CN110986804A - 一种物体表面高度的光学测量方法 - Google Patents

一种物体表面高度的光学测量方法 Download PDF

Info

Publication number
CN110986804A
CN110986804A CN201911357870.3A CN201911357870A CN110986804A CN 110986804 A CN110986804 A CN 110986804A CN 201911357870 A CN201911357870 A CN 201911357870A CN 110986804 A CN110986804 A CN 110986804A
Authority
CN
China
Prior art keywords
light
measured
height
splitting device
light splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911357870.3A
Other languages
English (en)
Inventor
刘宁
程文涛
钟才明
符强
周丽娟
米鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Weixin Aotu Intelligent Technology Co ltd
Original Assignee
Suzhou Weixin Aotu Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Weixin Aotu Intelligent Technology Co ltd filed Critical Suzhou Weixin Aotu Intelligent Technology Co ltd
Priority to CN201911357870.3A priority Critical patent/CN110986804A/zh
Publication of CN110986804A publication Critical patent/CN110986804A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种物体表面高度的光学测量方法,包括以下步骤:步骤S1,将光源中的白光通过第一分光设备进行分光;步骤S2,将分光之后的彩色光线投射到被测物体表面上;步骤S3,彩色光线在物体表面被反射后进入第二分光设备;步骤S4,相机获取从第二分光设备过滤后的图像;步骤S5,相机将图像传入PC处理器进行分析处理。本发明既可以检测非玻璃表面的高度特征,也可以检测玻璃表面的高度特征,还可以计算出物体表面的薄膜的厚度特征,还可以判断表面是否平整有无凹凸的缺陷。本发明检测方法简单,检测精度高,检测效率高。

Description

一种物体表面高度的光学测量方法
技术领域
本发明涉及光学测量相关技术领域,尤其涉及一种物体表面高度的光学测量方法。
背景技术
现有技术中对物体表面高度的检测,一般是通过检测人员人为检测,这种方式下检测人员的工作量大,容易错量,测量精度不高,且效率低,人工成本高。
有鉴于上述的缺陷,本设计人积极加以研究创新,以期创设一种物体表面高度的光学测量方法,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种物体表面高度的光学测量方法。
为实现上述目的,本发明采用如下技术方案:
一种物体表面高度的光学测量方法,包括以下步骤:
步骤S1,将光源中的白光通过第一分光设备进行分光;
步骤S2,将分光之后的彩色光线投射到被测物体表面上;
步骤S3,彩色光线在物体表面被反射后进入第二分光设备;
步骤S4,相机获取从第二分光设备过滤后的图像;
步骤S5,相机将图像传入PC处理器进行分析处理。
作为本发明的进一步改进,步骤S1和步骤S2,光源中的白光通过第一分光设备进行分光处理,进而通过第一球面镜的作用经过入射狭缝将分光之后的彩色光线投射到被测物体表面上,被测物体表面包括位于上层的塑料膜表面和位于下层的底层,底层上设置有凹槽,其中,不同波长的光线聚焦点的位置不一样,红光聚焦在了被测物体表面的凹槽内,蓝光聚焦在了被测物体表面的塑料膜表面上。
作为本发明的进一步改进,步骤S3和步骤S4,两条不同波长的光线红光和蓝光经被测物体表面反射后经由出射狭缝再次通过第二球面镜反射,之后通过第二分光设备后被相机成像,通过第二分光设备后就可得知红光和蓝光关系的对应位置并标记相应的被测物体表面的高度信息。
作为本发明的进一步改进,步骤S5,线性扫描整个物体表面后将相机获取的信息传入PC处理器中进行分析处理,进行三维建模,然后就可以计算出被测物体表面的各项参数特征。
作为本发明的进一步改进,被测物体表面的参数特征包括被测物体表面的塑料膜表面的高度,以及被测物体表面的凹槽的深度。
作为本发明的进一步改进,第一分光设备和第二分光设备均为滤光器,滤光器内设置有线性可变滤光片。
作为本发明的进一步改进,第一分光设备和第二分光设备均利用像差原理进行分光处理。
作为本发明的进一步改进,PC处理器内设置有MCU控制芯片,且PC处理器上还设置有LED液晶显示屏。
借由上述方案,本发明至少具有以下优点:
本发明一种物体表面高度的光学测量方法,既可以检测非玻璃表面的高度特征,也可以检测玻璃表面的高度特征,还可以计算出物体表面的薄膜的厚度特征,还可以判断表面是否平整有无凹凸的缺陷,综合检测能力较强,适应性和推广性较强。本发明检测方法简单,检测精度高,检测效率高。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明一种物体表面高度的光学测量方法的结构原理示意图;
图2是图1中A处的局部放大示意图;
图3是像差原理的示意图。
其中,图中各附图标记的含义如下。
1光源 2第一球面镜
3第一分光设备 4入射狭缝
5焦平面 6被测物体表面
7出射狭缝 8第二球面镜
9第二分光设备 10相机
11蓝光 12塑料膜表面
13红光 14凹槽
15底层
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一或多个”,即在一实施例中,一元件的数量可以为一,而在另外的实施例中,所述元件的数量可以为多个,术语“一”不能理解为对数量的限制。
实施例
如图1~图3所示,
一种物体表面高度的光学测量方法,包括以下步骤:
步骤S1,将光源1中的白光通过第一分光设备3进行分光;
步骤S2,将分光之后的彩色光线投射到被测物体表面6上;
步骤S3,彩色光线在物体表面被反射后进入第二分光设备9;
步骤S4,相机10获取从第二分光设备9过滤后的图像;
步骤S5,相机10将图像传入PC处理器进行分析处理。
优选的,步骤S1和步骤S2,光源1中的白光通过第一分光设备3进行分光处理,进而通过第一球面镜2的作用经过入射狭缝4将分光之后的彩色光线投射到被测物体表面6上,被测物体表面6包括位于上层的塑料膜表面12和位于下层的底层15,底层15上设置有凹槽14,其中,不同波长的光线聚焦点的位置不一样,红光13聚焦在了被测物体表面6的凹槽14内,蓝光11聚焦在了被测物体表面6的塑料膜表面12上。
优选的,步骤S3和步骤S4,两条不同波长的光线红光13和蓝光11经被测物体表面6反射后经由出射狭缝7再次通过第二球面镜8反射,之后通过第二分光设备9后被相机10成像,通过第二分光设备9后就可得知红光13和蓝光11关系的对应位置并标记相应的被测物体表面6的高度信息。
优选的,步骤S5,线性扫描整个物体表面后将相机10获取的信息传入PC处理器中进行分析处理,进行三维建模,然后就可以计算出被测物体表面6的各项参数特征。
优选的,被测物体表面6的参数特征包括被测物体表面6的塑料膜表面12的高度,以及被测物体表面6的凹槽14的深度。
优选的,第一分光设备3和第二分光设备9均为滤光器,滤光器内设置有线性可变滤光片。
优选的,第一分光设备3和第二分光设备9均利用像差原理进行分光处理。
优选的,PC处理器内设置有MCU控制芯片,且PC处理器上还设置有LED液晶显示屏。
本发明第一实施例:
一种物体表面高度的光学测量方法,包括以下步骤:
步骤S1,将光源1中的白光通过第一分光设备3进行分光;
步骤S2,将分光之后的彩色光线投射到被测物体表面6上;
步骤S3,彩色光线在物体表面被反射后进入第二分光设备9;
步骤S4,相机10获取从第二分光设备9过滤后的图像;
步骤S5,相机10将图像传入PC处理器进行分析处理。
如图1所示,将光源1发出的白光透过第一分光设备3后投射到被测物体表面6的表面,白光是由不通过波长的色光组成,可以通过滤光片将白光分成单一波长的色光,这里可以通过一种线性可变滤光片将白光分成多种波长的不同颜色的单一色光。
同时也可以利用像差原理对其分光,光学系统对单色光成像时产生的像差称为单色光像差,在实际光学系统中,物体上任一点发出的光束通过光学系统后不能汇聚于一点,而形成一个弥散斑,因此可以利用像差来分光,比如如图2所示将光照射到球面镜上就形成了分光,分光后就形成了不同波长的光线。
如图3中有两条不同波长的光线蓝光11和红光13聚焦到了被测物体表面6上,不同波长的光线聚焦点的位置不一样,在图3中,红光13聚焦在了被测物体表面6的凹槽14内,蓝光11聚焦在了被测物体表面6的塑料膜表面12上。两条不同波长的光线蓝光11和红光13经被测物体表面6反射后通过第二分光设备9后被相机10成像,通过第二分光设备9后就可得知蓝光11和红光13关系的对应位置并标记相应的被测物体表面6的高度信息,线性扫描整个被测物体表面6后将相机10获取的信息传入PC处理器处理,进行三维建模,然后就可以计算出被测物体表面6的各种参数特征,比如可以计算出被测物体表面6的塑料膜表面12的高度,被测物体表面6的凹槽14的深度等其他特征。
本发明一种物体表面高度的光学测量方法,既可以检测非玻璃表面的高度特征,也可以检测玻璃表面的高度特征,还可以计算出物体表面的薄膜的厚度特征,还可以判断表面是否平整有无凹凸的缺陷,综合检测能力较强,适应性和推广性较强。本发明检测方法简单,检测精度高,检测效率高。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (8)

1.一种物体表面高度的光学测量方法,其特征在于,包括以下步骤:
步骤S1,将光源(1)中的白光通过第一分光设备(3)进行分光;
步骤S2,将分光之后的彩色光线投射到被测物体表面(6)上;
步骤S3,彩色光线在物体表面被反射后进入第二分光设备(9);
步骤S4,相机(10)获取从第二分光设备(9)过滤后的图像;
步骤S5,相机(10)将图像传入PC处理器进行分析处理。
2.如权利要求1所述的一种物体表面高度的光学测量方法,其特征在于,所述步骤S1和步骤S2,所述光源(1)中的白光通过第一分光设备(3)进行分光处理,进而通过第一球面镜(2)的作用经过入射狭缝(4)将分光之后的彩色光线投射到被测物体表面(6)上,所述被测物体表面(6)包括位于上层的塑料膜表面(12)和位于下层的底层(15),所述底层(15)上设置有凹槽(14),其中,不同波长的光线聚焦点的位置不一样,红光(13)聚焦在了被测物体表面(6)的凹槽(14)内,蓝光(11)聚焦在了被测物体表面(6)的塑料膜表面(12)上。
3.如权利要求1所述的一种物体表面高度的光学测量方法,其特征在于,所述步骤S3和步骤S4,两条不同波长的光线红光(13)和蓝光(11)经被测物体表面(6)反射后经由出射狭缝(7)再次通过第二球面镜(8)反射,之后通过第二分光设备(9)后被相机(10)成像,通过第二分光设备(9)后就可得知红光(13)和蓝光(11)关系的对应位置并标记相应的被测物体表面(6)的高度信息。
4.如权利要求1所述的一种物体表面高度的光学测量方法,其特征在于,所述步骤S5,线性扫描整个物体表面后将相机(10)获取的信息传入PC处理器中进行分析处理,进行三维建模,然后就可以计算出被测物体表面(6)的各项参数特征。
5.如权利要求4所述的一种物体表面高度的光学测量方法,其特征在于,所述被测物体表面(6)的参数特征包括被测物体表面(6)的塑料膜表面(12)的高度,以及被测物体表面(6)的凹槽(14)的深度。
6.如权利要求1所述的一种物体表面高度的光学测量方法,其特征在于,所述第一分光设备(3)和第二分光设备(9)均为滤光器,所述滤光器内设置有线性可变滤光片。
7.如权利要求1所述的一种物体表面高度的光学测量方法,其特征在于,所述第一分光设备(3)和第二分光设备(9)均利用像差原理进行分光处理。
8.如权利要求1所述的一种物体表面高度的光学测量方法,其特征在于,所述PC处理器内设置有MCU控制芯片,且所述PC处理器上还设置有LED液晶显示屏。
CN201911357870.3A 2019-12-25 2019-12-25 一种物体表面高度的光学测量方法 Pending CN110986804A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911357870.3A CN110986804A (zh) 2019-12-25 2019-12-25 一种物体表面高度的光学测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911357870.3A CN110986804A (zh) 2019-12-25 2019-12-25 一种物体表面高度的光学测量方法

Publications (1)

Publication Number Publication Date
CN110986804A true CN110986804A (zh) 2020-04-10

Family

ID=70076527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911357870.3A Pending CN110986804A (zh) 2019-12-25 2019-12-25 一种物体表面高度的光学测量方法

Country Status (1)

Country Link
CN (1) CN110986804A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243680A1 (de) * 1981-12-03 1983-06-09 Siemens AG, 1000 Berlin und 8000 München Verfahren und anordnung zur erfassung raeumlicher abweichungen von einer glatten ebene
JPH10296588A (ja) * 1997-04-28 1998-11-10 Japan Steel Works Ltd:The スライシングマシンの組付精度測定方法および測定装置
CN103528546A (zh) * 2013-09-23 2014-01-22 芜湖长信科技股份有限公司 一种检测浮法玻璃波纹度的装置和方法
CN103575218A (zh) * 2012-08-08 2014-02-12 先进科技新加坡有限公司 彩色共焦扫描装置
CN109373927A (zh) * 2018-09-28 2019-02-22 华侨大学 一种彩色共焦三维形貌测量方法与系统
CN109945797A (zh) * 2017-12-20 2019-06-28 北京卓立汉光仪器有限公司 一种表面形貌测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243680A1 (de) * 1981-12-03 1983-06-09 Siemens AG, 1000 Berlin und 8000 München Verfahren und anordnung zur erfassung raeumlicher abweichungen von einer glatten ebene
JPH10296588A (ja) * 1997-04-28 1998-11-10 Japan Steel Works Ltd:The スライシングマシンの組付精度測定方法および測定装置
CN103575218A (zh) * 2012-08-08 2014-02-12 先进科技新加坡有限公司 彩色共焦扫描装置
CN103528546A (zh) * 2013-09-23 2014-01-22 芜湖长信科技股份有限公司 一种检测浮法玻璃波纹度的装置和方法
CN109945797A (zh) * 2017-12-20 2019-06-28 北京卓立汉光仪器有限公司 一种表面形貌测量装置
CN109373927A (zh) * 2018-09-28 2019-02-22 华侨大学 一种彩色共焦三维形貌测量方法与系统

Similar Documents

Publication Publication Date Title
CN100592029C (zh) 测距设备
CN105842885B (zh) 一种液晶屏缺陷分层定位方法及装置
CN102576406B (zh) 小型自动化细胞计数器
KR20070085258A (ko) 다이렉트 이미지 기술을 사용하는 평판 매체의 광학적 검사
KR20200041982A (ko) 실시간 오토포커스 스캐닝
JP7448609B2 (ja) 光学検査装置、方法及びプログラム
BRPI1011689B1 (pt) método de autofocalização e dispositivo de autofocalização
CN101539530B (zh) 用于钻石的颜色分级的方法和装置
US9476707B2 (en) Method and measuring device for measuring the distance of a surface, thickness and optical properties of an object
US7034883B1 (en) Automatic focusing
CN104458579B (zh) 一种数字切片扫描仪及其减少扫描焦点数量的方法
KR20200041983A (ko) 실시간 오토포커스 포커싱 알고리즘
CN112098333B (zh) 高精度的成像系统、方法、图像采集装置及检测设备
CN101673043B (zh) 广角畸变测试系统及方法
JP2015055561A (ja) マイクロレンズアレイの欠陥検査方法及び欠陥検査装置
JP2015190989A (ja) パターン入りカバーガラス付きスライドガラス
KR101739096B1 (ko) 디스플레이 패널 외관 검사 장치 및 그 검사 방법
CN211018954U (zh) 一种分视场成像模组及终端设备
CN110986804A (zh) 一种物体表面高度的光学测量方法
CN110044928A (zh) 一种空间编码光场对曲面玻璃表面缺陷的检测装置
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
US20130208266A1 (en) Microrefractometer using defocusing imaging
CN210323556U (zh) 一种基于光谱共焦的成像检测装置
CN208736806U (zh) 红外滤波片缺陷检测装置
CN111795800A (zh) 一种视觉散斑对比度测量装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200410

RJ01 Rejection of invention patent application after publication