CN110967268A - 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法 - Google Patents

一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法 Download PDF

Info

Publication number
CN110967268A
CN110967268A CN201911338631.3A CN201911338631A CN110967268A CN 110967268 A CN110967268 A CN 110967268A CN 201911338631 A CN201911338631 A CN 201911338631A CN 110967268 A CN110967268 A CN 110967268A
Authority
CN
China
Prior art keywords
strain
stress
torsional
loading
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911338631.3A
Other languages
English (en)
Other versions
CN110967268B (zh
Inventor
尚德广
崔进
常东帅
王灵婉
李道航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201911338631.3A priority Critical patent/CN110967268B/zh
Publication of CN110967268A publication Critical patent/CN110967268A/zh
Application granted granted Critical
Publication of CN110967268B publication Critical patent/CN110967268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0021Torsional
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0268Dumb-bell specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法,这种方法将应变分为弹性应变和粘性应变,弹性应变采用胡克定律进行计算,粘性应变通过引入加载频率作为参数进行计算,将二者运用到复合材料循环本构关系计算方法中。利用T700/MTM28树脂基复合材料圆管结构件在多轴加载下的试验数据进行了验证,发现本方法能够较好地描述树脂基复合材料在多轴加载下的循环应力应变关系。因此,本方法能够提高航空航天、军工设备和其他复合材料产品部件疲劳强度设计的可靠性,具有重大工程意义。

Description

一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定 方法
技术领域
本发明属于多轴机械疲劳强度理论领域,尤其涉及一种多轴机械加载下复合材料应力-应变状态确定方法。
背景技术
在航天航空领域中,复合材料已经被大量用于制作机械结构。在工程服役中的复合材料经常承受复杂的机械载荷特别是动态交变载荷,这些载荷将会使结构不可避免地产生裂纹、过度变形和最终的疲劳失效。系统的研究材料的疲劳性能可以有效防止机械结构发生因疲劳产生的机械事故。为了研究复合材料的疲劳性能,有必要对材料在循环加载下的变形行为,并根据变形行为来建立精确的循环本构模型。循环本构模型也是疲劳寿命预测和有限元仿真的基础。
树脂基复合材料由纤维和树脂基体组成。纤维起着承载作用,基体起着纤维间的粘结作用。一般情况下,室温下的树脂在动态载荷也会表现出粘性,这是树脂基复合材料具有粘性特征的主要原因。粘性意味着材料的力学属性与加载速率有着密切的关系。
发明内容
本发明目的在于针对多轴加载下复合材料疲劳强度设计的需求,提出了一种多轴加载下循环应力-应变确定方法。与现有技术相比,本发明考虑了由于复合材料基体具有粘性特征而产生的加载频率对材料循环应力-应变关系的影响。
本发明的技术方案为一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法,本方法实现的步骤如下:
步骤(1):确定基本参数,读取加载载荷谱,计算名义应力历程;
步骤(2):根据轴向弹性模量和扭向剪切模量分别计算轴向弹性应变εx_纅和扭向弹性剪切应变εxy_纅
Figure BDA0002331650220000021
Figure BDA0002331650220000022
上式中,E表示弹性模量,G表示剪切模量,E和G可通过单轴试验循环应力应力幅和单轴循环应变幅获得:
Figure BDA0002331650220000023
Figure BDA0002331650220000024
上式中,Δσx表示轴向应力幅值,Δτxy表示剪切应力幅值。
步骤(3):计算t到t+Δt时刻的轴向应力增量Δσx和扭向剪切应力增量Δτxy
步骤(4):分别计算轴向应力σx和扭向剪切应力τxy在t时刻到t+Δt时刻的变化速率
Figure BDA0002331650220000025
Figure BDA0002331650220000026
步骤(5):分别计算拉伸和扭转载荷下的粘性应变εx_v和εxy_I:
Figure BDA0002331650220000027
Figure BDA0002331650220000028
其中,ξ1和ξ2分别表征材料在轴向和扭向的粘性程度,可分别由轴向单轴拉伸和单轴扭转循环应力应变试验获得:
Figure BDA0002331650220000031
Figure BDA0002331650220000032
步骤(6):计算轴向应变εx和扭向应变εxy:
Figure BDA0002331650220000033
Figure BDA0002331650220000034
与现有技术比较,本发明提出了一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法,这种方法考虑了加载频率影响,并将这种影响进行量化,物理含义明确,计算过程简单。通过对比多轴加载下的循环应力应变试验数据,本发明提出的方法具有很高的精确度,具有重大工程意义。
附图说明
图1加载路径。
图2试件尺寸。
图3本方法实施流程图。
图4多轴加载下本方法预测得到应力应变数据与试验数据对比图。3Hz加载频率和75%的静强度加载,(a)比例加载;(b)相位角:45°;(c)相位角:90°。
具体实施方式
结合附图说明本发明。
采用T700/MTM28树脂基复合材料的圆管结构件的多轴加载下试验数据为本发明作进一步说明,试件尺寸及形状如图1所示,施加到结构件上的加载路径如图2所示。
一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法,具体计算方法如下:
步骤(1):计算名义应力。加载形式分别为沿圆管纵向的拉伸和扭转双轴加载,这两种载荷在圆管截面上引起的名义应力分别为:
Figure BDA0002331650220000041
Figure BDA0002331650220000042
其中,D和d分别为圆管的外径和内径,Fn和M分别为轴向拉伸(压缩)力和扭矩;
步骤(2):根据轴向弹性模量和扭向剪切模量分别计算轴向弹性应变εx_纅和扭向弹性剪切应变εxy_纅
Figure BDA0002331650220000043
Figure BDA0002331650220000044
其中,弹性模量E和剪切模量G可通过单轴试验循环应力应力幅和单轴循环应变幅获得:
Figure BDA0002331650220000045
Figure BDA0002331650220000051
步骤(3):计算t到t+Δt时刻的轴向应力增量Δσx和扭向剪切应力增量Δτxy
步骤(4):分别计算轴向应力σx和扭向剪切应力τxy在t时刻到t+Δt时刻的变化速率
Figure BDA0002331650220000052
Figure BDA0002331650220000053
步骤(6):分别计算拉伸和扭转载荷下的粘性应变εx_v和εxy_v:
Figure BDA0002331650220000054
Figure BDA0002331650220000055
其中,ξ1和ξ2分别表征材料轴线和扭向的粘性程度,可分别由轴向单轴拉伸和单轴扭转循环应力应变试验获得:
Figure BDA0002331650220000056
Figure BDA0002331650220000057
步骤(7):计算轴向应变εx和扭向应变εxy:
Figure BDA0002331650220000058
Figure BDA0002331650220000059
通过重复步骤(2)到步骤(7),获得多轴加载下的循环应力应变关系。
为了验证本发明提出的多轴加载下树脂基复合材料的应力应变确定方法,将本方法得到的多轴加载的应变历程和对T700/MTM28树脂基复合材料多轴加载试验得到的应变历程进行了对比,对比结果如图3所示。可以发现,由本方法得到的数据和试验数据吻合较好,说明本方法精确的预测了多轴加载下树脂基的应力应变状态。因此,本方法能够提高航空航天、军工设备和其他复合材料结构疲劳强度设计的可靠性,具有重大工程意义。

Claims (2)

1.一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法,其特征在于,该方法的实现步骤如下,
步骤(1):确定基本参数,读取加载载荷谱,计算名义应力历程;
步骤(2):根据胡克定律分别计算轴向弹性应变εx_e和扭向弹性剪切应变εxy-e
Figure FDA0002331650210000011
Figure FDA0002331650210000012
步骤(3):计算t到t+Δt时刻的轴向应力增量Δσx和扭向剪切应力增量Δτxy
步骤(4):分别计算轴向应力σx和扭向剪切应力τxy在t时刻到t+Δt时刻的变化速率
Figure FDA0002331650210000013
Figure FDA0002331650210000014
步骤(5):分别计算拉伸和扭转载荷下的粘性应变εx_v和εxy_v:
Figure FDA0002331650210000015
Figure FDA0002331650210000016
其中,ξ1和ξ2分别表征材料在轴向和扭向的粘性程度,分别由轴向单轴拉伸和单轴扭转循环应力应变试验获得:
Figure FDA0002331650210000017
Figure FDA0002331650210000018
步骤(6):计算轴向应变εx和扭向应变εxy:
Figure FDA0002331650210000021
Figure FDA0002331650210000022
2.根据权利要求1所述的一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法,弹性模量E和剪切模量G通过单轴试验循环应力应力幅和单轴循环应变幅获得:
Figure FDA0002331650210000023
Figure FDA0002331650210000024
CN201911338631.3A 2019-12-23 2019-12-23 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法 Active CN110967268B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911338631.3A CN110967268B (zh) 2019-12-23 2019-12-23 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911338631.3A CN110967268B (zh) 2019-12-23 2019-12-23 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法

Publications (2)

Publication Number Publication Date
CN110967268A true CN110967268A (zh) 2020-04-07
CN110967268B CN110967268B (zh) 2022-07-12

Family

ID=70035905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911338631.3A Active CN110967268B (zh) 2019-12-23 2019-12-23 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法

Country Status (1)

Country Link
CN (1) CN110967268B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109189A (zh) * 2021-03-26 2021-07-13 北京工业大学 一种考虑频率的树脂基复合材料循环应力应变的确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769555A (zh) * 2017-01-19 2017-05-31 北京工业大学 一种拉扭载荷下的高温多轴应力应变关系建模方法
CN107389471A (zh) * 2017-07-13 2017-11-24 电子科技大学 裂纹失效模式判定方法及基于该方法的疲劳寿命预测方法
CN109100220A (zh) * 2018-07-10 2018-12-28 成都微力特斯科技有限公司 获取构元单轴应力-应变关系的测试方法
CN110274826A (zh) * 2019-07-17 2019-09-24 北京航空航天大学 一种基于单轴疲劳s-n曲线的硬质金属材料多轴高周疲劳失效预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769555A (zh) * 2017-01-19 2017-05-31 北京工业大学 一种拉扭载荷下的高温多轴应力应变关系建模方法
CN107389471A (zh) * 2017-07-13 2017-11-24 电子科技大学 裂纹失效模式判定方法及基于该方法的疲劳寿命预测方法
CN109100220A (zh) * 2018-07-10 2018-12-28 成都微力特斯科技有限公司 获取构元单轴应力-应变关系的测试方法
CN110274826A (zh) * 2019-07-17 2019-09-24 北京航空航天大学 一种基于单轴疲劳s-n曲线的硬质金属材料多轴高周疲劳失效预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEGUANG SHANG等: ""a simple approach to the description of multiaxial cyclic stress-strain relationship"", 《INATIONAL JOURNAL OF FATIGUE》 *
孙国芹等: ""光滑薄壁管件的多轴循环弹塑性有限元分析"", 《北京工业大学学报》 *
尚德广等: ""拉扭复合加载下循环应力应变关系的研究"", 《应用力学学报》 *
阎相祯等: ""多轴应力状态下的循环应力应变关系"", 《压力容器》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109189A (zh) * 2021-03-26 2021-07-13 北京工业大学 一种考虑频率的树脂基复合材料循环应力应变的确定方法
CN113109189B (zh) * 2021-03-26 2023-07-11 北京工业大学 一种考虑频率的树脂基复合材料循环应力应变的确定方法

Also Published As

Publication number Publication date
CN110967268B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN110274826B (zh) 基于单轴s-n的硬质金属多轴高周疲劳寿命预测方法
CN107506535B (zh) 一种基于临界应变损伤参量的多轴疲劳寿命预测方法
Luo et al. A survey on multiaxial fatigue damage parameters under non‐proportional loadings
CN110909425B (zh) 一种可消除载荷超程的螺栓法兰连接工艺优化设计方法
CN111090957B (zh) 一种高温结构危险点应力-应变计算方法
Mishnaevsky Jr et al. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites
Jeandrau et al. Fatigue behaviour of adhesive joints
Zhang et al. A fatigue damage meso-model for fiber-reinforced composites with stress ratio effect
CN110793853B (zh) 基于基本力学参量的拉扭稳态循环应力应变建模方法
CN110967268B (zh) 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法
Lin et al. Open‐hole tensile behaviour and failure prediction of carbon fibre reinforced aluminium laminates
CN114139308A (zh) 一种考虑基体非线性特征的树脂基复合材料损伤预测方法
Kawai Damage mechanics model for off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures
CN111551434A (zh) 一种碳纤维复合材料轴向压缩性能测试方法与本构模型
CN107748817B (zh) 一种考虑非比例附加强化的高温多轴本构关系确定方法
Gowtham et al. Dependency of dynamic interlaminar shear strength of composites on test technique used
Vinšová et al. Testing of mechanical properties of thick-walled carbon fiber composite for FEM simulations
Reis et al. Characterizing the cyclic behaviour of extruded AZ31 magnesium alloy
CN113109189B (zh) 一种考虑频率的树脂基复合材料循环应力应变的确定方法
Sridhar et al. Design and Analysis of composite drive shaft
CN113109190B (zh) 一种多轴热机械载荷下基于短裂纹的寿命预测方法
Vallejo et al. Predicting failure behavior of polymeric composites using a unified constitutive model
Chiocca et al. Fatigue assessment of a FSAE car rear upright by a closed form solution of the critical plane method
Kusmiran et al. Numerical analysis of Composite with Natural Fiber Reinforcement using Finite Element Method: Leaf Spring Composite Application
Pulngern et al. Experimental and computational investigations of creep responses of wood/PVC composite members

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant