CN111004046A - 一种提高陶瓷基复合材料ebc涂层结合强度的方法 - Google Patents

一种提高陶瓷基复合材料ebc涂层结合强度的方法 Download PDF

Info

Publication number
CN111004046A
CN111004046A CN201911387981.9A CN201911387981A CN111004046A CN 111004046 A CN111004046 A CN 111004046A CN 201911387981 A CN201911387981 A CN 201911387981A CN 111004046 A CN111004046 A CN 111004046A
Authority
CN
China
Prior art keywords
ceramic matrix
matrix composite
coating
ebc
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911387981.9A
Other languages
English (en)
Inventor
王晶
刘永胜
曹立阳
张运海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201911387981.9A priority Critical patent/CN111004046A/zh
Publication of CN111004046A publication Critical patent/CN111004046A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4523Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the molten state ; Thermal spraying, e.g. plasma spraying
    • C04B41/4527Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及一种提高陶瓷基复合材料EBC涂层结合强度的方法,将陶瓷基复合材料加工工艺用以辅助EBC涂层的制备过程,为EBC涂层的制备提供适宜表面完整性的复合材料表面,以增加材料表面的粗糙度、释放材料表面的残余应力并增强涂层与基体的结合力。有益效果为:(1)将陶瓷基复合材料的加工工艺引入EBC涂层的制备过程,扩展了陶瓷基复合材料的加工工艺的应用范围并丰富了EBC涂层的制备方法。(2)在陶瓷基复合材料的表面进行加工,得到一定表面结构的复合材料基体,EBC涂层的界面结合强度可提升15%~35%,大幅提升材料的使用寿命。

Description

一种提高陶瓷基复合材料EBC涂层结合强度的方法
技术领域
本发明属于陶瓷基复合材料领域,涉及一种提高陶瓷基复合材料EBC涂层结合强度的方法,其主要应用于改善陶瓷基复合材料EBC涂层与基体的结合强度,提高陶瓷基复合材料的耐环境腐蚀能力。
背景技术
连续纤维增韧的碳化硅陶瓷基复合材料(Cf/SiC、SiCf/SiC复合材料)作为新一代热结构材料,具有耐高温、低密度、高比强、高比模、抗氧化腐蚀等一系列性能优势而被广泛应用于先进航空发动机领域。在航空发动机严苛的燃气环境中,如高温、高压、水蒸汽、氧、熔盐以及高速燃气冲刷等,复合材料中的SiC基体、SiC纤维和SiO2易与水蒸气反应生成气态的Si(OH)4等物质;而常用的BN、PyC界面易与水蒸气反应生成H3BO3等挥发性物质,二者都会引起陶瓷基复合材料表面和内部稳定性及性能的急剧恶化,最终导致构件快速失效。解决该问题的方法是在复合材料表面制备环境屏障涂层(Environment barrier coatings,EBCs),即EBC涂层,该涂层能够在复合材料和发动机恶劣环境间设立一道屏障,阻止或减小发动机环境对材料性能的影响,能够有效提高陶瓷基复合材料在航空发动机环境中的服役寿命,保障发动机使用的安全性和可靠性。
专利CN109987971A公开了一种碳纤维增强碳化硅陶瓷基复合材料表面高温长时间抗氧化涂层及其制备方法,以氧化硼、硼、锆、碳化硅、二氧化硅和氧化铝为涂层原料,硅溶胶为粘接剂,采用涂刷-烧结工艺在碳化硅内层上制备ZrB2-SiC基中间层;再利用化学气相沉积工艺在中间层表面制备SiC外层,最终得到SiC/ZrB2-SiC/SiC复合抗氧化涂层,提高了涂层的抗氧化能力,失重率仅为1.1%,但该涂层制备方法较为复杂,并且未能解决涂层易剥落的问题。
文献“Oxidation behavior of C/C composites with SiC/ZrSiO4-SiO2coating.Ceremics International.2017(27):405.”公开报道了一种Cf/C表面SiC/ZrSiO4-SiO2复合抗氧化涂层,利用已通过包埋法沉积一层SiC结合层的Cf/C表面,该涂层采用料浆喷涂-高温烧结复合工艺制备出SiC/ZrSiO4-SiO2复合涂层。带有所制备的涂层的Cf/C在低氧分压环境下氧化111h后增重0.54%,高氧分压环境下氧化50h后失重0.03%。该涂层抗氧化性能较好,但制备成本较高且无法根本解决涂层不够致密和易脱落的问题。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种提高陶瓷基复合材料EBC涂层结合强度的方法,解决陶瓷基复合材料EBC涂层致密度不高,易脱落,导致复合材料寿命降低的问题。
技术方案
一种提高陶瓷基复合材料EBC涂层结合强度的方法,其特征在于步骤如下:
步骤1、预制体的制备:将碳纤维呈0°/0°、0°/45°或0°/90°的方向铺层,或将碳化硅纤维布呈0°/0°、0°/45°或0°/90°的方向铺层,并且使用针刺法制备纤维预制体
步骤2、沉积界面:在纤维预制体上,采用CVI工艺制备陶瓷基复合材料的热解碳界面相,得到胚体,沉积工艺以C3H6为气源,Ar为稀释气体,H2为载气,沉积温度为850~950℃,系统总压为3~7kPa,沉积PyC界面相,生成PyC的化学反应为:C3H6→PyC+CxHy,沉积时间为40~50h;
步骤3、沉积基体:在胚体上,采用CVI工艺制备陶瓷基复合材料的碳化硅基体,得到陶瓷基复合材料;以三氯甲基硅烷CH3SiCl3,MTS为气源,Ar为稀释气体,以鼓泡方式用H2作为载气将MTS带入反应炉内,沉积温度为900~1200℃,系统总压为4~8kPa,H2与MTS的摩尔比为10:1,沉积时间为720~750h,至复合材料的密度为2.1~2.2g/cm3;沉积过程中制备SiC的化学反应为:CH3SiCl3+H2→SiC+HCl;
步骤4:采用陶瓷基复合材料的加工工艺,在陶瓷基复合材料的表面加工出有凹凸层次周期性结构;
步骤5、EBC涂层的制备:采用等离子喷涂工艺制备陶瓷基复合材料的EBC涂层,其中,设定主气Ar流量为1500~3000L·h-1,送粉气H2流量为300~500L·h-1,电弧电压为60~80V,电弧电流为350~650A,喷涂距离为50~150mm。
所述陶瓷基复合材料的加工工艺包括但不限于:磨削加工、超声加工、水射流加工、激光加工或喷砂加工。
有益效果
本发明提出的一种提高陶瓷基复合材料EBC涂层结合强度的方法,将陶瓷基复合材料加工工艺用以辅助EBC涂层的制备过程,为EBC涂层的制备提供适宜表面完整性的复合材料表面,以增加材料表面的粗糙度、释放材料表面的残余应力并增强涂层与基体的结合力。
有益效果为:
(1)将陶瓷基复合材料的加工工艺引入EBC涂层的制备过程,扩展了陶瓷基复合材料的加工工艺的应用范围并丰富了EBC涂层的制备方法。
(2)在陶瓷基复合材料的表面进行加工,得到一定表面结构的复合材料基体,EBC涂层的界面结合强度,相对于陶瓷基复合材料没有EBC涂层,结合强度由20MPa提升15%~35%,大幅提升材料的使用寿命。
附图说明
图1为本发明的流程图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1.
步骤1.预制体的制备:将碳纤维纤维布呈0°/0°的方向铺层,并且使用针刺法制备纤维预制体。
步骤2.沉积界面:采用CVI工艺制备陶瓷基复合材料的热解碳界面相。以C3H6为气源,Ar为稀释气体,H2为载气,沉积温度为950℃,系统总压为7kPa,沉积PyC界面相,生成PyC的化学反应为:C3H6→PyC+CxHy,沉积时间为50h。
步骤3.沉积基体:采用CVI工艺制备陶瓷基复合材料的碳化硅基体,以三氯甲基硅烷(CH3SiCl3,MTS)为气源,Ar为稀释气体,以鼓泡方式用H2作为载气将MTS带入反应炉内,沉积温度为1200℃左右,系统总压为8kPa,H2与MTS的摩尔比为10:1,制备SiC的化学反应为:CH3SiCl3+H2→SiC+HCl,沉积时间为750h,至复合材料的密度为2.2g/cm3
步骤4.表面处理:利用陶瓷基复合材料磨削加工刻槽,对复合材料试样(构件)进行表面刻槽处理,微槽宽度2mm,微槽深度1mm,得到一定表面结构的复合材料基体。
步骤5.涂层制备:采用等离子喷涂工艺制备陶瓷基复合材料的EBC涂层。其中,设定主气(Ar)流量为3000L·h-1,送粉气(H2)流量为500L·h-1,电弧电压为80V,电弧电流为650A,喷涂距离为150mm。
步骤6.采用本实施方案得到的复合材料,涂层结合力为5MPa,提升了19%。
实施例2.
步骤1.预制体的制备:将碳纤维布呈0°/45°的方向铺层,并且使用针刺法制备纤维预制体。
步骤2.沉积界面:采用CVI工艺制备陶瓷基复合材料的热解碳界面相。以C3H6为气源,Ar为稀释气体,H2为载气,沉积温度为850℃,系统总压为5kPa,沉积PyC界面相,生成PyC的化学反应为:C3H6→PyC+CxHy,沉积时间为50h。
步骤3.沉积基体:采用CVI工艺制备陶瓷基复合材料的碳化硅基体,以三氯甲基硅烷(CH3SiCl3,MTS)为气源,Ar为稀释气体,以鼓泡方式用H2作为载气将MTS带入反应炉内,沉积温度为1200℃左右,系统总压为5kPa,H2与MTS的摩尔比为10:1,制备SiC的化学反应为:CH3SiCl3+H2→SiC+HCl,沉积时间为750h,至复合材料的密度为2.2g/cm3
步骤4.表面处理:采用飞秒激光加工工艺在陶瓷基复合材料的表面进行微槽的加工,其中飞秒激光加工和微槽尺寸参数为:加工功率6W,扫描速度1200mm/s,扫描间距15μm,激光入射角度35°;微槽宽度100μm,微槽深度100μm。
步骤5.涂层制备:采用等离子喷涂工艺制备陶瓷基复合材料的EBC涂层。其中,设定主气(Ar)流量为3000L·h-1,送粉气(H2)流量为500L·h-1,电弧电压为80V,电弧电流为650A,喷涂距离为150mm。
步骤6.采用本实施方案得到的复合材料,涂层结合力为5MPa,提升了26%。
实施例3.
步骤1.预制体的制备:将碳化硅纤维布呈0°/90°的方向铺层,并且使用针刺法制备纤维预制体。
步骤2.沉积界面:采用CVI工艺制备陶瓷基复合材料的热解碳界面相。以C3H6为气源,Ar为稀释气体,H2为载气,沉积温度为850℃,系统总压为5kPa,沉积PyC界面相,生成PyC的化学反应为:C3H6→PyC+CxHy,沉积时间为50h。
步骤3.沉积基体:采用CVI工艺制备陶瓷基复合材料的碳化硅基体,以三氯甲基硅烷(CH3SiCl3,MTS)为气源,Ar为稀释气体,以鼓泡方式用H2作为载气将MTS带入反应炉内,沉积温度为1200℃左右,系统总压为5kPa,H2与MTS的摩尔比为10:1,制备SiC的化学反应为:CH3SiCl3+H2→SiC+HCl,沉积时间为750h,至复合材料的密度为2.2g/cm3
步骤4.表面处理:采用表面喷砂工艺对陶瓷基复合材料的表面进行加工,其中表面喷砂加工参数为:喷砂尺寸80目,喷砂压力0.7MPa,喷砂时间1分钟,喷砂距离15cm;喷砂角度90°,环境温度为室温。
步骤5.涂层制备:采用等离子喷涂工艺制备陶瓷基复合材料的EBC涂层。其中,设定主气(Ar)流量为3000L·h-1,送粉气(H2)流量为500L·h-1,电弧电压为80V,电弧电流为650A,喷涂距离为150mm。
步骤6.采用本实施方案得到的复合材料,涂层结合力为5MPa,提升了32%。

Claims (2)

1.一种提高陶瓷基复合材料EBC涂层结合强度的方法,其特征在于步骤如下:
步骤1、预制体的制备:将碳纤维呈0°/0°、0°/45°或0°/90°的方向铺层,或将碳化硅纤维布呈0°/0°、0°/45°或0°/90°的方向铺层,并且使用针刺法制备纤维预制体
步骤2、沉积界面:在纤维预制体上,采用CVI工艺制备陶瓷基复合材料的热解碳界面相,得到胚体,沉积工艺以C3H6为气源,Ar为稀释气体,H2为载气,沉积温度为850~950℃,系统总压为3~7kPa,沉积PyC界面相,生成PyC的化学反应为:C3H6→PyC+CxHy,沉积时间为40~50h;
步骤3、沉积基体:在胚体上,采用CVI工艺制备陶瓷基复合材料的碳化硅基体,得到陶瓷基复合材料;以三氯甲基硅烷CH3SiCl3,MTS为气源,Ar为稀释气体,以鼓泡方式用H2作为载气将MTS带入反应炉内,沉积温度为900~1200℃,系统总压为4~8kPa,H2与MTS的摩尔比为10:1,沉积时间为720~750h,至复合材料的密度为2.1~2.2g/cm3;沉积过程中制备SiC的化学反应为:CH3SiCl3+H2→SiC+HCl;
步骤4:采用陶瓷基复合材料的加工工艺,在陶瓷基复合材料的表面加工出有凹凸层次周期性结构;
步骤5、EBC涂层的制备:采用等离子喷涂工艺制备陶瓷基复合材料的EBC涂层,其中,设定主气Ar流量为1500~3000L·h-1,送粉气H2流量为300~500L·h-1,电弧电压为60~80V,电弧电流为350~650A,喷涂距离为50~150mm。
2.根据权利要求1所述提高陶瓷基复合材料EBC涂层结合强度的方法,其特征在于:所述陶瓷基复合材料的加工工艺包括但不限于:磨削加工、超声加工、水射流加工、激光加工或喷砂加工。
CN201911387981.9A 2019-12-30 2019-12-30 一种提高陶瓷基复合材料ebc涂层结合强度的方法 Pending CN111004046A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911387981.9A CN111004046A (zh) 2019-12-30 2019-12-30 一种提高陶瓷基复合材料ebc涂层结合强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911387981.9A CN111004046A (zh) 2019-12-30 2019-12-30 一种提高陶瓷基复合材料ebc涂层结合强度的方法

Publications (1)

Publication Number Publication Date
CN111004046A true CN111004046A (zh) 2020-04-14

Family

ID=70119492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911387981.9A Pending CN111004046A (zh) 2019-12-30 2019-12-30 一种提高陶瓷基复合材料ebc涂层结合强度的方法

Country Status (1)

Country Link
CN (1) CN111004046A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410021A (zh) * 2023-04-17 2023-07-11 北京理工大学 一种在陶瓷基复合材料表面制备防护涂层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768714A (zh) * 2010-02-09 2010-07-07 江苏大学 热障涂层激光复合等离子喷涂制备方法
CN106116702A (zh) * 2016-06-27 2016-11-16 中国科学院长春应用化学研究所 一种Cf/SiC复合材料表面高温抗氧化热障涂层的制备方法
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN106966762A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 一种航空发动机热端构件用环境障涂层的制备方法
CN108530110A (zh) * 2018-06-08 2018-09-14 中南大学 一种c/c复合材料的超高温陶瓷涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768714A (zh) * 2010-02-09 2010-07-07 江苏大学 热障涂层激光复合等离子喷涂制备方法
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN106966762A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 一种航空发动机热端构件用环境障涂层的制备方法
CN106116702A (zh) * 2016-06-27 2016-11-16 中国科学院长春应用化学研究所 一种Cf/SiC复合材料表面高温抗氧化热障涂层的制备方法
CN108530110A (zh) * 2018-06-08 2018-09-14 中南大学 一种c/c复合材料的超高温陶瓷涂层及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中国机械工程学会再制造工程分会编: "《再制造技术路线图》", 30 November 2016, 科学普及出版社 *
史月丽等编: "《材料改性实验》", 31 August 2013, 中国矿业大学出版社 *
常启兵编著: "《复合材料 案例式 case study》", 30 September 2018, 江苏凤凰美术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410021A (zh) * 2023-04-17 2023-07-11 北京理工大学 一种在陶瓷基复合材料表面制备防护涂层的方法
CN116410021B (zh) * 2023-04-17 2024-04-19 北京理工大学 一种在陶瓷基复合材料表面制备防护涂层的方法

Similar Documents

Publication Publication Date Title
JP5436761B2 (ja) 炭化ケイ素系繊維強化セラミックス複合材料の耐環境コーティング構造
EP1726681B1 (en) Coating system for silicon based substrates
CN101503305B (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
TW555725B (en) Ceramic with preferential oxygen reactive layer
CN111004990B (zh) 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
EP1044946B1 (en) Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer
CN109553430A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法
CN110357635B (zh) 一种提高碳基或陶瓷基复合材料表面抗氧化涂层结合强度的方法
EP3026035B1 (en) Coated substrate
EP2931679B1 (en) Composite components with coated fiber reinforcements
JP6002769B2 (ja) 湿潤環境において安定な超耐熱材料及びその製造方法
EP2138477A2 (en) Protective coatings for silicon based substrates with improved adhesion
CN103058711A (zh) 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法
CN109912316A (zh) 一种C/SiC复合材料表面纳米线增韧涂层的制备方法
CN116332678B (zh) 一种在碳材料表面制备碳化钽涂层的方法
US20180222807A1 (en) Increasing the density of a bond coat
CN113151772A (zh) 一种新型高温耐蚀的双陶瓷层结构热障涂层及其制备方法
US8980434B2 (en) Mo—Si—B—based coatings for ceramic base substrates
CN114276169A (zh) 一种自愈合高致密环境障涂层及其制备方法与应用
CN111004046A (zh) 一种提高陶瓷基复合材料ebc涂层结合强度的方法
CN110776339A (zh) 一种用于C/ZrC-SiC复合材料的抗氧化涂层及其制备方法
CN110304946B (zh) 一种陶瓷基复合材料表面的宽温域抗氧化涂层及其制备方法
CN102503578A (zh) 一种在多孔陶瓷基体表面制备陶瓷涂层的方法
CN112501613B (zh) 一种全温域抗氧化烧蚀涂层及其制备方法
US20180141870A1 (en) Ceramic composite article and method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200414