CN113109189B - 一种考虑频率的树脂基复合材料循环应力应变的确定方法 - Google Patents

一种考虑频率的树脂基复合材料循环应力应变的确定方法 Download PDF

Info

Publication number
CN113109189B
CN113109189B CN202110322858.XA CN202110322858A CN113109189B CN 113109189 B CN113109189 B CN 113109189B CN 202110322858 A CN202110322858 A CN 202110322858A CN 113109189 B CN113109189 B CN 113109189B
Authority
CN
China
Prior art keywords
strain
stress
axial
viscous
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110322858.XA
Other languages
English (en)
Other versions
CN113109189A (zh
Inventor
尚德广
常东帅
蔡迪
李道航
侯庚
王海潮
尹翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110322858.XA priority Critical patent/CN113109189B/zh
Publication of CN113109189A publication Critical patent/CN113109189A/zh
Application granted granted Critical
Publication of CN113109189B publication Critical patent/CN113109189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种考虑频率的树脂基复合材料循环应力应变的确定方法。该方法根据树脂基复合材料具有的粘弹性特性,将总应变分为弹性应变和粘性应变。其中考虑了载荷频率对粘性应变的影响,通过研究应力率与粘性应变的关系,引入频率、应力率、应力和平均应力来描述粘性应变,很好的描述了树脂基复合材料在单轴和多轴循环加载下的应变行为。并且与不同加载条件下的试验数据对比,验证了该方法的准确性。由于树脂基复合材料具有优异的力学性能,目前已经在航天航空、汽车、建筑、医疗、体育等行业得到了广泛的应用。本发明提出的方法不仅简单,而且准确性非常高,对于复合材料产品的安全设计具有非常重要的意义。

Description

一种考虑频率的树脂基复合材料循环应力应变的确定方法
技术领域
本发明可以用于循环载荷下确定应力应变关系领域,是一种循环加载下考虑频率影响的树脂基复合材料应力应变关系的确定方法。
背景技术
复合材料是一种性能优异的新型材料,它是由两种或多种材料通过一定的工艺制备而成。这种新型材料具有了各组分材料的优点且避开了各自的缺点,产生了协同作用,达到了取长补短的效果,这使得复合材料在现代生活中得到了非常广泛的应用。
目前,树脂基复合材料已经在航空航天、医学、交通、机械、建筑和体育等行业得到了广泛的应用。并且随着制造技术的进步,树脂基复合材料的性能得到了极大的提升,制造成本得到了降低,其将会在未来发挥重要的作用。为了避免树脂基复合材料在实际使用过程中出现失效而引起安全事故,非常有必要研究其疲劳性能,建立准确的循环应力应变关系模型是研究疲劳性能的基础。
发明内容
本发明目的在于针对循环载荷下树脂基复合材料的应变行为,而提出了一种模型来准确地描述树脂基复合材料的应力应变关系。
本发明提出的一种考虑频率影响的树脂基复合材料循环应力应变关系的确定方法,其步骤如下:
步骤(1):试验所用试件均为管状件,根据其极限强度来设计试验加载应力水平,通过不同的加载路径试验来获取相应的试验数据;
步骤(2):轴向和扭向的总应变可以分为弹性应变和粘性应变,其中轴向和扭向弹性应变可以通过下式得到:
Figure GDA0003072221460000021
Figure GDA0003072221460000022
E和G分别为轴向弹性模量和扭向剪切模量,它们的值可以通过以下公式获得:
Figure GDA0003072221460000023
Figure GDA0003072221460000024
步骤(3):通过获取Δt时刻内轴向应力变化量Δσ和扭向剪应力变化量Δτ来计算该时刻的轴向应力率
Figure GDA0003072221460000025
和扭向剪应力率/>
Figure GDA0003072221460000026
步骤(4):研究频率和应力率与粘性应变之间的关系,通过用
Figure GDA0003072221460000027
和/>
Figure GDA0003072221460000028
来描述粘性应变εv和γv,并且根据应力率与粘性应变之间的规律,引入应力和平均应力来描述这种关系,公式如下:
Figure GDA0003072221460000029
Figure GDA00030722214600000210
其中,α和β是描述材料粘性的相关参数,其值大小与材料有关,下标1和2分别表示轴向和扭向;它们的值分别由单轴轴向和扭向循环加载试验拟合获得;t是载荷循环一周所用时间;
步骤(5):将轴向和扭向的弹性应变与粘性应变相加即可得到轴向总应变ε和扭向总应变γ,公式如下:
Figure GDA0003072221460000031
Figure GDA0003072221460000032
本发明提出的应力应变公式具有以下优点:计算十分简便,并且考虑了载荷频率的影响,引入应力率和频率来描述粘性应变,很好的预测了树脂基复合材料在循环载荷下的应变行为,经过试验验证表明,该方法计算得出的数据与单轴和多轴循环加载下采集得到的试验数据契合度非常高,说明该方法具有一定的实用性,且具有一定的工程实际意义。
附图说明
图1试验所用试件尺寸。
图2试验加载路径。
图3本发明方法的计算流程图。
图4本发明方法计算数据与试验数据的对比。
图5为本发明方法的整体实施流程图。
具体实施方式
结合附图说明本发明。
本发明通过单轴和多轴循环加载试验数据对该方法做了进一步说明,试验中所用试件由T700/MTM28材料单向缠绕而成薄壁管状。试件尺寸如图1所示,试验加载路径如图2所示。
一种考虑频率影响的树脂基复合材料循环应力应变关系的确定方法,具体计算过程如下:
步骤(1):根据试件极限强度来设计试验加载应力水平,通过不同的加载路径试验来获取相应的试验数据;
步骤(2):轴向和扭向的总应变可以分为弹性应变和粘性应变,其中轴向和扭向弹性应变可以通过下式得到:
Figure GDA0003072221460000041
Figure GDA0003072221460000042
E和G分别为轴向弹性模量和扭向剪切模量,它们的值可以通过以下公式获得:
Figure GDA0003072221460000043
Figure GDA0003072221460000044
步骤(3):通过获取Δt时刻内轴向应力变化量Δσ和扭向剪应力变化量Δτ来计算该时刻的轴向应力率
Figure GDA0003072221460000045
和扭向剪应力率/>
Figure GDA0003072221460000046
步骤(4):研究频率和应力率与粘性应变之间的关系,通过用
Figure GDA0003072221460000047
和/>
Figure GDA0003072221460000048
来描述粘性应变εv和γv,并且根据应力率与粘性应变之间的规律,引入应力和平均应力来描述这种关系,公式如下:
Figure GDA0003072221460000049
Figure GDA00030722214600000410
其中,α和β是描述材料粘性的相关参数,其值大小与材料有关,下标1和2分别表示轴向和扭向;它们的值分别由单轴轴向和扭向循环加载试验拟合获得;t是载荷循环一周所用时间;
步骤(5):将轴向和扭向的弹性应变与粘性应变相加即可得到轴向总应变ε和扭向总应变γ,公式如下:
Figure GDA0003072221460000051
Figure GDA0003072221460000052
通过与单轴和多轴试验数据的对比表明,该发明提出的应力应变计算方法十分准确,预测结果十分理想,对比结果如图4所示。本发明提出的方法考虑了载荷频率的影响,很好的描述了树脂基复合材料在单轴和多轴加载下的应变状态。因此在实际设计中具有一定的适用性,具有重要的工程意义。

Claims (2)

1.一种考虑频率的树脂基复合材料循环应力应变的确定方法,其特征在于:具体计算过程如下:
步骤(1):根据试件极限强度来设计试验加载应力水平,通过不同的加载路径试验来获取相应的试验数据;
步骤(2):轴向和扭向的总应变分为弹性应变和粘性应变,其中轴向和扭向弹性应变通过下式得到:
Figure QLYQS_1
Figure QLYQS_2
E和G分别为轴向弹性模量和扭向剪切模量,通过以下公式获得:
Figure QLYQS_3
Figure QLYQS_4
步骤(3):通过获取Δt时刻内轴向应力变化量Δσ和扭向剪应力变化量Δτ来计算该时刻的轴向应力率
Figure QLYQS_5
和扭向剪应力率/>
Figure QLYQS_6
步骤(4):研究频率和应力率与粘性应变之间的关系,通过用
Figure QLYQS_7
和/>
Figure QLYQS_8
来描述粘性应变εv和γv,并且根据应力率与粘性应变之间的规律,引入应力和平均应力来描述这种关系,公式如下:
Figure QLYQS_9
Figure QLYQS_10
其中,α和β是描述材料粘性的相关参数,其值大小与材料有关,下标1和2分别表示轴向和扭向;它们的值分别由单轴轴向和扭向循环加载试验拟合获得;t是载荷循环一周所用时间;
步骤(5):将轴向和扭向的弹性应变与粘性应变相加即得到轴向总应变ε和扭向总应变γ,公式如下:
Figure QLYQS_11
Figure QLYQS_12
2.根据权利要求1所述的一种考虑频率的树脂基复合材料循环应力应变的确定方法,其特征在于:步骤(4):研究频率和应力率与粘性应变之间的关系,通过用
Figure QLYQS_13
和/>
Figure QLYQS_14
来描述粘性应变εv和γv,并且根据应力率与粘性应变之间的规律,引入应力和平均应力来描述这种关系,用/>
Figure QLYQS_15
σ、σm和/>
Figure QLYQS_16
τ、τm来与轴向和扭向的粘性应变建立等效关系式。
CN202110322858.XA 2021-03-26 2021-03-26 一种考虑频率的树脂基复合材料循环应力应变的确定方法 Active CN113109189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110322858.XA CN113109189B (zh) 2021-03-26 2021-03-26 一种考虑频率的树脂基复合材料循环应力应变的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110322858.XA CN113109189B (zh) 2021-03-26 2021-03-26 一种考虑频率的树脂基复合材料循环应力应变的确定方法

Publications (2)

Publication Number Publication Date
CN113109189A CN113109189A (zh) 2021-07-13
CN113109189B true CN113109189B (zh) 2023-07-11

Family

ID=76712347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110322858.XA Active CN113109189B (zh) 2021-03-26 2021-03-26 一种考虑频率的树脂基复合材料循环应力应变的确定方法

Country Status (1)

Country Link
CN (1) CN113109189B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139668A (ja) * 2001-11-06 2003-05-14 Sumitomo Rubber Ind Ltd 粘弾性材料からなる製品の性能予測のためのシミュレーション方法
CN103822835A (zh) * 2014-03-18 2014-05-28 中国矿业大学 一种用于岩石三轴流变试验中粘弹塑特性参数分离的方法
CN110967268A (zh) * 2019-12-23 2020-04-07 北京工业大学 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139668A (ja) * 2001-11-06 2003-05-14 Sumitomo Rubber Ind Ltd 粘弾性材料からなる製品の性能予測のためのシミュレーション方法
CN103822835A (zh) * 2014-03-18 2014-05-28 中国矿业大学 一种用于岩石三轴流变试验中粘弹塑特性参数分离的方法
CN110967268A (zh) * 2019-12-23 2020-04-07 北京工业大学 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法

Also Published As

Publication number Publication date
CN113109189A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN107423540A (zh) 一种基于权平均最大剪切应变幅平面的多轴疲劳寿命预测方法
CN110274826B (zh) 基于单轴s-n的硬质金属多轴高周疲劳寿命预测方法
Gates et al. Notched fatigue behavior and stress analysis under multiaxial states of stress
Corona et al. An evaluation of the Johnson-Cook model to simulate puncture of 7075 aluminum plates.
CN107977516B (zh) 一种考虑多轴载荷非比例度的缺口件局部应力应变确定方法
Esmaeillou et al. Multi-scale experimental analysis of the tension-tension fatigue behavior of a short glass fiber reinforced polyamide composite
Hu et al. Deformation behavior of an epoxy resin subject to multiaxial loadings. Part I: Experimental investigations
Karagiozova et al. Impact of aircraft rubber tyre fragments on aluminium alloy plates: II—Numerical simulation using LS-DYNA
CN113109189B (zh) 一种考虑频率的树脂基复合材料循环应力应变的确定方法
CN110793853B (zh) 基于基本力学参量的拉扭稳态循环应力应变建模方法
CN110967268B (zh) 一种考虑加载频率效应的粘弹性多轴循环应力应变关系确定方法
CN114139308A (zh) 一种考虑基体非线性特征的树脂基复合材料损伤预测方法
Prantl et al. Identification of ductile damage parameters
Gates et al. Fatigue life of 2024-T3 aluminum under variable amplitude multiaxial loadings: Experimental results and predictions
Bendouba et al. Fatigue life prediction of composite under two block loading
CN107748817B (zh) 一种考虑非比例附加强化的高温多轴本构关系确定方法
Reis et al. Characterizing the cyclic behaviour of extruded AZ31 magnesium alloy
CN112067437B (zh) 一种各向同性材料拉压不对称失效准则的建立方法
CN113049371B (zh) 一种金属材料破坏强度测试方法
Chandra et al. Fatigue growth of a surface crack in a V-shaped notched round bar under cyclic tension
Kusmiran et al. Numerical analysis of Composite with Natural Fiber Reinforcement using Finite Element Method: Leaf Spring Composite Application
Hossain et al. Modelling of fatigue crack growth with abaqus
Razavi et al. Assessment of mixed mode fatigue crack growth under biaxial loading using an iterative technique
Fojtik et al. Application of selected multi-axial fatigue criteria on the results of non-proportional fatigue experiments
Amundsen Behaviour and modelling of fibre-reinforced polymers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant