CN107761127B - 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法 - Google Patents

一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法 Download PDF

Info

Publication number
CN107761127B
CN107761127B CN201710990263.5A CN201710990263A CN107761127B CN 107761127 B CN107761127 B CN 107761127B CN 201710990263 A CN201710990263 A CN 201710990263A CN 107761127 B CN107761127 B CN 107761127B
Authority
CN
China
Prior art keywords
bismuth vanadate
polyacid
phthalocyanine
electrode
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710990263.5A
Other languages
English (en)
Other versions
CN107761127A (zh
Inventor
许林
席璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201710990263.5A priority Critical patent/CN107761127B/zh
Publication of CN107761127A publication Critical patent/CN107761127A/zh
Application granted granted Critical
Publication of CN107761127B publication Critical patent/CN107761127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法。所制备的钒酸铋复合电极可用于光电催化分解水产氧,进而实现低密度太阳能到高密度化学能的有效转化。以纳米级尺寸的多孔钒酸铋为主体,Keggin型磷钨酸和酞菁为修饰组分,通过简单方法制备得到钒酸铋/多酸/酞菁纳米型三元复合薄膜电极。在模拟太阳光的照射下,该复合薄膜光阳极能展现出良好的光电催化分解水产氧性能。本发明提供的钒酸铋/多酸/酞菁复合膜电极具有制备简单、成本低廉、稳定性好、环境友好、性能良好等特点,适用于新型高效钒酸铋基光催化剂的开发和生产。

Description

一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备 方法
技术领域
本发明属于光电化学技术领域,涉及一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法。
背景技术
光电催化分解水产生氧气和氢气是一种充满希望的可持续的太阳能转换和存储手段。 1972年,研究者们首次报道以TiO2为催化剂光电分解水,自此,无机半导体催化剂的开发便受到了众多关注。但材料的选择在一定程度上受其功能特性的限制,例如,光的捕获、电荷的产生及迁移、电荷的复合以及表面反应等。近来,许多无机半导体材料如Co3O4、Fe2O3、 WO3和BiVO4已被用作可见光驱动的分解水催化剂。其中,具有良好可见光响应能力的单斜相钒酸铋因材料丰富、成本低廉、带隙适中、稳定性好等优点得到了广泛青睐,已被广泛应用于光解水产氧、降解污染物、太阳能电池等领域。众所周知,BiVO4的良好性能取决于其适当的带隙大小和合适的价带位置。但是,BiVO4的实际能量转换效率较其理论效率而言仍较低,主要受以下因素的影响,如超快的电子-空穴复合速率、较差的电荷分离和传输能力以及较差的水氧化动力学。为了解决这些问题,各种改良策略相继出现,如掺杂、形貌控制以及多组分材料复合等。
多金属氧酸盐(多酸,POMs)是一类多核配合物,发展至今已有近二百年的历史。多酸分子具有确定的结构、纳米级的尺寸以及良好的氧化还原性质,在催化、材料、医学等各方面显示了优异的物理化学性质和潜在应用价值。作为一类良好的电子接受体,多酸能够有效地捕获并传输半导体导带上的光生电子以抑制载流子的快速复合,进而提高半导体的光电性能。
酞菁是一类p型有机分子半导体,酞菁化合物的大π体系具有18π电子且分布十分均匀,故其苯环不易变形。此外,酞菁环内的空穴可以容纳多种金属以形成金属络合物,进而展现出良好的空穴传输能力。近来,酞菁已被应用于光催化降解、氨敏传感器及多巴胺检测等领域。
综上所述,我们以BiVO4为主体材料,多酸和酞菁为修饰组分(结构见附图1,(a)PW12; (b)BiVO4;(c)NiTsPc),制备三元复合纳米膜电极。复合电极可以将BiVO4优异的可见光吸收能力和多酸、酞菁良好的电荷传输特性结合起来,从而展现出良好的光电催化分解水产氧性能。
发明内容
本发明的目的是提供一种复合膜光阳极,其无需牺牲试剂、保护层和缓冲溶液即可高效稳定地光电分解水产氧,进而实现低密度太阳能到高密度化学能的转换。此外,复合膜电极具有制备简单、性能良好、稳定性好、价格低廉、绿色无污染等特点。
本发明提供的钒酸铋/多酸/酞菁纳米复合薄膜电极可通过如下方法制备:
(一)纳米级多孔钒酸铋薄膜电极的制备:
采用金属有机分解法制备BiVO4膜电极,过程如下:分别配制浓度为0.2M的 Bi(NO3)3·5H2O的冰醋酸溶液以及浓度为0.03M的VO(acac)2的乙酰丙酮溶液。室温下,将上述溶液超声处理30min。接着,将VO(acac)2缓缓滴入Bi(NO3)3·5H2O中并超声处理30min,得到的溶液即为钒酸铋前驱液。取出30uL前驱液滴涂在洗净的FTO导电玻璃上,晾干后将其置于马弗炉中于673K温度下退火30min,待炉温降至室温以后取出BiVO4膜电极。
(二)复合膜电极的制备:
复合膜电极的制备过程如下:称取一定量Keggin型磷钨酸H3PW12O40(PW12)并用少量水将其溶解,接着,加入一定体积的BiVO4前驱液,将上述混合液超声30min后取出。量取一定体积混合液滴涂在FTO玻璃上,空气中晾干后置于马弗炉中于673K温度下退火30 min,待炉温自然降至室温后取出BiVO4/PW12膜电极。称取四磺化酞菁镍(C32H16N8O12S4Ni,NiTsPc)(紫外可见吸收谱图见附图2)溶于DMF中配成0.5mM的NiTsPc溶液,避光条件下,将上述BiVO4/PW12膜电极浸泡其中,12h后取出并用DMF冲洗干净,晾干后即可得到 BiVO4/PW12/NiTsPc膜电极。
通过X射线粉末衍射(XRD,见附图3)测试确定单纯BiVO4及复合膜中BiVO4的晶型。由图可知,单纯BiVO4在2θ为18.70、28.90、30.56等处显示了明显的特征衍射峰,此结果与JCPDS卡No.14-0688是一致的。通过对比发现,复合膜与BiVO4膜的主要峰位置及峰强度均一致,说明单斜相BiVO4被成功地构筑到了复合膜中。由于多酸及酞菁含量较少,在谱图中并没有显现。扫描电子显微镜(SEM,见附图4,(a)BiVO4;(b)BiVO4/PW12;(c) BiVO4/PW12/NiTsPc)测试可以提供电极的表面形貌、元素组成以及膜表面均一程度等详细信息。由图可知,制得的膜电极都呈现多孔形貌且表面均匀,膜电极的厚度大约为630nm。通过能谱测试(EDX,见附图5,(a)FTO;(b)BiVO4/PW12/NiTsPc)能明显观察到P、W、 S、Ni等元素的存在,证明复合材料中含有多酸和酞菁。在红外谱图(IR,见附图6)中可以明显观察到单纯BiVO4在546、732和988cm-1处有三个明显的特征吸收峰,其分别归属于 Bi-O和V-O的振动。而复合膜BiVO4/PW12的谱图中不仅有上述特征峰,还出现了归属于 P-O、W=O和W-O-W的多酸的特征峰,说明PW12在复合膜中保持了其结构的完整性。
本发明提供的钒酸铋/多酸/酞菁纳米复合薄膜电极可应用于光电催化分解水产氧,其工作条件如下:
测试在标准三电极体系中进行,以钒酸铋/多酸/酞菁复合光阳极为工作电极,铂丝为对电极,饱和甘汞(饱和KCl)为参比电极。以硫酸钠溶液为支持电解质,氙灯为光源。光照时,钒酸铋产生的光生电子被多酸捕获后通过FTO导电玻璃传至外电路,产生的光生空穴经酞菁传输至界面处发生水氧化反应。
通常情况下,可用水氧化过程中产生的光电流密度大小来间接衡量光阳极的光电催化活性强弱。根据上述原理,可知复合光阳极展现出了更强的光电催化性能。
本发明中提供的钒酸铋/多酸/酞菁复合膜光阳极具有以下特点:
1、钒酸铋/多酸/酞菁三元纳米复合膜电极的主体部分为多孔均匀的钒酸铋膜,多酸均匀分布在整个钒酸铋材料中,而酞菁分布在钒酸铋表面,两种分子材料的修饰能明显提升单纯钒酸铋的光电催化分解水性能。
2、钒酸铋/多酸/酞菁三元纳米复合膜电极可在温和的条件下发生光电催化分解水反应,即室温、无需牺牲试剂、无需保护层、无需缓冲溶液等。
3、钒酸铋/多酸/酞菁三元纳米复合膜电极在溶液中能较稳定地存在,可长时间进行光电催化分解水产氧反应。
附图说明
图1是多酸、钒酸铋和酞菁的化学结构。
图2是酞菁分子的紫外可见吸收光谱图。
图3是钒酸铋、钒酸铋/多酸、钒酸铋/多酸/酞菁膜电极以及FTO导电玻璃的X射线粉末衍射图。
图4是钒酸铋、钒酸铋/多酸、钒酸铋/多酸/酞菁膜电极的扫描电镜图和钒酸铋电极的膜厚图。
图5是钒酸铋/多酸/酞菁膜电极和FTO导电玻璃的能谱分析图。
图6是多酸、钒酸铋/多酸和钒酸铋的红外谱图。
图7是钒酸铋、钒酸铋/多酸、钒酸铋/多酸/酞菁膜电极光电催化分解水的线性扫描伏安曲线图。
图8是钒酸铋、钒酸铋/多酸、钒酸铋/多酸/酞菁膜电极的瞬态光电流曲线图。
具体实施方式
为了进一步说明本发明,列举下列实施实例,但它并不限制各附加权利要求所定义的发明范围。
具体实施例1:
分别以钒酸铋、钒酸铋/多酸、钒酸铋/多酸/酞菁膜电极为工作电极,铂丝为对电极,饱和甘汞电极为参比电极,采用标准三电极体系于石英反应容器中进行催化实验。线性扫描伏安曲线的测试范围为0.2-1.6V(vs.RHE),瞬态光电流曲线的测试电压设置为1.0V。工作电极的光照面积恒定为0.8×0.8cm2,以400W氙灯(AM1.5)作为光源,辐照强度恒定为100 mW/cm2。整个实验过程中使用0.5M Na2SO4水溶液作为电解质。通过曲线的对比可明显看出,修饰上多酸和酞菁后,钒酸铋/多酸/酞菁复合光阳极的光电流响应有显著的提升(见附图7和 8)。

Claims (3)

1.一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极,其特征在于:能实现可见光下的光电催化分解水产氧;
所述钒酸铋化学式为BiVO4;所述多酸为Keggin型磷钨酸,其化学式为:H3PW12O40(PW12);所述酞菁为四磺化酞菁镍,其化学式为:C32H16N8O12S4Ni(NiTsPc);
采用金属有机分解法制备BiVO4膜电极,先制备钒酸铋前驱液,再向钒酸铋前驱液中加入PW12,超声30min后滴涂在FTO玻璃上,于673K温度下退火30min,得到钒酸铋/多酸复合膜电极,配制NiTsPc溶液,避光条件下,将上述钒酸铋/多酸复合膜电极浸泡其中,12h后取出并用DMF冲洗干净,晾干后即可得到钒酸铋/多酸/酞菁三元纳米复合薄膜电极。
2.按照权利要求1所述的多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极,其特征在于:在模拟太阳光的照射下,以单独钒酸铋多孔薄膜电极为对比,复合电极能展现良好的光电催化分解水产氧性能,进而有效实现低密度太阳能到高密度化学能的转化。
3.按照权利要求1所述的多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极,其特征在于:主体是纳米尺寸的多孔结构钒酸铋,多酸通过分子掺杂的方式均匀分布在钒酸铋电极中,酞菁通过自组装的方式修饰在钒酸铋电极表面;三元复合电极的组成及结构已经确定;复合材料能够以薄膜形式稳定地存在于FTO导电玻璃上;三元复合电极制备简单、成本低廉、环境友好、性能稳定,测试条件温和。
CN201710990263.5A 2017-10-20 2017-10-20 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法 Expired - Fee Related CN107761127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710990263.5A CN107761127B (zh) 2017-10-20 2017-10-20 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710990263.5A CN107761127B (zh) 2017-10-20 2017-10-20 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法

Publications (2)

Publication Number Publication Date
CN107761127A CN107761127A (zh) 2018-03-06
CN107761127B true CN107761127B (zh) 2020-05-08

Family

ID=61268455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710990263.5A Expired - Fee Related CN107761127B (zh) 2017-10-20 2017-10-20 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法

Country Status (1)

Country Link
CN (1) CN107761127B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112221541B (zh) * 2020-09-27 2022-07-05 东北师范大学 一种多酸-卟啉杂化材料及其制备方法和应用
CN112760670B (zh) * 2020-12-14 2021-12-21 北京理工大学 一种电催化剂、制备方法及其应用
CN112473747B (zh) * 2020-12-15 2022-07-26 黑龙江大学 一种金纳米粒子调控的超薄二维金属酞菁/钒酸铋异质结光催化剂的制备方法和应用
CN113398994B (zh) * 2021-06-25 2023-10-03 西北大学 一种Keggin型杂多酸难溶盐异质结催化剂及其制备方法和应用
CN114262445B (zh) * 2021-12-23 2023-07-18 辽宁工程技术大学 一种以钒钨酸为模板的金属有机纳米管晶体材料的制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用
CN103145186A (zh) * 2013-04-08 2013-06-12 上海电力学院 一种具有有序宏观结构的纳米多孔BiVO4及其制备方法
JP2016089250A (ja) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 光エネルギーの利用方法および光エネルギーの利用装置
CN107064250A (zh) * 2017-03-13 2017-08-18 东北师范大学 一种钒酸铋‑多酸气体传感纳米复合材料制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775615A (zh) * 2010-01-20 2010-07-14 南京大学 BiVO4纳米光电极及其在分解水制氢方面的应用
CN103145186A (zh) * 2013-04-08 2013-06-12 上海电力学院 一种具有有序宏观结构的纳米多孔BiVO4及其制备方法
JP2016089250A (ja) * 2014-11-10 2016-05-23 国立研究開発法人産業技術総合研究所 光エネルギーの利用方法および光エネルギーの利用装置
CN107064250A (zh) * 2017-03-13 2017-08-18 东北师范大学 一种钒酸铋‑多酸气体传感纳米复合材料制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BiVO4新型光催化剂的制备及性能研究;马伟倩;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20160315;摘要 *
BiVO4纳米膜的制备、改性及可见光光催化性能研究;张秀芳;《中国博士学位论文全文数据库 工程科技I辑》;20090915;第2节 *
Enhanced photoelectrocatalytic performance for water oxidation by polyoxometalate molecular doping in BiVO4 photoanodes;Lu Xi et al;<Applied Catalysis A: General>;20170224;第68页左栏第3段至右栏第2段,第68页第3.1节 *

Also Published As

Publication number Publication date
CN107761127A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
Li et al. Efficient photocatalytic H2-evolution coupled with valuable furfural-production on exquisite 2D/2D LaVO4/g-C3N4 heterostructure
Kim et al. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light
CN107761127B (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
Abdullah et al. Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview
Zeng et al. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting
Protti et al. Photocatalytic generation of solar fuels from the reduction of H 2 O and CO 2: a look at the patent literature
Zhang et al. Interface engineering of Z-scheme α-Fe2O3/g-C3N4 photoanode: Simultaneous enhancement of charge separation and hole transportation for photoelectrocatalytic organic pollutant degradation
Yang et al. Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production
Ding et al. ZIF-8 derived ZnO/TiO2 heterostructure with rich oxygen vacancies for promoting photoelectrochemical water splitting
Li et al. The enhanced photo-catalytic CO2 reduction performance of g-C3N4 with high selectivity by coupling CoNiSx
Xie et al. Degradation of refractory organic compounds by photocatalytic fuel cell with solar responsive WO3/FTO photoanode and air-breathing cathode
Li et al. Hierarchical nanowire arrays based on carbon nanotubes and Co 3 O 4 decorated ZnO for enhanced photoelectrochemical water oxidation
Yang et al. One dimensional SnO2 NRs/Fe2O3 NTs with dual synergistic effects for photoelectrocatalytic reduction CO2 into methanol
He et al. NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell
Rao et al. Synthesis of titania wrapped cadmium sulfide nanorods for photocatalytic hydrogen generation
Ali et al. A review on the recent developments in zirconium and carbon-based catalysts for photoelectrochemical water-splitting
Shen et al. Efficient photoelectrochemical water oxidation of cobalt phthalocyanine decorated BiVO4 photoanode by improving kinetics
Wang et al. In situ synthesis of Ag/Ag2O on CeO2 for boosting electron transfer in photocatalytic hydrogen production
Zhang et al. Nanoparticle metal Ni cocatalyst on NiTe2 microsphere for improved photocatalytic hydrogen evolution
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Wang et al. The g-C3N4 nanosheets decorated by plasmonic Au nanoparticles: A heterogeneous electrocatalyst for oxygen evolution reaction enhanced by sunlight illumination
Tolod et al. Visible light-driven catalysts for water oxidation: towards solar fuel biorefineries
Wang et al. Regulating the type of cobalt porphyrins for synergistic promotion of photoelectrochemical water splitting of BiVO4
Tang et al. The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@ carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@ carbon felt as photo electrodes
Li et al. Solar energy storage by a microfluidic all-vanadium photoelectrochemical flow cell with self-doped TiO2 photoanode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200508

Termination date: 20211020