CN107064250A - 一种钒酸铋‑多酸气体传感纳米复合材料制备方法 - Google Patents

一种钒酸铋‑多酸气体传感纳米复合材料制备方法 Download PDF

Info

Publication number
CN107064250A
CN107064250A CN201710149193.0A CN201710149193A CN107064250A CN 107064250 A CN107064250 A CN 107064250A CN 201710149193 A CN201710149193 A CN 201710149193A CN 107064250 A CN107064250 A CN 107064250A
Authority
CN
China
Prior art keywords
pucherite
polyacid
gas
composite material
gas sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710149193.0A
Other languages
English (en)
Other versions
CN107064250B (zh
Inventor
许林
张倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201710149193.0A priority Critical patent/CN107064250B/zh
Publication of CN107064250A publication Critical patent/CN107064250A/zh
Application granted granted Critical
Publication of CN107064250B publication Critical patent/CN107064250B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供一种钒酸铋‑多酸气体传感纳米复合材料的制备方法。所制备的多酸修饰的钒酸铋纳米棒复合气敏材料可用于光电型气体传感器。该气敏材料是以钒酸铋纳米棒为主体,并用一种Keggin型磷钨酸加以修饰所形成的钒酸铋‑多酸纳米复合材料。在室温环境中和氙灯的照射下,该传感器对有毒的二氧化氮气体有明显的传感检测性能。本发明提供的多酸‑钒酸铋纳米复合材料制备方法简单,成本很低,在室温下就能有效地检测空气中低浓度的二氧化氮气体,适用于新型高性能气体传感器的开发和生产。

Description

一种钒酸铋-多酸气体传感纳米复合材料制备方法
发明人:许林 张倩
技术领域
本发明属于气体传感器技术领域,涉及一种钒酸铋-多酸气体传感纳米复合材料的制备方法。
背景技术
气体传感器是指将被测气体浓度转换为与其成一定关系的电量输出的装置或器件。它利用各种气体的物理性能和化学性能将环境中的被监测的气体的变化情况转化为易处理的电信号,从而使人们能正确有效的控制和应用。是实现自动检测和自动控制的首要环节。钒酸铋是一种新型高效的半导体光电功能材料,由于其具有可见光吸收能力,化学性质稳定,价格低廉,绿色环保等特点,使其在太阳电池,光催化降解有机污染物等方面都有重要应用。在气体传感方面同样具有很大的应用前景,但是钒酸铋作为半导体气敏材料存在着以下问题:
1、钒酸铋材料中,在电子跃迁到导带后,电子和空穴容易复合,从而影响电子的传输,导致气体传感检测信号的减弱。
2、目前已发表的钒酸铋气体传感器往往要在高温条件下才能拥有气敏性能,而在室温下性能很差,这不利于对被测气体的实时监控。
如果通过引入其它化合物和钒酸铋形成复合材料,进而提高在室温下的气体传感性能,将会扩展钒酸铋气体传感器的应用。
多金属氧酸盐(即多酸,Polyoxometalates,POMs)是一类多核配合物,至今有近二百年的发展历史,已成为无机化学中的重要研究领域。多金属氧酸盐(简称多酸)是一类良好的电子接受体,可以通过捕获半导体导带的光生电子来抑制光生载流子的复合和促进光生载流子的迁移,有利于电子传递。因此,我们将多酸引入到钒酸铋中形成半导体光电纳米复合材料,从而明显提高了钒酸铋气体传感器的检测性能。
发明内容
本发明的目的是解决单纯的钒酸铋材料需要在高温条件下才能应用于气体传感的难题,本发明所制备的材料可以在室温条件下工作并且对二氧化氮气体具有很好的传感检测性能。
本发明提供的钒酸铋-多酸气体传感纳米复合材料可通过如下方法制备:
(一)钒酸铋纳米棒的制备:
首先在两个烧杯中分别将一定量Bi(NO3)3·5H2O固体及一定量NH4VO3固体溶于30mL稀硝酸溶液中,充分搅拌。然后将含有Bi(NO3)3·5H2O和NH4VO3的酸溶液混合搅拌,接着滴加乙二胺至pH为弱酸性,此时烧杯中得到淡黄色悬浮液。把悬浊液转移到一个100mL的水热反应釜中,加热到160℃持续5小时后,自然冷却到室温,离心分离得到黄色产物。用无水乙醇和去离子水清洗之后,在60℃条件下烘干12小时,所得到的黄色粉末即为钒酸铋纳米棒。
(二)钒酸铋-多酸复合膜的制备:
取0.1g钒酸铋纳米棒和0.003g Keggin型磷钨酸H3[PW12O40]·nH2O(结构见附图1)粉末,混合后加入适量乙醇并用玛瑙研钵研磨30min,在室温下超声30min,得到黄色悬浊液。用胶头滴管取一滴,滴在叉指电极上,在转速500rpm条件下旋涂成膜,晾干后放入马弗炉中,在200℃下煅烧30min,自然冷却后,得到钒酸铋-多酸纳米复合薄膜。
上述方法制得的钒酸铋-多酸纳米复合薄膜的结构通过X射线粉末衍射(PXRD,见附图2)和红外光谱(IR,见附图3)进行表征。可以发现,在XRD谱图中,所合成的材料与钒酸铋的主要峰位置以及峰强度均一致,这证明了用上述方法合成的材料确实为钒酸铋,由于多酸含量较少,在XRD谱图中并不能观察到多酸的存在。在IR谱图中,可以明显能观察到归属于P-O和W-O的特征峰,证明材料中多酸的存在。同时,通过扫描电子显微镜图像(见附图4)可以确定,上述方法制得的纳米棒形貌、尺寸均一,多酸均匀分布在纳米棒表面。在能谱(EDX,见附图5)中也明显能观察到磷元素和钨元素的存在,同样证明材料中多酸的存在。
本发明提供的钒酸铋-多酸纳米复合薄膜在气体传感中的应用,其工作条件如下:
将复合膜旋涂于叉指电极上,叉指电极的其中一个金电极用导线连接到电化学工作站的工作电极上,另一个金电极和对电极以及参比电极相连。在两个电极之间施加0.1V的电压,在氙灯的照射下,会保持一个稳定的光电流值。当复合膜接触到一定量的待测气体(二氧化氮)时,会引起两电极之间的光电流增大。
根据上述原理,当传感器工作时,如果光电流增大,则说明有被测气体的存在。
本发明中提供的钒酸铋-多酸气体传感纳米复合材料具有以下特点:
1、钒酸铋-多酸气体传感纳米复合材料主体由钒酸铋纳米棒构成,多酸均匀分布在钒酸铋材料表面,对钒酸铋原有的气敏性能起到提高作用。
2、钒酸铋-多酸气体传感纳米复合材料旋涂于叉指电极上,工作条件温和,可在室温下发挥气体传感作用,无需高温。
3、钒酸铋-多酸气体传感纳米复合材料可以在空气中稳定存在,可重复使用,气敏性能仍能保持。
附图说明
图1是该Keggin型磷钨酸的晶体结构。
图2是钒酸铋-多酸纳米复合薄膜的X射线粉末衍射图。
图3是钒酸铋-多酸纳米复合薄膜的红外光谱图。
图4是钒酸铋-多酸纳米复合薄膜的扫描电镜图。
图5是钒酸铋-多酸纳米复合薄膜的能谱分析图。
图6是对不同浓度二氧化氮气体的光电流变化曲线。
具体实施方式
为了进一步说明本发明,列举下列实施实例,但它并不限制各附加权利要求所定义的发明范围。
具体实施例1:
将带有复合膜的叉指电极放入测试用的密闭石英反应容器中,叉指电极的其中一个金电极用导线连接到电化学工作站的工作电极上,另一个金电极和对电极以及参比电极相连。在两个电极之间施加0.1V的电压,在氙灯的照射下,得到一个稳定的光电流值。当向石英反应容器内分别注入5ppm,10ppm,20ppm,30ppm以及50ppm二氧化氮气体时,两电极之间的电流明显升高。(见附图6)。

Claims (5)

1.一种钒酸铋-多酸气体传感纳米复合材料,其特征在于:对二氧化氮气体有气敏传感性能。
2.按照权利要求1所述的钒酸铋-多酸气体传感纳米复合材料,其特征在于:钒酸铋的形貌为纳米棒,其化学式为BiVO4;多酸为Keggin型磷钨酸,其化学式为:H3[PW12O40]·nH2O。
3.按照权利要求1所述的钒酸铋-多酸气体传感纳米复合材料,其特征在于:钒酸铋纳米棒可采用水热法合成。之后利用旋涂法获得钒酸铋-多酸纳米复合薄膜。
4.按照权利要求1所述的钒酸铋-多酸气体传感纳米复合材料,其特征在于:可以在室温和光照的条件下,以空气作为对比,利用电化学信号的变化监测空气中有害气体二氧化氮的存在,实现气敏传感。
5.按照权利要求1所述的钒酸铋-多酸气体传感纳米复合材料,其特征在于:主体是钒酸铋纳米棒结构,多酸均匀地分布在钒酸铋纳米棒表面。材料的组成和结构已经确定,多酸组分的含量为3%;这种材料能够以薄膜的形式稳定地存在于叉指电极上,使气敏反应可以直接在空气中进行;气敏反应条件温和,方法简单,回收完全,不污染空气;气敏薄膜可重复使用,气敏性仍能保持。
CN201710149193.0A 2017-03-13 2017-03-13 一种钒酸铋-多酸气体传感纳米复合材料制备方法 Expired - Fee Related CN107064250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710149193.0A CN107064250B (zh) 2017-03-13 2017-03-13 一种钒酸铋-多酸气体传感纳米复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710149193.0A CN107064250B (zh) 2017-03-13 2017-03-13 一种钒酸铋-多酸气体传感纳米复合材料制备方法

Publications (2)

Publication Number Publication Date
CN107064250A true CN107064250A (zh) 2017-08-18
CN107064250B CN107064250B (zh) 2019-08-02

Family

ID=59622190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710149193.0A Expired - Fee Related CN107064250B (zh) 2017-03-13 2017-03-13 一种钒酸铋-多酸气体传感纳米复合材料制备方法

Country Status (1)

Country Link
CN (1) CN107064250B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367535A (zh) * 2017-07-28 2017-11-21 中国矿业大学 一种基于BiVO4多孔膜的生物传感器及其制备方法
CN107761127A (zh) * 2017-10-20 2018-03-06 东北师范大学 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN111505086A (zh) * 2020-05-06 2020-08-07 吉林大学 Gd2Zr2O7固体电解质型异丙醇传感器、制备方法及其应用
CN112578007A (zh) * 2020-12-02 2021-03-30 长春理工大学 氧化铟-多酸复合气体传感材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148054A (zh) * 2014-08-27 2014-11-19 哈尔滨工业大学 一种钒酸铋纳米棒束的制备方法
CN105923656A (zh) * 2016-05-10 2016-09-07 上海大学 BiVO4/WO3/rGO三元纳米复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148054A (zh) * 2014-08-27 2014-11-19 哈尔滨工业大学 一种钒酸铋纳米棒束的制备方法
CN105923656A (zh) * 2016-05-10 2016-09-07 上海大学 BiVO4/WO3/rGO三元纳米复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LINRUI HOU等: "Efficient Sunlight-Induced Methylene Blue Removal over One-Dimensional Mesoporous Monoclinic BiVO4 Nanorods", 《JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY》 *
LU XI等: "Enhanced photoelectrocatalytic performance for water oxidation by polyoxometalate molecular doping in BiVO4 photoanodes", 《APPLIED CATALYSIS A: GENERAL》 *
YANG HU等: "Facile synthesis of double cone-shaped Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic activity for environmental purification", 《JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A:CHEMISTRY》 *
李长江: "钒酸铋基复合光催化剂的理性设计与性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367535A (zh) * 2017-07-28 2017-11-21 中国矿业大学 一种基于BiVO4多孔膜的生物传感器及其制备方法
CN107761127A (zh) * 2017-10-20 2018-03-06 东北师范大学 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN107761127B (zh) * 2017-10-20 2020-05-08 东北师范大学 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN111505086A (zh) * 2020-05-06 2020-08-07 吉林大学 Gd2Zr2O7固体电解质型异丙醇传感器、制备方法及其应用
CN111505086B (zh) * 2020-05-06 2021-10-15 吉林大学 Gd2Zr2O7固体电解质型异丙醇传感器、制备方法及其应用
CN112578007A (zh) * 2020-12-02 2021-03-30 长春理工大学 氧化铟-多酸复合气体传感材料及其制备方法

Also Published As

Publication number Publication date
CN107064250B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN107064250B (zh) 一种钒酸铋-多酸气体传感纳米复合材料制备方法
Wang et al. Bifunctional gas sensor based on Bi 2 S 3/SnS 2 heterostructures with improved selectivity through visible light modulation
Zhao et al. Optical bleaching of perovskite (CH 3 NH 3) PbI 3 through room-temperature phase transformation induced by ammonia
Chen et al. A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations
Zhang et al. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions
Rahimi et al. Synthesis, characterization, and photocurrent generation of a new nanocomposite based Cu–TCPP MOF and ZnO nanorod
Dai et al. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing
Wu et al. Electrospinning of mesoporous p-type In 2 O 3/TiO 2 composite nanofibers for enhancing NO x gas sensing properties at room temperature
CN104316566B (zh) 一种气敏材料及其制备和应用
Yu et al. A facile approach to construct BiOI/Bi 5 O 7 I composites with heterostructures: efficient charge separation and enhanced photocatalytic activity
CN104229871A (zh) 一种分级结构的花状氧化铟气敏材料的制备方法
CN107311234A (zh) 一种氧化锌/铁酸锌纳米复合材料的制备方法与应用
CN105738449B (zh) 二氧化锡-多酸复合气体传感材料及其制备方法
Chang et al. A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO 4 modified ZnO nanoparticles
Marappan et al. Tunable visible light enhanced triethylamine adsorption on pH dependent ZnO nanostructures: An investigation by scanning Kelvin probe
Kumar et al. Influence of Sn doping on photoluminescence and photoelectrochemical properties of ZnO nanorod arrays
Han et al. Zero-dimensional hydrazine iodobismuthate as a lead-free perovskite-like light absorber in a self-powered photodetector
Khan et al. Improved optoelectronic performance of sol–gel derived ZnO nanostructured thin films
Arunraja et al. EDTA-decorated nanostructured ZnO/CdS thin films for oxygen gas sensing applications
Chen et al. Polarization-sensitive photodetection in a two-dimensional interlayer-multiple-cation hybrid perovskite bulk single crystal
Kutwade et al. Enhanced photosensing by Mg-doped ZnO hexagonal rods via a feasible chemical route
Prakash et al. Synthesis of ZnO nanostructures by microwave irradiation using albumen as a template
Zhang et al. Defect engineering of nanostructured ZnSnO3 for conductometric room temperature CO2 sensors
Priyanka et al. Synthesis of yttrium doped zinc oxide nanorods for display, forensic and supercapacitor applications
CN103913487B (zh) 一种锶掺杂的LaVO3纳米线及其气敏传感器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190802

Termination date: 20210313