XRD图。
图3表示本发明方法实施例2制备过程中的NiCo2O4/聚苯胺纳米复合材料的SEM图。
图4表示本发明方法实施例2制备过程中的NiCo2O4/聚苯胺复合纳米材料的XPS测试图。
图5表示本发明方法实施例2制备过程中的NiCo2O4/聚苯胺复合纳米材料的充放电图。
图6表示不同实施示例在5mA/cm2电流密度下的充放电对比图。
具体实施方式
下面结合附图对本发明的具体实施例进行详细说明。
实施例1
一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,包括如下步骤:
1)、取CoCl2·6H2O,NiCl2·6H2O,CO(NH2)2,NH4F摩尔量比为2:1:3:3,并加去离子水搅拌溶解,之后将泡沫镍同上述溶液共同加入到聚四氟乙烯内衬的反应釜中,100℃水热10h,之后将泡沫镍取出冲洗并干燥,然后将泡沫镍在300℃退火2h,得到产物镍基NiCo2O4纳米材料;
2)、配置100ml HCl溶液,加入氧化剂(NH4)2S2O8,0℃下磁力搅拌10min之后,取1ml苯胺逐滴加入上述溶液,并继续于0℃下磁力搅拌2h;HCl、(NH4)2S2O8和苯胺物质的量比为1:1:1;
3)、取步骤1)中产物镍基NiCo2O4纳米材料加入到步骤2)所得溶液中,在常温下反应4h;
4)、反应完毕后,将泡沫镍取出,用去离子水洗涤,然后在60℃真空干燥24h,即得到了镍基核壳结构NiCo2O4/聚苯胺纳米材料。
实施例2
一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,包括如下步骤:
1)、取CoCl2·6H2O,NiCl2·6H2O,CO(NH2)2,NH4F摩尔量比为2:1:3:9,并加去离子水搅拌溶解,之后将泡沫镍同上述溶液共同加入到聚四氟乙烯内衬的反应釜中,150℃水热6h,之后将泡沫镍取出冲洗并干燥,然后将泡沫镍在400℃退火2h,得到产物镍基NiCo2O4纳米材料;
2)、配置100ml HCl溶液,加入氧化剂(NH4)2S2O8,0℃下磁力搅拌30min之后,取1ml苯胺逐滴加入上述溶液,并继续在0℃下磁力搅拌2h;HCl、(NH4)2S2O8和苯胺物质的量比为10:1:1;
3)、取步骤1)中产物镍基NiCo2O4纳米材料加入到步骤2)所得溶液中,在常温下反应6h;
4)、反应完毕后,将泡沫镍取出,用去离子水洗涤,然后在60℃真空干燥24h,即得到了镍基核壳结构NiCo2O4/聚苯胺纳米材料。
实施例3
一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,包括如下步骤:
1)、取CoCl2·6H2O,NiCl2·6H2O,CO(NH2)2,NH4F摩尔量比为2:1:3:6,并加去离子水搅拌溶解,之后将泡沫镍同上述溶液共同加入到聚四氟乙烯内衬的反应釜中,130℃水热8h,之后将泡沫镍取出冲洗并干燥,然后将泡沫镍在500℃退火2h,得到产物镍基NiCo2O4纳米材料;
2)、配置100ml HCl溶液,加入氧化剂(NH4)2S2O8,0℃下磁力搅拌30min之后,取1ml苯胺逐滴加入上述溶液,并继续0℃下磁力搅拌2h;HCl、(NH4)2S2O8和苯胺物质的量比为5:1:1;
3)、取步骤1)中产物镍基NiCo2O4纳米材料加入到步骤2)所得溶液中,在常温下反应8h;
4)反应完毕后,将泡沫镍取出,用去离子水洗涤,然后在60℃真空干燥24h,即得到了镍基核壳结构NiCo2O4/聚苯胺纳米材料。
本发明实施例2采用泡沫镍为基底,通过水热法在基底上制备NiCo2O4纳米材料,得到的NiCo2O4纳米材料以自生长的方式依附在泡沫镍基底上,其SEM图如图1所示,从图1可以看出,NiCo2O4纳米材料整体呈球状,纳米球表面呈鳞片状,可进一步扩大活性物质的比表面。为了表征NiCo2O4纳米材料的成分,NiCo2O4纳米材料的XRD图如图2,由图2可知,本发明实施例制备出成分单一,无杂质,稳定性高的NiCo2O4纳米材料。
本发明实施例2制备的镍基核壳结构NiCo2O4/聚苯胺纳米材料的SEM图如图3所示,与图1相比可以看出,NiCo2O4纳米材料表面包覆了一层致密的聚苯胺。本发明制得的NiCo2O4/聚苯胺复合纳米材料的XPS测试图谱如图4,从图4中可以看出,所制得的纳米材料无其他杂质。通过恒流充放电对材料的性能进行了测试,其充放电图谱如图5,通过公式(1)可得,材料的面积比电容在电流密度为5mA/cm2条件下可达14F/cm2,展现出良好的电容性能。
Figure 821942DEST_PATH_IMAGE001
(1)。
图6为三个实施例在电流密度为5mA/cm2条件下的充放电对比图,由图6可得,虽然实施例2的电压降相对较小,但是其比电容值(14F/cm2)要远远大于实施例1(1.7F/cm2)和实施例3(3F/cm2),展现出了最优异的电容性能,说明在本实验环境下,苯胺聚合过程中H+的掺杂浓度以及聚合时间对所制备电极性能有很大影响。
总之,本发明方法成本低廉,制备工艺简单,原料来源容易,且制得的材料比容量高,基底依附的自生长方式也规避了纳米材料电极组装过程中的活性降低等因素。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照本发明实施例进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明的技术方案的精神和范围,其均应涵盖本发明的权利要求保护范围中。

Claims (6)

1.一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,其特征在于:包括如下步骤:
(1)、取CoCl2·6H2O、NiCl2·6H2O、CO(NH2)2、NH4F,并加去离子水搅拌溶解,之后将泡沫镍同上述溶液共同加入到聚四氟乙烯内衬的反应釜中,100℃~150℃水热6~10h,之后将泡沫镍取出冲洗并干燥,然后将泡沫镍在300℃~500℃退火2h,得到产物镍基NiCo2O4纳米材料;
(2)、配置HCl溶液,加入氧化剂(NH4)2S2O8,低温下磁力搅拌, 10~30min之后,取苯胺加入上述溶液,并继续低温下搅拌2h;
(3)、取步骤(1)中产物镍基NiCo2O4纳米材料加入到步骤(2)所得溶液中,在常温下反应4~8h;
(4)、反应完毕后,将泡沫镍取出,用去离子水洗涤,然后在60℃真空干燥24h,即得到了镍基核壳结构NiCo2O4/聚苯胺纳米材料。
2.根据权利要求1所述的一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,其特征在于:步骤(1)中,CoCl2·6H2O、NiCl2·6H2O、CO(NH2)2、NH4F摩尔量比为2:1:3:3~9。
3.根据权利要求2所述的一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,其特征在于:步骤(1)中,CoCl2·6H2O、NiCl2·6H2O、CO(NH2)2、NH4F摩尔量比为2:1:3:9;150℃水热6h;泡沫镍在400℃退火2h。
4.根据权利要求1所述的一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,其特征在于:步骤(2)中,HCl、(NH4)2S2O8和苯胺物质的量比为1~10:1:1。
5.根据权利要求4所述的一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,其特征在于:步骤(2)中,HCl、(NH4)2S2O8和苯胺物质的量比为10:1:1;0℃下磁力搅拌。
6.根据权利要求1所述的一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法,其特征在于:步骤(3)中,在常温下反应6h。
CN201911255198.7A 2019-12-10 2019-12-10 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法 Active CN111009422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911255198.7A CN111009422B (zh) 2019-12-10 2019-12-10 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911255198.7A CN111009422B (zh) 2019-12-10 2019-12-10 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN111009422A true CN111009422A (zh) 2020-04-14
CN111009422B CN111009422B (zh) 2021-10-08

Family

ID=70114223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911255198.7A Active CN111009422B (zh) 2019-12-10 2019-12-10 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN111009422B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782346A (zh) * 2021-09-09 2021-12-10 福州大学 一种聚3,4-乙撑二氧噻吩/钴酸镍/碳布柔性电极

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449175A (zh) * 2016-11-14 2017-02-22 江苏大学 泡沫镍为基底的钨酸镍/聚苯胺超级电容器电极材料的制备方法
CN107170589A (zh) * 2017-04-14 2017-09-15 江苏大学 一种MnO2系三元复合超级电容器电极材料的制备方法
CN107180704A (zh) * 2017-05-16 2017-09-19 江苏大学 一种钴酸镍/钨酸镍/聚苯胺三元复合纳米线阵列电极的制备方法
US20190173079A1 (en) * 2017-12-05 2019-06-06 Nanotek Instruments, Inc. Method of Producing Participate Electrode Materials for Alkali Metal Batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449175A (zh) * 2016-11-14 2017-02-22 江苏大学 泡沫镍为基底的钨酸镍/聚苯胺超级电容器电极材料的制备方法
CN107170589A (zh) * 2017-04-14 2017-09-15 江苏大学 一种MnO2系三元复合超级电容器电极材料的制备方法
CN107180704A (zh) * 2017-05-16 2017-09-19 江苏大学 一种钴酸镍/钨酸镍/聚苯胺三元复合纳米线阵列电极的制备方法
US20190173079A1 (en) * 2017-12-05 2019-06-06 Nanotek Instruments, Inc. Method of Producing Participate Electrode Materials for Alkali Metal Batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIYUAN YU: "《Facile synthesis of NiCo2O4@Polyaniline core–shell nanocompositefor sensitive determination of glucose》", 《BIOSENSORS AND BIOELECTRONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782346A (zh) * 2021-09-09 2021-12-10 福州大学 一种聚3,4-乙撑二氧噻吩/钴酸镍/碳布柔性电极
CN113782346B (zh) * 2021-09-09 2022-06-14 福州大学 一种聚3,4-乙撑二氧噻吩/钴酸镍/碳布柔性电极

Also Published As

Publication number Publication date
CN111009422B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
Jing et al. Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability
Gong et al. Shape-controlled synthesis of Ni-CeO2@ PANI nanocomposites and their synergetic effects on supercapacitors
Zhou et al. Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance
Omar et al. Binary composite of polyaniline/copper cobaltite for high performance asymmetric supercapacitor application
TWI740925B (zh) 包括官能化碳電極之超級電容器及製作官能化電極之方法
CN107230784B (zh) 一种球形石墨烯/四氧化三锰复合材料及其制备方法及应用
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Fan et al. PANI-Co3O4 with excellent specific capacitance as an electrode for supercapacitors
CN103971941B (zh) 应用于超级电容器的石墨烯/聚苯胺/氧化锡复合材料及其制备方法
CN112233912A (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
Zhu et al. Synthesis of γ-MnO2/PANI composites for supercapacitor application in acidic electrolyte
CN105885410A (zh) 一种硫化钼/聚吡咯/聚苯胺三元复合材料及其制备方法和应用
CN109167043A (zh) 溶剂热连锁聚合法制备高分子复合电极材料
CN103971942A (zh) 应用于超级电容器的石墨烯/聚苯胺/氧化铁复合材料及其制备方法
Dong et al. Tunable growth of perpendicular cobalt ferrite nanosheets on reduced graphene oxide for energy storage
CN113511647A (zh) 一种镍基金属有机框架衍生的二硒化镍/还原氧化石墨烯复合材料的制备方法
CN111816457A (zh) 一种Ti3C2/MnCo2S4复合杂化电极材料及制备方法
Liu et al. An effective interaction in polypyrrole/nickel phosphide (PPy/Ni 2 P) for high-performance supercapacitor
CN114725380A (zh) 一种自支撑聚酰亚胺@MXene柔性膜及其制备方法和应用
Wang et al. Growth of yolk-shell CuCo2S4 on NiO nanosheets for high-performance flexible supercapacitors
Du et al. Fabrication of porous polyaniline modified MWNTs core-shell structure for high performance supercapacitors with high rate capability
Shao et al. High-performance cobalt-doped carbon cloth supported porous Fe2O3 flexible electrode material in quasi-solid asymmetric supercapacitors
CN111009422B (zh) 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法
Zheng et al. Fluorine-doped MnO@ fluorographene with high conductivity for improved capacity and prolonged cycling stability of lithium-ion anode
Yu et al. Facile assembly of cobalt-nickel double hydroxide nanoflakes on nitrogen-doped hollow carbon spheres for high performance asymmetric supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant