CN110935440B - 一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用 - Google Patents

一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用 Download PDF

Info

Publication number
CN110935440B
CN110935440B CN201911264553.7A CN201911264553A CN110935440B CN 110935440 B CN110935440 B CN 110935440B CN 201911264553 A CN201911264553 A CN 201911264553A CN 110935440 B CN110935440 B CN 110935440B
Authority
CN
China
Prior art keywords
preparation
self
tungsten trioxide
voltage
taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911264553.7A
Other languages
English (en)
Other versions
CN110935440A (zh
Inventor
杨丽霞
金羽燕
罗胜联
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201911264553.7A priority Critical patent/CN110935440B/zh
Publication of CN110935440A publication Critical patent/CN110935440A/zh
Application granted granted Critical
Publication of CN110935440B publication Critical patent/CN110935440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用,所述方法包括以下步骤,步骤一、材料制备:将钨网进行剪裁,分别用丙酮,乙醇,去离子水超声洗涤15min;在50mL的烧杯中加入50mL的去离子水和2.66mL的浓硫酸,搅拌,25V电压下,阳极氧化4h,钨网由黑色变为淡黄色;马弗炉500℃,升温速率为2℃/min,煅烧4h,自然冷却到室温得WO3;步骤二、第一次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得1R‑WO3;步骤三、第二次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得2R‑WO3;本发明工艺简单,绿色环保,操作快捷。

Description

一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用
技术领域
本发明涉及光电催化材料制备技术领域,具体涉及一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用。
背景技术
在众多的光阳极中,三氧化钨由于其带隙窄和价带位置高而成为理想的光阳极材料之一。尽管如此,三氧化钨阳极的实际应用受到光生电子和空穴的严重复合以及电极表面缓慢反应动力学的限制。
三氧化钨已经成为一种很有前途的光电阳极材料由于它体现内在的优秀特质包括12%的太阳光谱吸收(Eg=2.5-2.8eV),快速地电子传递速率(≈12cm2V-1S-1)相比二氧化钛(0.5cm2V-1S-1)以及有吸引力的耐光性。然而,原生WO3光阳极的光生孔在整个光阳极氧演化反应过程中,包括生成、迁移、反应等过程中,往往会遇到一系列不可避免的阻碍,光催化效率不理想。因此,为了进一步突破高电位WO3光阳极的能量转换性能,拆除综合上述制约因素势在必行。
受原子薄石墨烯类薄片的启发,超薄薄片结构为实现几乎完全暴露的高活性晶格平面提供了理想的构建块/架构,不仅如此,超薄片状结构还具有界面电荷快速传递、二维传导通道、增加载流子输运等优良特性,有利于光电催化性能的提高。遗憾的是,在暴露于WO3纳米薄片的{001}面中,沿着W-O-W链沿x方向长时间迁移的空穴,不可避免地会发生大量的电子空穴重组,严重影响了光电催化性质。为了解决这一矛盾,在超薄纳米板表面人工制造孔结构可以有效缩短光子产生孔的扩散途径。此外,孔周围丰富的未满足化学键为促进反应分子的化学反应提供了良好的化学环境,进而促进催化反应动力学。
发明内容
本发明所要解决的问题是:提供一种自减薄多孔三氧化钨纳米薄片材料的制备方法,工艺简单,绿色环保,操作快捷。
本发明为解决上述问题所提供的技术方案为:一种自减薄多孔三氧化钨纳米薄片材料的制备方法,所述方法包括以下步骤,
步骤一、材料制备:将钨网进行剪裁,分别用丙酮,乙醇,去离子水超声洗涤15min;在50mL的烧杯中加入50mL的去离子水和2.66mL的浓硫酸,搅拌,25V电压下,阳极氧化4h,钨网由黑色变为淡黄色;马弗炉500℃,升温速率为2℃/min,煅烧4h,自然冷却到室温得WO3
步骤二、第一次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得1R-WO3
步骤三、第二次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得2R-WO3
优选的,所述步骤一中钨网的规格为1.5×4.0cm。
一种自减薄多孔三氧化钨纳米薄片材料的应用,包括以下步骤,
步骤一、制备电解液:在100mL的石英烧杯中分别加入20mL,10mg/L的氟苯尼考溶液,20mL,0.1mol/L的硫酸钠溶液,60mL的去离子水;
步骤二、氟苯尼考降解:分别用所述权利要求1中的步骤一制得三种WO3、1R-WO3、2R-WO3作为工作电极,以Pt电极作为对电极,以饱和甘汞电极作为参比电极组成三电极系统,将步骤二制备的混合液作为电解液,打开磁力搅拌器开始搅拌,在1.2V的电压,模拟太阳光下,降解氟苯尼考溶液。
与现有技术相比,本发明的优点是:本发明的制备方法具有工艺简单,绿色环保,操作快捷的优点;制备的自减薄多孔三氧化钨纳米薄片材料有效地减少了光生电子和空穴的严重复合现象。本方法制得的自减薄多孔三氧化钨纳米薄片材料可以广泛用于光电催化氧化领域。本发明制备的WO3、1R-WO3、2R-WO3三氧化钨中的纳米薄片的厚度分别为18nm、5nm、5nm,形成多孔三氧化钨纳米薄片,制备的孔洞将提供更多的活性位点。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明制备三种纳米片状(WO3、1R-WO3、2R-WO3)的材料SEM图;
图2是本发明制备三种纳米片状(WO3、1R-WO3、2R-WO3)的材料TEM图;
图3是本发明制备三种纳米片状(WO3、1R-WO3、2R-WO3)的材料AFM图;
图4是本发明制备三种纳米片状(WO3、1R-WO3、2R-WO3)的材料光电流图;
图5是本发明制备三种纳米片状(WO3、1R-WO3、2R-WO3)的材料对氟苯尼考的降解性能图;
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
一种自减薄多孔三氧化钨纳米薄片材料的制备方法,所述方法包括以下步骤,
步骤一、材料制备:将钨网剪裁成1.5×4.0cm的规格大小,分别用丙酮,乙醇,去离子水超声洗涤15min;在50mL的烧杯中加入50mL的去离子水和2.66mL的浓硫酸,搅拌,25V电压下,阳极氧化4h,钨网由黑色变为淡黄色;马弗炉500℃,升温速率为2℃/min,煅烧4h,自然冷却到室温得WO3
步骤二、第一次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得1R-WO3
步骤三、第二次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得2R-WO3
一种自减薄多孔三氧化钨纳米薄片材料的应用,包括以下步骤,
步骤一、制备电解液:在100mL的石英烧杯中分别加入20mL,10mg/L的氟苯尼考溶液,20mL,0.1mol/L的硫酸钠溶液,60mL的去离子水;
步骤二、氟苯尼考降解:分别用所述权利要求1中的步骤一制得三种WO3、1R-WO3、2R-WO3作为工作电极,以Pt电极作为对电极,以饱和甘汞电极作为参比电极组成三电极系统,将步骤二制备的混合液作为电解液,打开磁力搅拌器开始搅拌,在1.2V的电压,模拟太阳光下,降解氟苯尼考溶液。
图1是试验一制备三种纳米片状(WO3、1R-WO3、2R-WO3)材料SEM图,从图中可以看出原始三氧化钨材料为花状纳米片,一次还原后,三氧化钨片的还原后依旧保持花状结构。
图2是试验一制备三种纳米片状(WO3、1R-WO3、2R-WO3)材料TEM图;从图中可以看2R-WO3纳米片上的孔径大于1R-WO3纳米片上的孔径
图3试验一制备三种纳米片状(WO3、1R-WO3、2R-WO3)材料AFM图;从图中可以看出,还原后的三氧化钨材料片的厚度从WO3的18nm纳米片厚度减少到1R-WO3、2R-WO3的5nm纳米片厚度,有一个剧减变薄的现象。
图4试验一制备三种纳米片状(WO3、1R-WO3、2R-WO3)材料光电流图;从图中可以看出,还原后的三氧化钨材料片的光电流效果更好。
图5试验一制备三种纳米片状(WO3、1R-WO3、2R-WO3)的WO3材料对氟苯尼考的降解性能;从图中可以看出,改性后的材料对氟苯尼考的降解高达90%,说明改性后的材料光生电子与空穴的符合率降低,活性位点增多,加大了对污染物氟苯尼考的降解。
以上仅就本发明的最佳实施例作了说明,但不能理解为是对权利要求的限制。本发明不仅局限于以上实施例,其具体结构允许有变化。凡在本发明独立权利要求的保护范围内所作的各种变化均在本发明保护范围内。

Claims (3)

1.一种自减薄多孔三氧化钨纳米薄片材料的制备方法,其特征在于:所述方法包括以下步骤,
步骤一、材料制备:将钨网进行剪裁,分别用丙酮,乙醇,去离子水超声洗涤15min;在50mL的烧杯中加入50mL的去离子水和2.66mL的浓硫酸,搅拌,25V电压下,阳极氧化4h,钨网由黑色变为淡黄色;马弗炉500℃,升温速率为2℃/min,煅烧4h,自然冷却到室温得WO3
步骤二、第一次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得1R-WO3
步骤三、第二次还原:在3V的电压下,以0.5mol/L的硫酸钠溶液为电解质,阴极还原进行9h,洗涤,烘干得2R-WO3
2.根据权利要求1所述的一种自减薄多孔三氧化钨纳米薄片材料的制备方法,其特征在于:所述步骤一中钨网的规格为1.5×4.0cm。
3.一种如权利要求1或2所述的自减薄多孔三氧化钨纳米薄片材料的制备方法制得的自减薄多孔三氧化钨纳米薄片材料的应用,其特征在于:包括以下步骤,
步骤一、制备电解液:在100mL的石英烧杯中分别加入20mL,10mg/L的氟苯尼考溶液,20mL,0.1mol/L的硫酸钠溶液,60mL的去离子水;
步骤二、氟苯尼考降解:将自减薄多孔三氧化钨纳米薄片材料2R-WO3作为工作电极,以Pt电极作为对电极,以饱和甘汞电极作为参比电极组成三电极系统,打开磁力搅拌器开始搅拌,在1.2V的电压,模拟太阳光下,降解氟苯尼考溶液。
CN201911264553.7A 2019-12-11 2019-12-11 一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用 Active CN110935440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911264553.7A CN110935440B (zh) 2019-12-11 2019-12-11 一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911264553.7A CN110935440B (zh) 2019-12-11 2019-12-11 一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110935440A CN110935440A (zh) 2020-03-31
CN110935440B true CN110935440B (zh) 2022-01-28

Family

ID=69910489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911264553.7A Active CN110935440B (zh) 2019-12-11 2019-12-11 一种自减薄多孔三氧化钨纳米薄片材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110935440B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103329A2 (en) * 2004-04-21 2005-11-03 Hydrogen Solar Ltd Manufacturing method
CN1974890A (zh) * 2006-11-24 2007-06-06 大连理工大学 一种多孔状三氧化钨纳米材料及其制备方法和应用
CN102284284A (zh) * 2011-06-03 2011-12-21 南昌航空大学 一种直接法制备具有可见光响应的分子印迹型TiO2/WO3复合光催化剂的方法
CN103708559A (zh) * 2013-12-19 2014-04-09 天津大学 一种具有光催化性能的三氧化钨纳米薄膜及其制备方法
CN109126767A (zh) * 2018-09-28 2019-01-04 南昌航空大学 应用于降解氟苯尼考的wo3纳米片及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103329A2 (en) * 2004-04-21 2005-11-03 Hydrogen Solar Ltd Manufacturing method
CN1974890A (zh) * 2006-11-24 2007-06-06 大连理工大学 一种多孔状三氧化钨纳米材料及其制备方法和应用
CN102284284A (zh) * 2011-06-03 2011-12-21 南昌航空大学 一种直接法制备具有可见光响应的分子印迹型TiO2/WO3复合光催化剂的方法
CN103708559A (zh) * 2013-12-19 2014-04-09 天津大学 一种具有光催化性能的三氧化钨纳米薄膜及其制备方法
CN109126767A (zh) * 2018-09-28 2019-01-04 南昌航空大学 应用于降解氟苯尼考的wo3纳米片及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Potential-mediated growth of ultrathin hydrated tungsten oxide nanosheets with high electrochemical activity from amorphous precursor nanofibers;Xiaosong Zhou et al.;《J Mater Sci》;20140920;第50卷;第66-73页 *

Also Published As

Publication number Publication date
CN110935440A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
Zeng et al. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting
Zhu et al. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition
CN109913898B (zh) 一种WO3/CuWO4/NiFe LDH三元复合光电极薄膜的制备方法
CN106179415B (zh) 一种纳米二氧化钛/二硫化钼复合材料薄膜的制备方法
CN108579765B (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
CN110408951B (zh) 一种Cu-MOF/BiVO4复合光电极的制备方法和应用
Yi et al. Preparation of Bi2Ti2O7/TiO2 nanocomposites and their photocatalytic performance under visible light irradiation
Wei et al. Cooperation effect of heterojunction and co-catalyst in BiVO 4/Bi 2 S 3/NiOOH photoanode for improving photoelectrochemical performances
CN108546970B (zh) 一种Bi2Se3/TiO2纳米复合膜及其制备和应用
CN107761127B (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
Li et al. Dramatic enhancement of photocurrent for BiVO4/TiO2 heterojunction photoanode with suitable band-match via in-situ band regulation using Ta
CN112871186A (zh) 二硒化镍/硫铟锌复合光催化剂及其制备方法和应用
CN108511198B (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
KR20190071222A (ko) 산화구리 및 전이금속 황화물을 포함하는 환원전극, 이의 제조방법, 이를 포함하는 미생물 전기분해전지 및 폐수처리 방법
CN105261483A (zh) Cu2ZnSnS4敏化TiO2光阳极及其原位制备方法和应用
Esmaeili-Zare et al. CIS/CdS/ZnO/ZnO: Al modified photocathode for enhanced photoelectrochemical behavior under visible irradiation: Effects of pH and concentration of electrolyte solution
CN114481192B (zh) 一种Cd掺杂的二氧化钛/硫化铟锌光阳极及其制备方法
CN106328381A (zh) 一种全固态量子点敏化太阳能电池及其制备方法
CN113293404B (zh) 一种异质结光阳极材料及其制备方法和应用
CN110042452B (zh) 一种光阳极复合膜、其制备方法及其用途
CN109735847B (zh) 用于光生阴极保护的AgInS2/石墨烯/TiO2纳米复合膜光阳极及制备和应用
Sun et al. Promoting photoelectrochemical hydrogen production performance by fabrication of Co1-XS decorating BiVO4 photoanode
CN103545112A (zh) 使用半导体薄膜做敏化剂的太阳电池光阳极及其制备
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant