CN110951455B - 一种基于石墨烯的轻质隔热吸波材料的制备方法 - Google Patents

一种基于石墨烯的轻质隔热吸波材料的制备方法 Download PDF

Info

Publication number
CN110951455B
CN110951455B CN201911180978.XA CN201911180978A CN110951455B CN 110951455 B CN110951455 B CN 110951455B CN 201911180978 A CN201911180978 A CN 201911180978A CN 110951455 B CN110951455 B CN 110951455B
Authority
CN
China
Prior art keywords
graphene oxide
preparation
graphene
heat
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911180978.XA
Other languages
English (en)
Other versions
CN110951455A (zh
Inventor
贾琨
刘伟
赵维富
王东红
马晨
王蓬
王权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 33 Research Institute
Original Assignee
CETC 33 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 33 Research Institute filed Critical CETC 33 Research Institute
Priority to CN201911180978.XA priority Critical patent/CN110951455B/zh
Publication of CN110951455A publication Critical patent/CN110951455A/zh
Application granted granted Critical
Publication of CN110951455B publication Critical patent/CN110951455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本发明涉及建筑用新型功能材料技术领域,更具体而言,涉及一种基于石墨烯的轻质隔热吸波材料的制备方法。将磁性纳米颗粒与石墨烯进行复合,通过预处理、氧化石墨烯表面改性、氧化石墨烯水溶液制备、复合气凝胶合成等工艺流程,制备出一种轻质复合隔热/吸波材料,该粉体制备工艺简单、生产成本低、便于工业化生产,制备出的隔热/吸波材料,在2GHz~18GHz频段范围内具有优异的电磁波吸收性能,同时隔热效果可以媲美目前建筑领域通用的高分子泡沫,实现单一轻质材料既可高效地保温隔热,又具有良好的电磁波吸收功能,为建筑物的热管理及电磁环境净化提供材料技术支持。

Description

一种基于石墨烯的轻质隔热吸波材料的制备方法
技术领域
本发明涉及建筑用新型功能材料技术领域,更具体而言,涉及一种基于石墨烯的轻质隔热吸波材料的制备方法。
背景技术
气凝胶作为一种纳米多孔结构的固体新材料,具有轻质、隔热、保温、防火等优异特性,密度可低至0.002g·cm-3,室温下真空热导率可达到0.02W·m-1·K-1。气凝胶在隔热、保温、隔音、降噪等领域有非常普遍的应用,在节能领域有巨大的市场,大到航天材料,宇航服、消防隔热服;小到汽车、保温杯都有着广泛的应用需求。特别是随着生产水平的提高,气凝胶绝热材料已经逐渐在建筑领域得到应用,比如在节能门窗、管道保温、墙体保温、保温涂料、混凝土添加剂等方面,很大程度上为建筑物提供持续稳定的绝热保护,减少空气对流,达到聚能降耗的作用,实现常规建筑物的冬暖夏凉。
然而,随着人们生活水平的提高,对于建筑舒适性的要求已经不仅仅局限于温度舒适,更加关注建筑物对人身体健康的影响。在信息化程度不断提高的今天,电磁波辐射在给人类创造财富的同时,也给设备、系统及生态环境带来了越来越严重的危害。日益恶化的电磁环境不仅对通讯、信息安全和各种电子系统造成危害,而且会对人类赖以生存的空间环境带来极大的危害,对人体健康存在安全隐患。为了净化电磁辐射,改善建筑内部电磁环境,消除电磁污染,有必要对建筑物进行电磁防护。
目前关于隔热/电磁防护材料的开发,大多是分别选择隔热材料(有机高分子泡沫、气凝胶、金属氧化物陶瓷)和吸波材料(磁性涂层、碳纤维板、惰性超材料、树脂吸波板)通过高温焊接、压制固化等手段进行多层复合,实现整体材料具有较好的隔热性能和电磁波吸收特性。相关报道表明采用该方法制备的材料兼具隔热、吸波功能,已在低空导弹、超声速飞行器等场景得到应用。但是这一方法仅仅是将目前已经成熟的两种单一功能材料进行简单的堆垛复合,而非通过单一材料实现双功能叠加,只是通过调整两种基材的厚度比例进而平衡材料隔热、吸波两种性能指标,无法实现材料隔热性能和吸波性能的同步提升,而且目前隔热吸波材料大多数用于高精尖装备,制备成本高、加工工艺复杂,生产效率低,难以广泛应用于普通建筑物的保温隔热和电磁净化。
中国专利CN107555940A“一种宽频吸波的防隔热隐身复合材料及其制备方法”公开了以气凝胶、电阻型高温超材料为基材,通过溶胶凝胶法、陶瓷纤维缝合、高温热加工等工艺流程,得到用于高速飞行器的具有宽频雷达波吸收功能的防隔热隐身复合材料。专利CN107745557A“一种防隔热/吸波一体化结构材料及其制备方法”公开了一种以高硅氧玻璃钢、隔热酚醛树脂为基材的隔热吸波材料,通过调整两种基材的成分、厚度,采用高温固化预混料的方法,制备出适用于高速飞行器的防隔热/吸波材料。综上所述,目前已有的隔热/吸波材料主要应用于航空设备领域,尚未检索到应用于普通住宅建筑物的隔热/吸波材料。
目前建筑物为解决保温、隔热问题,需要在墙体结构中增加隔热层,如果同时要兼顾电磁防护,还需要额外使用电磁防护材料,多层材料的使用必然增加建筑物的公摊比例,减小了使用面积。目前,市场上缺乏多功能复合材料,可以在仅增加单一功能结构的基础上,实现建筑物保温和降低电磁辐射双目标。
发明内容
为了克服现有技术中所存在的不足,本发明提供一种基于石墨烯的轻质隔热吸波材料的制备方法,解决现有建筑用保温材料、电磁防护材料的体积大、功能单一、使用寿命短、性能下降严重、污染室内空气的问题,以及吸波材料运用于建筑物时无法同时发挥热管理作用的缺点,制备出的材料可兼具隔热保温作用和室内空间电磁波净化功能。
为了解决上述技术问题,本发明所采用的技术方案为:
一种基于石墨烯的轻质隔热吸波材料的制备方法,包括以下步骤:
S1、原材料预处理:将氧化石墨烯、羰基化纳米铁颗粒分别进行预处理,预处理方法具体为:通过加热干燥处理1~2小时,依次经丙酮、乙醇清洗后再进行干燥处理;预处理目的主要是除去在制备过程中残留在粉体表面的活性剂、吸附水,以降低杂质在反应后期对材料隔热性能的不利影响;
S2、氧化石墨烯表面改性:将步骤S1中经预处理后的氧化石墨烯粉末均匀分散在N-甲基吡咯烷酮中,得到棕黑色的氧化石墨烯溶液;将氧化石墨烯溶液在80℃氮气环境持续搅拌下加入溶解氨基铁的N-甲基吡咯烷酮溶液,将获得的反应混合物转移到水热釜中在80℃的干燥箱中反应16~32小时,对混合液进行抽滤,抽滤过程中使用乙醇反复冲洗,烘干得到改性氧化石墨烯粉末;
S3、氧化石墨烯水溶液的制备:用蒸馏水分散步骤S2得到的改性氧化石墨烯粉末,稀释到浓度为0.01g/mL~0.05g/mL后,离心除去未剥离的石墨及其他杂质,通过机械搅拌1~2小时混合均匀,最终形成所需的改性氧化石墨烯水溶液;
S4、石墨烯/羰基化纳米铁复合气凝胶的制备
(1)将步骤S3中得到的改性氧化石墨烯水溶液室温水浴超声24小时,将S1中经预处理的羰基化纳米铁颗粒分多次,每隔两小时加入到改性氧化石墨烯水溶液中,在最后两小时的时间点加入nafion,形成粘稠的悬浮液;其中nafion为一种常用的性能优异的全氟磺酸离子聚合物试剂;
(2)将悬浊液注入到液氮中冷冻15~20分钟定型,制得凝胶;
(3)将凝胶置于CO2超临界干燥釜内进行干燥即可得到氧化石墨烯/羰基化纳米铁复合气凝胶;温度和真空度分别设定为-85℃和0.06MPa;
(4)将氧化石墨烯/羰基化纳米铁复合气凝胶置于管式炉中,在氩气氛围保护下于600℃~700℃热处理2~4h,实现纳米铁颗粒与碳原子层的化学键搭接,得到基于石墨烯的轻质隔热吸波材料。
进一步地,所述S1中羰基化纳米铁颗粒粒径为50-200nm。
进一步地,所述S1中加热温度为120℃~160℃。
进一步地,所述S2中氧化石墨烯浓度≤0.01g/mL;氨基铁浓度≤0.01g/mL。
进一步地,所述S4中羰基化纳米铁颗粒总质量与改性氧化石墨烯质量比为5~10:1。
进一步地,所述S4中nafion与改性氧化石墨烯的质量比为1:5~10。
进一步地,所述S4中液氮温度为-196℃。
进一步地,所述S4中氩气气体的流速100~300cm3/min。
进一步地,所述S4中管式炉的升温速率和降温速率为2~5℃/min。
进一步地,所述S4中管式炉在加热前应进行抽真空处理。
与现有技术相比,本发明所具有的有益效果为:
本发明提供了一种基于石墨烯的轻质隔热吸波材料的制备方法,首先采用石墨烯气凝胶作为材料支撑骨架,在保证整体材料极低重量的基础上,满足实际建筑物保温层的抗变形能力和力学承载要求;材料内部采用羰基化纳米磁性颗粒作为吸波成分,结合气凝胶特殊的疏松多孔结构,实现了材料在宽频范围内对电磁波的高效吸收;通过化学键搭接的方式,避免了吸波成分的脱落失效。该材料成功填补了建筑领域中兼具隔热保温、电磁净化的多功能材料空白,通过单一功能材料实现双功能共同提升,整体材料无毒无味,避免了对室内空气的污染;化学性质稳定,保温性能和吸波性能长期稳定可靠;毫米级别的厚度即可以实现高效隔热保温和强电磁波吸收,降低墙体厚度,有望全面替代现有建筑隔热泡沫、电磁波净化材料。
相比于目前轻质高分子泡沫形式的建筑隔热材料,本申请提供的基于石墨烯的轻质隔热吸波材料突破现有隔热材料的性能局限性,首先以石墨烯为组装单元的三维气凝胶作为材料整体框架,具有密度小、高孔隙率、低热导率等特点,保证了整体材料较低的热传导性能;石墨烯气凝胶还作为基底与纳米磁性金属颗粒结合,实现了材料在宽频范围内对电磁波的高效吸收,在2GHz~18GHz频段范围内具有优异的电磁波吸收性能,同时隔热效果可以媲美目前建筑领域通用的高分子泡沫,实现单一轻质材料既可高效地保温隔热,又具有良好的电磁波吸收功能。最终产品无毒无味,避免了对建筑物内部空气的污染;有望从根本上解决目前材料存在的隔热性能下降、污染室内空气等问题,为今后建筑工程领域提供更高质量的隔热/吸波材料打下基础。
附图说明
图1为本发明实施例2制备出的轻质隔热吸波材料低倍扫描电镜SEM图;
图2为本发明实施例2制备出的轻质隔热吸波材料高倍扫描电镜SEM图;
图3为本发明实施例2制备的轻质隔热吸波材料电磁波反射损耗曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于石墨烯的轻质隔热吸波材料的制备方法,包括以下步骤:
S1、原材料预处理:将氧化石墨烯、羰基化纳米铁颗粒分别进行预处理,预处理方法具体为:在120℃-160℃加热干燥处理1~2小时,依次经丙酮、乙醇清洗后再进行干燥处理;其中氧化石墨烯为普通商业级产品,所述羰基化纳米铁颗粒为分析纯,粒径为50-200nm。
S2、氧化石墨烯表面改性:将步骤S1中经预处理后的氧化石墨烯粉末均匀分散在N-甲基吡咯烷酮中,得到棕黑色的氧化石墨烯溶液,氧化石墨烯浓度≤0.01g/mL;将氧化石墨烯溶液在80℃氮气环境持续搅拌下加入溶解氨基铁的N-甲基吡咯烷酮溶液,氨基铁浓度≤0.01g/mL,将获得的反应混合物转移到水热釜中在80℃的干燥箱中反应16~32h,对混合液进行抽滤,抽滤过程中使用乙醇反复冲洗,烘干得到改性氧化石墨烯粉末;
S3、氧化石墨烯水溶液的制备:用蒸馏水分散步骤S2得到的改性氧化石墨烯粉末,稀释到浓度为0.01g/mL~0.05g/mL后,离心除去未剥离的石墨及其他杂质,通过机械搅拌1~2小时混合均匀,最终形成所需的改性氧化石墨烯水溶液;
S4、石墨烯/羰基化纳米铁复合气凝胶的制备
(1)将步骤S3中得到的改性氧化石墨烯水溶液室温水浴超声24小时,将S1中经预处理的羰基化纳米铁颗粒分多次,每隔两小时加入到改性氧化石墨烯水溶液中,在第22小时加入nafion,形成粘稠的悬浮液;其中羰基纳米铁总质量与改性氧化石墨烯质量比为5~10:1;nafion与改性氧化石墨烯质量比为1:5~10;
(2)将悬浊液注入到-196℃液氮中冷冻15~20分钟定型,制得凝胶;
(3)将凝胶置于CO2超临界干燥釜内进行干燥即可得到氧化石墨烯/羰基化纳米铁复合气凝胶;温度和真空度分别设定为-85℃和0.06MPa;
(4)将氧化石墨烯/羰基化纳米铁复合气凝胶置于管式炉中,在氩气氛围保护下于600℃~700℃热处理2~4h,得到基于石墨烯的轻质隔热吸波材料;其中气体的流速100~300cm3/min;管式炉的升温速率和降温速率为2~5℃/min;管式炉在加热前应进行抽真空处理。
实施例一
1.原材料预处理:取羰基化纳米铁粉5g、氧化石墨烯1g,分别置于真空烘箱中以120℃保温1小时去除粉末表面催化剂及残留有机物杂质,再依次用丙酮、乙醇超声清洗原材料粉末,室温环境下过滤干燥处理。
2.将预处理后的氧化石墨烯粉末均匀分散在在100mL N-甲基吡咯烷酮中,得到棕黑色溶液。之后将氧化石墨烯溶液放入三口烧瓶,在80℃氮气环境持续搅拌下加入溶解氨基铁的N-甲基吡咯烷酮溶液(氨基铁浓度0.01g/mL)使反应进行,然后将获得的反应混合物转移到水热釜中在80℃的干燥箱中反应16小时,对混合液进行抽滤,抽滤过程中使用乙醇反复冲洗,烘干得到的黑色粉末即为改性氧化石墨烯。
3.用蒸馏水分散步骤2得到的改性氧化石墨烯,配得浓度为0.01g/mL后,离心除去未剥离的石墨及其他杂质,通过机械搅拌1小时混合均匀,最终形成所需的改性氧化石墨烯水溶液。
4.将改性氧化石墨烯水溶液室温水浴超声24小时,将羰基化纳米铁颗粒(质量比铁:改性氧化石墨烯=5:1)分3次,每隔两小时加入到溶液中,在水浴超声还有两小时的时间节点加入nafion试剂(质量比nafion:改性氧化石墨烯=1:5),形成粘稠的悬浮液。
5.将混合液注入到-196℃液氮中,冷冻20分钟凝固定型。
6.将所得到的湿凝胶置于CO2超临界干燥釜内进行干燥即可得到氧化石墨烯/羰基化纳米铁复合气凝胶。温度和真空度分别设定为-85℃和0.06 MPa。
7.经CO2超临界干燥得到的复合气凝胶,置于管式炉中,在氩气氛围保护下(气体的流速300cm3/min)于700℃热处理3h,实现纳米铁颗粒与碳原子层的化学键搭接。其中,管式炉的升温速率和降温速率为5℃/min,并且在管式炉加热前应进行抽真空处理。热处理之后便可得到羰基化纳米铁/石墨烯复合气凝胶,完成轻质隔热吸波材料的制备。
将本实施例中制备的轻质隔热吸波材料制成厚度为18cm×18cm×0.20cm的标准样片进行电磁波吸收性能测试,其反射损耗<-5dB的宽带宽度为8GHz(6.5GHz~14.5GHz),热导率0.073W·m-1·K-1
实施例二
1.原材料预处理。取羰基化纳米铁粉10g、氧化石墨烯1g,分别置于真空烘箱中以160℃保温1.5小时去除粉末表面催化剂及残留有机物杂质,再依次用丙酮、乙醇超声清洗原材料粉末,室温环境下过滤干燥处理。
2. 将预处理后的氧化石墨烯粉末均匀分散在在100mL N-甲基吡咯烷酮中,得到棕黑色溶液。之后将氧化石墨烯溶液放入三口烧瓶,在80℃氮气环境持续搅拌下加入溶解氨基铁的N-甲基吡咯烷酮溶液(氨基铁浓度0.01g/mL)使反应进行,然后将获得的反应混合物转移到水热釜中在80℃的干燥箱中反应24小时,对混合液进行抽滤,抽滤过程中使用乙醇反复冲洗,烘干得到的黑色粉末即为改性氧化石墨烯。
3.用蒸馏水分散步骤2得到的改性氧化石墨烯,配得浓度为0.03g/mL后,离心除去未剥离的石墨及其他杂质,通过机械搅拌2小时混合均匀,最终形成所需的改性氧化石墨烯水溶液。
4将改性氧化石墨烯水溶液室温水浴超声24小时,将羰基化纳米铁颗粒(质量比铁:改性氧化石墨烯=10:1)分5次,每隔两小时加入到溶液中,在水浴超声还有两小时的时间节点加入nafion试剂(质量比 nafion:改性氧化石墨烯=1:7),形成粘稠的悬浮液。
5.将混合液注入到-196℃液氮中,冷冻10分钟凝固定型。
6.将所得到的湿凝胶置于CO2超临界干燥釜内进行干燥即可得到羰基化纳米铁/氧化石墨烯复合气凝胶。温度和真空度分别设定为-85℃和0.06 MPa。
7.经CO2超临界干燥得到的复合气凝胶,置于管式炉中,在氩气氛围保护下(气体的流速100cm3/min)于600℃热处理2h,实现纳米铁颗粒与碳原子层的化学键搭接。其中,管式炉的升温速率和降温速率为2℃/min,并且在管式炉加热前应进行抽真空处理。热处理之后便可得到石墨烯/羰基化纳米铁复合气凝胶,完成轻质隔热吸波材料的制备。
将本实施例中制备的轻质隔热吸波材料制成厚度为18cm×18cm×0.20cm的标准样片进行电磁波吸收性能测试,其反射损耗<-5dB的宽带宽度为13GHz(5.0GHz -18.0GHz),热导率0.077W·m-1·K-1,材料的扫描电镜SEM图片如图1、2所示,反射损耗曲线如图3所示。
实施例三
1.原材料预处理。取羰基化纳米铁粉7g、氧化石墨烯1g,分别置于真空烘箱中以140℃保温2小时去除粉末表面催化剂及残留有机物杂质,再依次用丙酮、乙醇超声清洗原材料粉末,室温环境下过滤干燥处理。
2. 将预处理后的氧化石墨烯粉末均匀分散在在100mL N-甲基吡咯烷酮中,得到棕黑色溶液。之后将氧化石墨烯溶液放入三口烧瓶,在80℃氮气环境中持续搅拌下加入溶解氨基铁的N-甲基吡咯烷酮溶液(氨基铁浓度0.01g/mL)使反应进行,然后将获得的反应混合物转移到水热釜中在80℃的干燥箱中反应32小时,对混合液进行抽滤,抽滤过程中使用乙醇反复冲洗,烘干得到的黑色粉末即为改性氧化石墨烯。
3.用蒸馏水分散步骤2得到的改性氧化石墨烯,配得浓度为0.05g/mL后,离心除去未剥离的石墨及其他杂质,通过机械搅拌1.5小时混合均匀,最终形成所需的改性氧化石墨烯水溶液。
4将改性氧化石墨烯水溶液室温水浴超声24小时,将羰基化纳米铁颗粒(质量比铁:改性氧化石墨烯=7:1)分7次,每隔两小时加入到溶液中,在水浴超声还有两小时的时间节点加入nafion试剂(质量比 nafion:改性氧化石墨烯=1:10),形成粘稠的悬浮液。
5.将混合液注入到-196℃液氮中,冷冻15分钟凝固定型。
6.将所得到的湿凝胶置于CO2超临界干燥釜内进行干燥即可得到羰基化纳米铁/氧化石墨烯复合气凝胶。温度和真空度分别设定为-85℃和0.06 MPa。
7.经CO2超临界干燥得到的复合气凝胶,置于管式炉中,在氩气氛围保护下(气体的流速200cm3/min)于650℃热处理4h,实现纳米铁颗粒与碳原子层的化学键搭接。其中,管式炉的升温速率和降温速率为4℃/min,并且在管式炉加热前应进行抽真空处理。热处理之后便可得到羰基化纳米铁/石墨烯复合气凝胶,完成轻质隔热吸波材料的制备。
将本实施例中制备的轻质隔热吸波材料制成厚度为18cm×18cm×0.20cm的标准样片进行电磁波吸收测试,其反射损耗<-5dB的宽带宽度为10GHz(7.0 GHz-17.0 GHz),热导率0.062W·m-1·K-1
上面仅对本发明的较佳实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化,各种变化均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于,包括以下步骤:
S1、原材料预处理:将氧化石墨烯、羰基化纳米铁颗粒分别进行预处理,预处理方法具体为:通过加热干燥处理1~2小时,依次经丙酮、乙醇清洗后再进行干燥处理;
S2、氧化石墨烯表面改性:将步骤S1中经预处理后的氧化石墨烯粉末均匀分散在N-甲基吡咯烷酮中,得到氧化石墨烯溶液;将氧化石墨烯溶液在80℃氮气环境持续搅拌下加入溶解氨基铁的N-甲基吡咯烷酮溶液,将获得的反应混合物转移到水热釜中在80℃的干燥箱中反应16~32h,对混合液进行抽滤,抽滤过程中使用乙醇反复冲洗,烘干得到改性氧化石墨烯粉末;
S3、氧化石墨烯水溶液的制备:用蒸馏水分散步骤S2得到的改性氧化石墨烯粉末,稀释到浓度为0.01g/mL~0.05g/mL后,离心除去未剥离的石墨及其他杂质,通过机械搅拌1~2小时混合均匀,最终形成所需的改性氧化石墨烯水溶液;
S4、石墨烯/羰基化纳米铁复合气凝胶的制备
(1)将步骤S3中得到的改性氧化石墨烯水溶液室温水浴超声24小时,将S1中经预处理的羰基化纳米铁颗粒分多次,每隔两小时加入到改性氧化石墨烯水溶液中,在最后两小时的时间点加入nafion,形成粘稠的悬浮液,所述羰基化纳米铁颗粒总质量与改性氧化石墨烯质量比为5~10:1;
(2)将悬浊液注入到液氮中冷冻15~20分钟定型,制得凝胶;
(3)将凝胶置于CO2超临界干燥釜内进行干燥即可得到氧化石墨烯/羰基化纳米铁复合气凝胶,温度和真空度分别为-85℃和0.06MPa;
(4)将氧化石墨烯/羰基化纳米铁复合气凝胶置于管式炉中,在氩气氛围保护下于600℃~700℃热处理2~4h,得到基于石墨烯的轻质隔热吸波材料。
2.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S1中羰基化纳米铁颗粒粒径为50-200nm。
3.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:加热温度为120℃~160℃。
4.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S2中氧化石墨烯浓度≤0.01g/mL;氨基铁浓度≤0.01g/mL。
5.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S4中nafion与改性氧化石墨烯的质量比为1:5~10。
6.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S4中液氮温度为-196℃。
7.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S4中氩气气体的流速100~300cm3/min。
8.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S4中管式炉的升温速率和降温速率为2~5℃/min。
9.根据权利要求1所述的一种基于石墨烯的轻质隔热吸波材料的制备方法,其特征在于:所述S4中管式炉在加热前应进行抽真空处理。
CN201911180978.XA 2019-11-27 2019-11-27 一种基于石墨烯的轻质隔热吸波材料的制备方法 Active CN110951455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911180978.XA CN110951455B (zh) 2019-11-27 2019-11-27 一种基于石墨烯的轻质隔热吸波材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911180978.XA CN110951455B (zh) 2019-11-27 2019-11-27 一种基于石墨烯的轻质隔热吸波材料的制备方法

Publications (2)

Publication Number Publication Date
CN110951455A CN110951455A (zh) 2020-04-03
CN110951455B true CN110951455B (zh) 2022-07-12

Family

ID=69977044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911180978.XA Active CN110951455B (zh) 2019-11-27 2019-11-27 一种基于石墨烯的轻质隔热吸波材料的制备方法

Country Status (1)

Country Link
CN (1) CN110951455B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534279B (zh) * 2020-05-13 2022-11-29 中国电子科技集团公司第三十三研究所 一种v波段吸波粉体的制备方法
CN114534701A (zh) * 2022-02-17 2022-05-27 成都飞机工业(集团)有限责任公司 一种浸渍液、浸渍液制备方法及蜂窝材料
CN114525114A (zh) * 2022-02-28 2022-05-24 中国电子科技集团公司第三十三研究所 一种基于石墨烯纤维的导热吸波粉体材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479433A (zh) * 2016-09-08 2017-03-08 东莞同济大学研究院 一种石墨烯复合吸波材料及其制备方法
CN107399735A (zh) * 2017-08-25 2017-11-28 南京航空航天大学 一种石墨烯复合气凝胶吸波材料的制备方法及其应用
CN107585758A (zh) * 2017-09-07 2018-01-16 长沙理工大学 一种石墨烯气凝胶及其制备方法和应用
CN108439376A (zh) * 2018-03-21 2018-08-24 大连理工大学 一种负载磁性纳米粒子的石墨烯气凝胶复合材料的制备方法
CN108929653A (zh) * 2018-06-28 2018-12-04 北京科技大学 一种三维石墨烯基复合吸波材料及其制备方法
CN110395716A (zh) * 2019-07-26 2019-11-01 中国电子科技集团公司第三十三研究所 一种基于石墨烯的电磁防护材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050605B2 (en) * 2011-11-17 2015-06-09 Lamar University, A Component Of The Texas State University System, An Agency Of The State Of Texas Graphene nanocomposites
KR102049574B1 (ko) * 2015-10-30 2019-11-27 주식회사 엘지화학 자성 산화철-그래핀 복합체의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479433A (zh) * 2016-09-08 2017-03-08 东莞同济大学研究院 一种石墨烯复合吸波材料及其制备方法
CN107399735A (zh) * 2017-08-25 2017-11-28 南京航空航天大学 一种石墨烯复合气凝胶吸波材料的制备方法及其应用
CN107585758A (zh) * 2017-09-07 2018-01-16 长沙理工大学 一种石墨烯气凝胶及其制备方法和应用
CN108439376A (zh) * 2018-03-21 2018-08-24 大连理工大学 一种负载磁性纳米粒子的石墨烯气凝胶复合材料的制备方法
CN108929653A (zh) * 2018-06-28 2018-12-04 北京科技大学 一种三维石墨烯基复合吸波材料及其制备方法
CN110395716A (zh) * 2019-07-26 2019-11-01 中国电子科技集团公司第三十三研究所 一种基于石墨烯的电磁防护材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Lightweight non-woven fabric graphene aerogel composite matrices for assembling carbonyl iron as flexible microwave absorbing textiles";Song Bi等;《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》;20190823;第30卷(第18期);全文 *

Also Published As

Publication number Publication date
CN110951455A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN110951455B (zh) 一种基于石墨烯的轻质隔热吸波材料的制备方法
CN107417961B (zh) 一种各向异性聚酰亚胺气凝胶材料及其制备方法
CN101760067A (zh) 除甲醛、消除电磁辐射及隔热保温的环保腻子
CN111548529B (zh) 一种多级结构的聚酰亚胺基石墨烯复合泡沫材料及其制备
CN108249943B (zh) 一种耐水气凝胶材料的制备方法
CN111252789B (zh) 一种耐高温氧化铝纳米晶气凝胶材料及其制备方法
CN106340726B (zh) 磁性导电纳米金属/碳气凝胶吸波材料及其制备方法
CN111848140B (zh) 一种氧化铝纳米线气凝胶隔热材料及其制备方法
CN111410194B (zh) 一种由zif-67/三聚氰胺制得的复合电磁吸波泡沫及其制备方法
CN106883818B (zh) 核壳型碳球/碳纳米管复合吸波材料及制备方法
CN114832741B (zh) 导热吸波复合气凝胶的制备方法及导热吸波复合气凝胶
Guo et al. Biomass-based electromagnetic wave absorption materials with unique structures: a critical review
CN114014631A (zh) 一种闭孔珍珠岩复合保温材料及其制备方法
CN108615519B (zh) 一种石墨烯多孔隔声降噪材料
Sun et al. A strategy to fabricate hierarchical microporous architecture of polyimide nanofibrous aerogels with efficient electromagnetic wave absorption and thermal insulation
CN106116436A (zh) 磷酸铬铝结合空心玻璃微珠制备轻质高强保温材料的方法
CN112142032B (zh) 一种含三维非晶碳框架多孔木炭及其制备方法和应用
CN108806662B (zh) 一种隔声降噪用石墨烯多孔材料的制备方法
Yang et al. Multifunctional Carbon Fiber Reinforced C/SiOC Aerogel Composites for Efficient Electromagnetic Wave Absorption, Thermal Insulation, and Flame Retardancy
Zhao et al. Fabrication, thermal and sound absorption properties of porous polyimide reinforcing by SiO2 nanoparticles
CN113698763B (zh) 一种zif-8碳纳米管聚酰亚胺多孔薄膜及其制备方法
CN112694313A (zh) 高强度玻璃纤维复合材料
CN117208951A (zh) 一种透波型抗高温辐射隔热材料的制备方法
CN219055609U (zh) 用于无人机的隐身装置
CN107324841A (zh) 一种建筑保温材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant