CN111004957A - 一种非等原子比高熵合金及其制备方法 - Google Patents

一种非等原子比高熵合金及其制备方法 Download PDF

Info

Publication number
CN111004957A
CN111004957A CN201911146520.2A CN201911146520A CN111004957A CN 111004957 A CN111004957 A CN 111004957A CN 201911146520 A CN201911146520 A CN 201911146520A CN 111004957 A CN111004957 A CN 111004957A
Authority
CN
China
Prior art keywords
ball milling
alloy
entropy alloy
equal
entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911146520.2A
Other languages
English (en)
Other versions
CN111004957B (zh
Inventor
廖恒成
周军
陈浩
黄艾婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201911146520.2A priority Critical patent/CN111004957B/zh
Publication of CN111004957A publication Critical patent/CN111004957A/zh
Application granted granted Critical
Publication of CN111004957B publication Critical patent/CN111004957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及高熵合金技术领域,公开了一种制备非等原子比高熵合金的制备方法,制备原料为Fe、Mn、Cr、Ni金属粉末,制备方法为机械合金化法及放电等离子脉冲烧结。具体如下:将上述金属粉末按照设定比例称取,在真空手套箱中将称取的粉末装入硬质合金球磨罐中并加入适量过程控制剂随后密封取出,密封后的球磨罐安装在球磨机上进行机械合金化球磨,球磨若干小时候后得到高熵合金粉末,随即通过放电等离子脉冲烧结技术进行烧结熔融固化,制备成非等原子比高熵合金金属。本发明所制备的非等原子比高熵合金具有优异的力学性能、制备过程简单。

Description

一种非等原子比高熵合金及其制备方法
技术领域
本发明属于高熵合金制备技术,特别是涉及一种非等原子比高熵合金材料及其制备方法。
背景技术
一直以来,金属合金系统的设计理念一直是以一种或两种元素为主要成分,如铁基,铝基,铜基,镁基合金等,少量其他元素用于提高性能,合金中通常通过添加少量某些元素来改变合金的性能,例如生活中经常用到的常用作装饰材料的铝合金,铝为主要元素,向合金中添加镁、锌和铜等少量元素,以使合金具有较高的强度。现在所使用的工具钢、不锈钢、弹簧钢等钢铁材料,主要是以铁元素为主,加入不同的其他少量元素而得到。到目前为止,大约有近百种合金体系得到实际开发和推广应用,例如铁基合金、铝基合金、镁基合金和铜基合金等。随着研究者对传统合金深入开发研究,传统合金系已经很难开发出新的合金体系,而且传统合金中一般都会生成复杂的金属间化合物,这会导致合金脆性显著增加。因此,开发出新的合金体系,已然成为社会对金属材料发展的必然要求,传统的单组元材料设计已进入瓶颈期。20世纪90年代中期,叶均蔚等人提出高熵合金(high entropy alloy)这一概念,打破了这一传统模式。这种合金被定义为至少由五种主要元素组成的合金,每种组成元素的原子百分比在5到35%之间。以往的研究表明,高熵合金可以形成简单的固溶体结构,而不是金属间化合物和其它复杂的化合物,这种现象通常归因于高熵合金固溶态的高构型熵。此外,高熵合金还具有高硬度、高强度、良好的热稳定性、优异的耐磨性和抗氧化性,具有广阔的工程应用前景。
第一代高熵合金是指含有五种以上主元素的单相固溶合金,其原子百分比相等或接近相等。典型的合金体系如下。在1981中,Cantor发现, Co20Cr20Fe20Mn20Ni20合金可以形成单相的Fcc树枝状结构,与其他纯Fcc金属相比,它具有不同的性质。最近的研究表明,合金的屈服强度在室温和低温之间表现出强烈的温度依赖性,但应变率对强度的依赖性影响在任何温度下似乎都很小。2011年,Senkov等人研究了Nb25Mo25Ta25W25和V20Nb20Mo20Ta20W20 高熔点高熵合金的组织和力学性能。研究表明,两种合金中都只存在一个简单的体心立方(Bcc)结构,在1400℃保温19h,退火处理合金组织保持稳定。目前报道的高熵合金通常为Bcc和Fcc结构。然而,具有六边形紧密堆积(Hcp)结构的高熵合金较少。张勇教授首先提出用稀土金属制备Hcp结构高熵合金。事实上,费尔巴哈等人制备了一种等原子比的稀土高熵合金,证实为Hcp结构。
第一代等摩尔单相高熵合金具有一定的局限性。在最近的工作的推动下,已经证明这个定义存在一定的弱点,现对高熵合金组成的严格限制已经有所放松。第二代高熵合金主要是指一类含有四个以上主元素、具有多相结构的高熵合金。卢一平等利用真空感应炉制备AlCoCrFeNi2.1共晶高熵合金,因其良好的铸造流动性而备受关注。Y.Deng等人介绍了一种液相冶金合成的非等原子 Fe40Mn40Co10Cr10高熵合金,该合金在室温变形后进行机械诱导孪晶。该合金在室温下的拉伸性能(即屈服强度为240MPa,最终拉伸强度489MPa,总延伸率58%)与五组分等原子系统Fe20Mn20Ni20Co20Cr20和先前提出的五组分非等原子合金Fe40Mn26Ni27Co5Cr2相当。L.B.Chen等人系统研究了 (Fe40Mn40Co10Cr10)100-xCx(x=0,2.2,3.3,at.%)高熵合金在低温下的变形行为。对于Fe40Mn40Co10Cr10合金,孪晶和形变诱导相变导致强度和塑性同时提高,并提高了应变硬化能力。间隙碳的加入提高了Fcc相的稳定性。Fe 40Mn40Co10Cr10(at.%)高熵合金具有良好的综合性能,但含有Co元素,因此,为了降低该合金的成本,设计了一种新的非等原子Fe35Mn10Cr 20Ni合金系,采用Ni元素代替Co元素。这项研究的重点是一个新的合金设计与多原则的元素在非等摩尔比。电弧熔炼(铸造)是目前研究最为广泛的合金熔炼工艺路线,而机械合金化的研究报道较少。
发明内容
技术问题:针对上述现有技术,本发明提供了一种拥有新成分设计的非等原子比高熵合金材料,并提供了其制备方法,制备方法简单实用,材料的力学性能优异。
技术方案:本发明所述的一种非等原子比高熵合金,其分子式为 FeaMnbCrcNid,式中a、b、c、d分别表示对应金属元素的原子百分含量,且34≤a≤36, 9≤b≤11,19≤c≤21,34≤d≤36。
进一步优选的,其中a=35,b=10,c=20,d=35。
上述非等原子比高熵合金的制备方法,包括以下步骤:
(1)按照分子式中的原子百分比配制Fe、Mn、Cr、Ni的金属粉末;
(2)将步骤(1)配制的粉末在真空手套箱高纯Ar气环境中装入硬质合金球磨罐,磨球与磨料的质量比为14~15:1;
(3)向步骤(2)的硬质合金球磨罐中滴入无水乙醇过程控制剂,然后密封硬质合金球磨罐并从手套箱取出;
(4)将步骤(3)中密封的硬质合金球磨罐安装在球磨机上进行合金化球磨;
(5)将步骤(4)中合金化球磨后得到的粉体取出,通过放电等离子脉冲烧结处理即得非等原子比高熵合金。
其中,步骤(2)中,所述高纯Ar气是指纯度为≥99.99%的Ar气。
步骤(3)中,滴入的乙醇过程控制剂的体积与硬质合金球磨罐的体积比为 1:50-125。
步骤(4)中,球磨转速为350-400r/min,球磨时间为70-90h。经过球磨得到的粉体即为非等原子比高熵合金粉体材料,呈现为粒径为10微米以下的机械合金化的片状粉体形貌。
步骤(5)中,放电等离子烧结技术参数为9分钟从室温升到450℃,11分钟从450℃升到1000℃,保温十分钟后降温,降温时间为十分钟,整个烧结过程中都是在真空氩气保护状态下进行,施加压力为40~50MPa。
有益效果:相比较于现有技术,(1)本发明非等原子比高熵合材料,其原料为Fe、Mn、Cr、Ni金属粉末,与现有高熵合金材料中含有Co等贵金属粉末相比成本大幅度降低。(2)本发明中制备非等原子比高熵合材料的合成方法为机械合金化法及放电等离子脉冲烧结,机械合金化作为一种广泛应用的固态合金化路线,可以容易地制备出与元素粉末均匀性良好的纳米晶材料,因此机械合金化可以作为制备高熵合金的理想方法;放电等离子烧结技术能在短时间内通过施加压力并通过电脉冲电流快速地将合金粉末致密化为高密度;用机械合金化和放电等离子烧结技术合成的高熵合金具有良好的致密性、高强度和高硬度。总之,制备过程简单,且制备的合金材料力学性能优异。
附图说明
图1为在制备非等原子比高熵合粉体材料时,不同球磨时间条件下粉体取样的XRD物相分析图谱;
图2为球磨机械合金化75小时的粒径为10微米以下片状粉体形貌图;
图3为通过放电等离子脉冲烧结之后所制备的球磨机械合金化不同时间条件下非等原子比高熵合块体材料的XRD物相分析图谱;
图4为采用不同的制备方法(电弧熔炼方法与机械合金化及放电等离子热压烧结方法)制备的非等原子比高熵合块体材料的力学性能比较图。
具体实施方式
下面结合具体实施例对本申请作出详细说明。
实施例1
一种非等原子比高熵合金材料的制备方法,包括以下步骤:
(1)按照原子比例35:10:20:35分别称取Fe、Mn、Cr、Ni金属粉末共计18 g;
(2)将步骤(1)中称取的粉末在真空手套箱的高纯Ar气环境中装入一个 125ml的硬质合金球磨罐中,磨球与磨料的质量比为15:1;
(3)滴入2ml无水乙醇分散剂于步骤(2)中的硬质合金球磨罐中随后密封并取出手套箱;
(4)将步骤(3)中密封的硬质合金球磨罐安装在球磨机上进行合金化球磨,球磨转速为350r/min,球磨总时间为75h,在此时间过程中,每隔一段时间在真空手套箱的纯度为≥99.99%高纯Ar气环境中取出少量粉体进行物相鉴定,最终得出球磨时间至少为70小时,才能球磨制备出单相面心立方高熵合金粉末,其分析结果如图1所示;
(5)将步骤(4)中合金化球磨75小时后得到的粉体取出即可得到非等原子比Fe35Mn10Cr20Ni35高熵合材料,其粉体微观形貌如图2所示;通过放电等离子脉冲烧结工艺进行熔融固化即可获得块体非等原子比高熵合金,过其进行物相分析,结果如图3所示,结果表明通过上述方法可以制备出面心立方高熵合金,但高熵合金中含有少量的碳化物第二相。
(6)将步骤(5)中所制备的块体高熵合金,通过机械加工的方式切割成适合CM5105电子万能试验机的试样尺寸,进行力学性能测试,其结果如图4所示,结果表明通过粉末烧结工艺制备的该体系高熵合金相比较于电弧熔炼的该体系高熵合金力学性能较优异。
实验结果:
按照所设计的合金原子比例称取一定的Fe、Mn、Cr、Ni金属粉末进行机械合金化球磨,75h后球磨结束,中间间隔时间取样检测,具体采用XRD物相分析技术对机械合金化粉进行检测,结果如图1所示,根据图示可见,球磨时间达到70h以后,具有单一相物相结构,可知已经初步完成单相高熵合金粉的制备。
利用扫描电镜对机械球磨合金化75小时后的高熵合金粉末进行形貌观察,如图2所示,从图中观察可知,原始合金粉末已经充分进行了合金化,且合金化粉末为粒径约5um左右的颗粒片状形貌。
将上述球磨65h和75h时间段的合金化粉末取样,通过放电等离子热压烧结工艺进行烧结,经烧结获得高熵合金块体材料,将获得的高熵合金块体材料经过电火花线切割加工成尺寸合适的试样,通过XRD物相分析技术对其进行物相分析,检测结果如图3所示,其物相基本组成为面心立方基体相及少量碳化物析出相。其次对所制备的高熵合金块体材料进行力学性能测试(CMT5105压缩测试),测试结果如图4所示,经过75小球磨合金化后的粉末烧结块体试样具有较好的抗压缩性能及优异的断裂韧性,且经过放电等离子热压烧结所制备的块体试样,较通过电弧熔炼法(利用电弧热在真空环境下熔炼金属和合金的方法)制备的块体试样具有较优异的力学性能。
所制备的高熵合金中含有一定量的碳化物第二相,碳化物析出相可能来自于烧结过程中石墨模具的渗透等,正是由于碳化物第二相的存在,则使得采用此工艺制备的非等原子比Fe35Mn10Cr20Ni35高熵合金具有良好的力学性能,其抗压强度大于2500MPa,压缩比大于70%。

Claims (6)

1.一种非等原子比高熵合金,其特征在于,其分子式为FeaMnbCrcNid,式中a、b、c、d分别表示对应金属元素的原子百分含量,且34≤a≤36,9≤b≤11,19≤c≤21,34≤d≤36。
2.根据权利要求1所述的非等原子比高熵合金,其特征在于,a=35,b=10,c=20,d=35。
3.权利要求1或2所述非等原子比高熵合金的制备方法,其特征在于,包括以下步骤:
(1)按照分子式中的原子百分比配制Fe、Mn、Cr、Ni的金属粉末;
(2)将步骤(1)配制的粉末在真空手套箱高纯Ar气环境中装入硬质合金球磨罐,磨球与磨料的质量比为14~15:1;
(3)向步骤(2)的硬质合金球磨罐中滴入无水乙醇过程控制剂,然后密封硬质合金球磨罐并从手套箱取出;
(4)将步骤(3)中密封的硬质合金球磨罐安装在球磨机上进行合金化球磨;
(5)将步骤(4)中合金化球磨后得到的粉体取出,通过放电等离子脉冲烧结处理即得非等原子比高熵合金材料。
4.根据权利要求3所述的非等原子比高熵合金的制备方法,其特征在于,步骤(3)中,滴入的乙醇过程控制剂的体积与硬质合金球磨罐的体积比为1:50-125。
5.根据权利要求3所述的非等原子比高熵合金的制备方法,其特征在于,步骤(4)中,球磨转速为350-400r/min,球磨时间为70-90h。
6.根据权利要求3所述的非等原子比高熵合金的制备方法,其特征在于,步骤(5)中,放电等离子烧结技术参数为9分钟从室温升到450℃,11分钟从450℃升到1000℃,保温十分钟后降温,降温时间为十分钟,整个烧结过程中都是在真空氩气保护状态下进行,施加压力为40~50MPa。
CN201911146520.2A 2019-11-21 2019-11-21 一种非等原子比高熵合金及其制备方法 Active CN111004957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911146520.2A CN111004957B (zh) 2019-11-21 2019-11-21 一种非等原子比高熵合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911146520.2A CN111004957B (zh) 2019-11-21 2019-11-21 一种非等原子比高熵合金及其制备方法

Publications (2)

Publication Number Publication Date
CN111004957A true CN111004957A (zh) 2020-04-14
CN111004957B CN111004957B (zh) 2021-04-06

Family

ID=70113017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911146520.2A Active CN111004957B (zh) 2019-11-21 2019-11-21 一种非等原子比高熵合金及其制备方法

Country Status (1)

Country Link
CN (1) CN111004957B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662930A (zh) * 2020-07-21 2021-04-16 台州市黄岩海川模塑有限公司 一种高熵模具钢材料及其制备方法
CN113862545A (zh) * 2021-12-03 2021-12-31 西安稀有金属材料研究院有限公司 一种反射损耗达-60.9dB的高熵合金吸波材料及其制备方法
CN114525420A (zh) * 2022-01-21 2022-05-24 山东科技大学 利用脉冲电流技术提升公斤级AlCoCrFeNi2.1共晶高熵合金力学性能的方法
CN115305388A (zh) * 2022-08-30 2022-11-08 北京科技大学 一种非等原子比镍基高熵合金材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107354391A (zh) * 2017-07-27 2017-11-17 安徽工业大学 一种基于高熵效应的多组元成分沉淀硬化不锈钢
CN107475596A (zh) * 2017-08-10 2017-12-15 哈尔滨工业大学 一种高熵金属间化合物
CN108660354A (zh) * 2018-08-20 2018-10-16 太原理工大学 一种Fe-Mn-Cr-Ni系高熵不锈钢及其制备方法
US20190024198A1 (en) * 2017-07-19 2019-01-24 The Industry & Academic Cooperation In Chungnam National University (Iac) Precipitation Hardening High Entropy Alloy and Method of Manufacturing the Same
KR20190106420A (ko) * 2018-03-09 2019-09-18 포항공과대학교 산학협력단 고엔트로피 합금 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024198A1 (en) * 2017-07-19 2019-01-24 The Industry & Academic Cooperation In Chungnam National University (Iac) Precipitation Hardening High Entropy Alloy and Method of Manufacturing the Same
CN107354391A (zh) * 2017-07-27 2017-11-17 安徽工业大学 一种基于高熵效应的多组元成分沉淀硬化不锈钢
CN107475596A (zh) * 2017-08-10 2017-12-15 哈尔滨工业大学 一种高熵金属间化合物
KR20190106420A (ko) * 2018-03-09 2019-09-18 포항공과대학교 산학협력단 고엔트로피 합금 및 그 제조방법
CN108660354A (zh) * 2018-08-20 2018-10-16 太原理工大学 一种Fe-Mn-Cr-Ni系高熵不锈钢及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
N.A.P. KIRAN KUMAR ET AL.: "Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation", 《ACTA MATERIALIA 113》 *
N.D. STEPANOV ETAL.: "Tensile properties of the Cr–Fe–Ni–Mn non-equiatomicmulticomponent alloys with different Cr contents", 《MATERIALS AND DESIGN 87》 *
张威威等: "多主元FeNiMnCrAlx高熵合金微观结构和力学性能的研究", 《有色金属材料与工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662930A (zh) * 2020-07-21 2021-04-16 台州市黄岩海川模塑有限公司 一种高熵模具钢材料及其制备方法
CN113862545A (zh) * 2021-12-03 2021-12-31 西安稀有金属材料研究院有限公司 一种反射损耗达-60.9dB的高熵合金吸波材料及其制备方法
CN113862545B (zh) * 2021-12-03 2022-02-15 西安稀有金属材料研究院有限公司 一种反射损耗达-60.9dB的高熵合金吸波材料及其制备方法
CN114525420A (zh) * 2022-01-21 2022-05-24 山东科技大学 利用脉冲电流技术提升公斤级AlCoCrFeNi2.1共晶高熵合金力学性能的方法
CN115305388A (zh) * 2022-08-30 2022-11-08 北京科技大学 一种非等原子比镍基高熵合金材料及其制备方法

Also Published As

Publication number Publication date
CN111004957B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN111004957B (zh) 一种非等原子比高熵合金及其制备方法
KR101928329B1 (ko) 나노 결정립 고 엔트로피 합금의 제조방법 및 이로부터 제조된 고 엔트로피 합금
CN112725678B (zh) 一种含NiCoCr的非等原子比中/高熵合金及其制备方法
CN108998714B (zh) 一种双相中熵合金的设计与制备方法
Bloch Dispersion-strengthened aluminium alloys
Zhang et al. Recent progress in high-entropy alloys
CN111172446B (zh) 一种强耐腐蚀非等原子比高熵合金及其制备方法
CN111876647A (zh) 一种无Co共晶中熵合金及其制备方法
Průša et al. Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion
CN114606422B (zh) CrCoNi中熵合金及其低温轧制方法
JP7233659B2 (ja) 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法並びに鍛造体
CN113073274A (zh) 一种新型制备双相超细晶高熵合金的方法
KR20190086931A (ko) 고엔트로피 합금 및 그 제조방법
CN111519079A (zh) 一种CoCrNiCuFeMnAl高熵合金及其制备方法
CN114774785A (zh) 一种低成本高性能铁基中熵合金
CN107034408B (zh) 一种高强韧性匹配的晶粒尺寸双峰分布的高熵合金及其制备方法
Azizi et al. Fabrication of ZAMAK 2 alloys by powder metallurgy process
US20150004043A1 (en) Precipitate strengthened nanostructured ferritic alloy and method of forming
CN117587314A (zh) 一种超高硬度高温高熵合金及其制备方法
CN115652171B (zh) 一种高强析出强化型高熵合金及其制备方法
CN108715979B (zh) 一种氧调制相变的非晶复合材料及其制备方法
CN114686743B (zh) 可热机械处理的高强高塑Co-Cr-Fe-Ni-V-B-Si共晶高熵合金及制备方法
Kukuła-Kurzyniec et al. Aluminium based composites strengthened with metallic amorphous phase or ceramic (Al2O3) particles
CN114855045A (zh) 一种高强韧高密度多组元合金及其制备方法
CN115354202A (zh) 一种适用于差速回填点焊工具的高强韧材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant