CN110896109B - Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法 - Google Patents

Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法 Download PDF

Info

Publication number
CN110896109B
CN110896109B CN201811066796.5A CN201811066796A CN110896109B CN 110896109 B CN110896109 B CN 110896109B CN 201811066796 A CN201811066796 A CN 201811066796A CN 110896109 B CN110896109 B CN 110896109B
Authority
CN
China
Prior art keywords
layer
light absorption
solution
ammonia water
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811066796.5A
Other languages
English (en)
Other versions
CN110896109A (zh
Inventor
李建民
宫俊波
孔一帆
肖旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Original Assignee
Chinese University of Hong Kong CUHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese University of Hong Kong CUHK filed Critical Chinese University of Hong Kong CUHK
Priority to CN201811066796.5A priority Critical patent/CN110896109B/zh
Publication of CN110896109A publication Critical patent/CN110896109A/zh
Application granted granted Critical
Publication of CN110896109B publication Critical patent/CN110896109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法,所述后处理方法包括如下步骤:(1)配置氨水溶液,所述氨水溶液的浓度为0.1‑1M;(2)将光吸收层按所述光吸收层的待处理表面与所述氨水溶液的液面呈预定角度放置在所述氨水溶液中进行处理1‑10min,处理温度为25‑65℃;(3)取出处理后的光吸收层,清洗后吹干。本发明可以改善光吸收层的表面成分及形貌,以更利于光吸收层和缓冲层Zn(O,S)的之间的相互扩散,在沉积缓冲层Zn(O,S)时,Zn(O,S)薄膜的晶粒更大,最终制备得到的Cu基薄膜太阳电池的性能得到了提高,同时大幅度减弱了光浸润效应。

Description

Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法
技术领域
本发明涉及薄膜太阳能电池技术领域,特别是涉及一种Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法。
背景技术
现有的薄膜太阳电池制备过程中,无镉缓冲层Zn(O,S)沉积在光吸收层上的过程中,Zn在缓冲层表面的扩散比较困难,通常需要高温(200℃)处理,此外,基于无镉缓冲层Zn(O,S)的薄膜太阳能电池通常都会表现出Light-soaking(光浸润)效应,需要额外光照或者加热才能使其正常工作。这些问题的存在都会造成基于无镉Zn(O,S)缓冲层的薄膜太阳能电池性能降低以及对其市场化进程造成一定的障碍。
发明内容
为了弥补上述现有技术的不足,本发明提出一种Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法。
本发明的技术问题通过以下的技术方案予以解决:
一种Cu基薄膜太阳电池的光吸收层后处理方法,包括如下步骤:
(1)配置氨水溶液,所述氨水溶液的浓度为0.1-1M;
(2)将光吸收层按所述光吸收层的待处理表面与所述氨水溶液的液面呈预定角度放置在所述氨水溶液中进行处理1-10min,处理温度为25-65℃;
(3)取出处理后的光吸收层,清洗后吹干。
优选地,所述光吸收层是CIGS光吸收层或CZTS光吸收层。
优选地,所述光吸收层采用共蒸发三步法制备得到。
优选地,所述预定角度是65-90°。
一种在Cu基薄膜太阳电池的光吸收层上沉积缓冲层的方法,所述缓冲层是Zn(O,S),包括如下步骤:
(1)先将锌源溶液和络合剂溶液混合搅拌第一时间,然后同时加入硫代乙酰胺溶液和氨水溶液混合搅拌第二时间,制得沉积液,在所述沉积液中,锌源的Zn2+浓度为2.5-10mM,络合剂的浓度为2.5-13mM,硫代乙酰胺的S2-浓度为5-12.5mM,氨水的浓度为0.7-2.2M;
(2)将经所述的后处理方法处理后的光吸收层浸入所述沉积液中,通过水浴加热在光吸收层上沉积缓冲层Zn(O,S);
(3)沉积结束后取出样品,先用去离子水冲洗,然后用0.1-1M、温度为20-60℃的氨水溶液清洗样品表面,再利用去离子水去除残留的氨水溶液,吹干;
(4)将经步骤(3)处理后的样品在空气中加热,加热温度为60-160℃,时间1-8min。
优选地,所述步骤(1)中的第一时间为1-10min,所述第二时间为10-30s。
优选地,所述锌源为醋酸锌、硫酸锌和氯化锌中的至少一种;所述络合剂是柠檬酸和柠檬酸三钠中的至少一种。
优选地,所述锌源为醋酸锌,Zn2+在所述沉积液中的浓度为7.5mM;所述络合剂是柠檬酸,其在所述沉积液中的浓度为6.5mM;在所述沉积液中,硫代乙酰胺的S2-浓度为7.5mM,氨水的浓度为1.4M。
一种薄膜太阳电池的制备方法,包括如下步骤:
(1)在衬底上沉积背电极层,并在所述背电极层上沉积光吸收层;
(2)采用所述的后处理方法处理所述光吸收层;
(3)采用所述的方法在所述光吸收层上沉积缓冲层Zn(O,S);
(4)在所述缓冲层Zn(O,S)上沉积窗口层,并在所述窗口层上形成栅极。
优选地,所述衬底是钠钙玻璃;所述背电极是Mo。
优选地,所述窗口层是镁掺杂的氧化锌和掺铝氧化锌;所述栅极是Ni-Al栅极。
本发明与现有技术对比的有益效果包括:
本发明将光吸收层的待处理表面与氨水溶液的液面呈预定的角度放置后,用低浓度氨水溶液对Cu基薄膜太阳电池的光吸收层进行表面处理(进行选择性刻蚀),可以改善光吸收层的表面成分及形貌,以更利于光吸收层和缓冲层Zn(O,S)的之间的相互扩散,在沉积缓冲层Zn(O,S)时,Zn(O,S)薄膜的晶粒更大。通过本发明的方法,最终制备得到的Cu基薄膜太阳电池的性能得到了提高,同时大幅度减弱了光浸润效应,这将促进基于无镉Zn(O,S)缓冲层的Cu基薄膜太阳能电池生产和市场化。
附图说明
图1a和1b分别是未经处理的CIGS光吸收层的SEM图和经过本发明实施例一的方法处理的CIGS光吸收层的SEM图;
图2a和2b分别本发明实施例二中的第二样品和第一样品的SEM图;
图2c是本发明实施例二中的第三样品和第一样品的XPS图;图2d是第三样品和第一样品得到的电池器件的J-V曲线图;
图3a和3b分别是本发明实施例三中的第二器件和第一器件的TEM图;
图4的(a)图和(b)图分别是本发明实施例三中的第二器件和第一器件的EDX图;
图5a和5b分别是本发明实施例三中的第二器件和第一器件的J-V曲线图;
图6a和6b分别是未经处理的CZTS光吸收层的SEM图和经过实施例四处理的CZTS光吸收层的SEM图;
图7是本发明实施例五中的第三器件和第四器件的J-V曲线图。
具体实施方式
下面对照附图并结合优选的实施方式对本发明作进一步说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明具体实施方式提供一种Cu基薄膜太阳电池的光吸收层后处理方法,包括如下步骤:
(1)配置氨水溶液,所述氨水溶液的浓度为0.1-1M;
(2)将光吸收层按光吸收层的待处理表面与氨水溶液的液面呈预定角度放置在所述氨水溶液中进行处理1-10min,处理温度为25-65℃;
(3)取出处理后的光吸收层,清洗后吹干。
其中,在对光吸收层进行表面处理过程中,沉积了光吸收层的样品按光吸收层的待处理表面与氨水溶液的液面呈预定角度方式浸在氨水溶液中,较优的是,预定角度是65-90°,更优的是,预定角度为90°。通过按光吸收层的待处理表面与氨水溶液的液面呈预定角度的放置方式可以对光吸收层的表面进行选择性刻蚀,并可以使得光吸收层的表面在被氨水刻蚀处理过程中,将产生的气泡及时排除,从而使得处理得更均匀,对后续Zn(O,S)缓冲层的生长更有利,形成较为平整的缓冲层薄膜。
优选地,所述光吸收层是CIGS(Cu(In,Ga)Se2,铜铟镓硒)光吸收层或CZTS(Cu2ZnSnS4,铜锌锡硫)光吸收层。
优选地,所述光吸收层采用共蒸发三步法制备得到。以CIGS光吸收层为例,共蒸发三步法的过程如下:第一步:共蒸发In,Ga和Se沉积在衬底上,形成In-Ga-Se层;第二步:共蒸发Cu和Se沉积在In-Ga-Se层上,形成富Cu的CIGS层;第三步:少量的In,Ga和Se沉积以形成贫铜的CIGS薄膜。利用三步法形成的光吸收层表面可能存在Se、氧化物、Na的聚集物等杂质,通过上述低浓度氨水溶液对其表面进行选择性刻蚀,可以改善表面成分及形貌。
本发明具体实施方式还提供一种在Cu基薄膜太阳电池的光吸收层上沉积缓冲层的方法,所述缓冲层是Zn(O,S),包括如下步骤:
(1)先将锌源溶液和络合剂溶液混合搅拌第一时间,然后同时加入硫代乙酰胺溶液和氨水溶液混合搅拌第二时间,制得沉积液,在沉积液中,锌源的Zn2+浓度为2.5-10mM,络合剂的浓度为2.5-13mM,硫代乙酰胺的S2-浓度为5-12.5mM,氨水的浓度为0.7-2.2M;
(2)将经上述实施方式中的后处理方法处理后的光吸收层浸入所述沉积液中,通过水浴加热在光吸收层上沉积缓冲层Zn(O,S);
(3)沉积结束后取出样品,先用去离子水冲洗,然后用0.1-1M、温度为20-60℃的氨水溶液清洗样品表面,再利用去离子水去除残留的氨水溶液,吹干;
(4)将经步骤(3)处理后的样品在空气中加热,加热温度为60-160℃,时间1-8min。
优选地,所述步骤(1)中的第一时间为1-10min;所述第二时间为10-30s。
优选地,所述锌源为醋酸锌、硫酸锌和氯化锌中的至少一种;所述络合剂是柠檬酸和柠檬酸三钠中的至少一种。更优的是,锌源为醋酸锌Zn(COOH)2·2H2O,Zn2+在沉积液中的浓度为7.5mM,络合剂是柠檬酸C6H8O7·H2O,其在沉积液中的浓度为6.5mM;硫代乙酰胺C2H5NS的S2-在沉积液中的浓度为7.5mM,氨水在沉积液中的浓度为1.4M。
本发明具体实施方式还提供一种薄膜太阳电池的制备方法,包括如下步骤:
(1)在衬底上沉积背电极层,并在所述背电极层上沉积光吸收层;
(2)采用上述实施方式中的后处理方法处理所述光吸收层;
(3)采用上述实施方式中的方法在所述光吸收层上沉积缓冲层Zn(O,S);
(4)在所述缓冲层Zn(O,S)上沉积窗口层,并在所述窗口层上形成栅极。
优选地,所述衬底是钠钙玻璃;所述背电极是Mo,光吸收层可以采用共蒸发三步法形成。
优选地,所述窗口层是镁掺杂的氧化锌(ZnMgO)和掺铝氧化锌(Al:ZnO),可以通过磁控溅射沉积。
优选地,所述栅极是Ni-Al栅极,可以通过电子束蒸发形成。
下面,以CIGS薄膜太阳电池为例,对本发明做进一步阐述。
实施例一
CIGS薄膜太阳电池的光吸收层的后处理方法包括如下步骤:
(1)配置氨水溶液,氨水溶液的浓度为1M;
(2)将CIGS光吸收层按光吸收层的待处理表面与氨水溶液的液面垂直的方式放置在氨水溶液中,将溶液加热到65℃,进行刻蚀处理5min;
(3)取出处理后的CIGS光吸收层,用去离子水清洗后,用气体吹干,并真空保存备用。
经过上述处理后,CIGS光吸收层的表面成分以及形貌可以得到改善。如图1a和1b所示,分别是未经处理的CIGS光吸收层的SEM图和经过上述处理的CIGS光吸收层的SEM图;从图中可以看出:未经处理的CIGS光吸收层表面光滑,且晶粒之间界面模糊;经过处理后的CIGS光吸收层的表面有随机分布的颗粒,且晶界界面清晰。同时通过XPS测试发现,CIGS光吸收层的表面成分经过上述处理后会发生变化,未处理CIGS光吸收层的CGI(Cu/(Ga+In))等于0.43,GGI(Ga/(Ga+In))等于0.48,严重缺铜,处理后,CGI增加到0.64,而GGI可以几乎不变,等于0.45。
实施例二
在CIGS薄膜太阳电池的光吸收层上沉积缓冲层Zn(O,S)的方法包括如下步骤:
(1)先将醋酸锌溶液和柠檬酸溶液混合搅拌5min,然后同时加入硫代乙酰胺溶液和氨水溶液混合搅拌30s,制得沉积液,沉积液中,Zn2+浓度为7.5mM,柠檬酸的浓度为6.5mM,S2-浓度为7.5mM,氨水的浓度为1.4M;
(2)将经实施例一的后处理方法处理后的CIGS光吸收层浸入沉积液中,通过水浴加热在光吸收层上沉积缓冲层Zn(O,S),可以通过调整水浴加热的温度和加热时间以及前驱体物质量来控制缓冲层Zn(O,S)的厚度,在本例中,加热温度为85℃、加热时间为15min,缓冲层厚度约30nm。
(3)沉积结束后取出样品,先用去离子水冲洗,然后用1M、温度为60℃的氨水溶液清洗样品表面15s,之后再利用去离子水去除残留的氨水溶液,并用氮气吹干;
(4)将经步骤(3)处理后的样品在空气中加热,加热温度为150℃,时间2min,得到在CIGS光吸收层沉积有缓冲层Zn(O,S)的样品(下称第一样品)。
作为比较一,其与实施例二的区别在于,在步骤(2)中将缓冲层Zn(O,S)沉积在未经处理的CIGS光吸收层上,其他步骤与实施例二相同,得到样品(下称第二样品)。图2a和2b分别是第二样品和第一样品的SEM图;从图中可以看出,未处理的CIGS光吸收层在生长完Zn(O,S)薄膜后,Zn(O,S)对CIGS的覆盖较为致密均匀,而经过实施例一处理后的CIGS,在生长完Zn(O,S)薄膜后,Zn(O,S)对CIGS的覆盖不仅非常致密均匀,且明显晶粒长大,因此,在处理过的CIGS表面沉积的Zn(O,S)拥有更大的晶粒。
作为比较二,其与实施例二的区别在于,在步骤(3)中取出样品后,直接用去离子水冲洗后氮气吹干,而不用1M、温度为60℃的氨水溶液清洗样品表面15s,其他步骤与实施例二相同,得到样品(下称第三样品)。图2c是第三样品和第一样品的XPS图,其中,曲线a1表示第一样品,曲线a2表示第三样品,不经过氨水清洗得到的第三样品表现出更高的O含量,而经过处理氨水清洗得到的第一样品的O含量降低,XPS测试得到第一样品的S/(S+O)=0.51,第三样品的S/(S+O)=0.43。
图2d是用第三样品和第一样品得到的电池器件的J-V曲线图,其中曲线s1代表第三样品得到的电池器件,曲线s2代表第一样品得到的电池器件,第一样品得到的电池器件的效率更高,可以达到15.81%,而第三样品得到的电池器件的效率为15.05%。
实施例三
一种CIGS薄膜太阳电池的制备方法,包括如下步骤:
(1)在钠钙玻璃衬底上沉积背电极Mo层,并在背电极Mo层上用共蒸发三步法沉积CIGS光吸收层;
(2)采用实施例一中的后处理方法处理光吸收层;
(3)采用实施例二中的方法在光吸收层上沉积缓冲层Zn(O,S);
(4)通过磁控溅射沉积在缓冲层Zn(O,S)上沉积窗口层(镁掺杂的氧化锌(ZnMgO)和掺铝氧化锌(Al:ZnO)),并在窗口层上电子束蒸发Ni-Al栅极,得到CIGS薄膜太阳电池器件(下方称第一器件)。
作为比较,采用同样的条件,将缓冲层Zn(O,S)沉积在未经处理的CIGS光吸收层上,并得到一CIGS薄膜太阳电池器件(下方称第二器件)。图3a和3b分别是第二器件和第一器件的TEM图,图中,1表示CIGS光吸收层,2表示缓冲层Zn(O,S),3表示窗口层,从中可以看出界面特征,即第二器件的CIGS与Zn(O,S)的界面清晰,而第一器件的断面TEM显示,CIGS与Zn(O,S)的界面模糊,这说明CIGS和Zn(O,S)之间扩散得以增加。
图4的(a)图和(b)图分别是第二器件和第一器件的EDX图,其中,(a)图是图3a中虚线所示的标定位置的EDX的线扫元素分布图,(b)图是图3b中虚线所示的标定位置的EDX的线扫元素分布图,在图4中,曲线所代表的各元素在图中以各元素的符号表示,从中可以看出,相比第二器件,在第一器件中,Zn和S与CIGS表层有更明显的相互渗入。
图5a和5b分别是第二器件和第一器件的J-V曲线图,比较两个器件的电池效率及其光照稳定性特征,从图中可以看出,第二器件的初始效率较低,且电池性能受光照影响明显,电池效率从14.53%增加到16.00%;而第一器件的效率从一开始的16.33%增加到16.69%,电池效率较高,且受光照影响较低,光浸润效应减弱。
实施例四
与实施例一的区别在于,本实施例为CZTS薄膜太阳电池的光吸收层的后处理方法,光吸收层的材料为CZTS(Cu2ZnSnS4)。
如图6a和6b所示,分别是未经处理的CZTS光吸收层的SEM图和经过实施例四处理的CZTS光吸收层的SEM图;从图中可以看出:未经处理的CZTS光吸收层表面光滑,且晶粒之间界面模糊;经过处理后的CZTS光吸收层的表面有随机分布的颗粒,且晶界界面清晰。
实施例五
与实施例三的区别在于,本例是CZTS薄膜太阳电池的制备方法,步骤(2)为采用实施例四中的后处理方法处理CZTS光吸收层,其他步骤与实施例三相同,制得CZTS薄膜太阳电池器件(下方称第三器件)。
同样地,作为比较,采用同样的条件,将缓冲层Zn(O,S)沉积在未经处理的CZTS光吸收层上,并得到一CZTS薄膜太阳电池器件(下方称第四器件)。
图7是第三器件和第四器件的J-V曲线图,其中,曲线a是第四器件的,曲线b是第三器件的。从图中可以看出,第三器件表现出更好的光电效应,电压比没有处理的样品大约增加50mV,电流增加约1.8mA/cm2
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (7)

1.一种在Cu基薄膜太阳电池的光吸收层上沉积缓冲层的方法,所述缓冲层是Zn(O,S),其特征在于,包括如下步骤:
(1)先将锌源溶液和络合剂溶液混合搅拌第一时间,然后同时加入硫代乙酰胺溶液和氨水溶液混合搅拌第二时间,制得沉积液,在所述沉积液中,锌源的Zn2+浓度为2.5-10mM,络合剂的浓度为2.5-13mM,硫代乙酰胺的S2-浓度为5-12.5mM,氨水的浓度为0.7-2.2M;
(2)将经后处理方法处理后的光吸收层浸入所述沉积液中,通过水浴加热在光吸收层上沉积缓冲层Zn(O,S),其中所述后处理方法包括如下步骤:(2.1)配置氨水溶液,所述氨水溶液的浓度为0.1-1M;(2.2)将光吸收层按所述光吸收层的待处理表面与所述氨水溶液的液面呈预定角度放置在所述氨水溶液中进行处理1-10min,处理温度为25-65℃;(2.3)取出处理后的光吸收层,清洗后吹干;其中,所述预定角度是65-90°,所述光吸收层是CIGS光吸收层或CZTS光吸收层;
(3)沉积结束后取出样品,先用去离子水冲洗,然后用0.1-1M、温度为20-60℃的氨水溶液清洗样品表面,再利用去离子水去除残留的氨水溶液,吹干;
(4)将经步骤(3)处理后的样品在空气中加热,加热温度为60-160℃,时间1-8min。
2.如权利要求1所述的方法,其特征在于,所述步骤(1)中的第一时间为1-10min;所述第二时间为10-30s。
3.如权利要求1所述的方法,其特征在于,所述锌源为醋酸锌、硫酸锌和氯化锌中的至少一种;所述络合剂是柠檬酸和柠檬酸三钠中的至少一种。
4.如权利要求1所述的方法,其特征在于,所述锌源为醋酸锌,Zn2+在所述沉积液中的浓度为7.5mM;所述络合剂是柠檬酸,其在所述沉积液中的浓度为6.5mM;在所述沉积液中,硫代乙酰胺的S2-浓度为7.5mM,氨水的浓度为1.4M。
5.如权利要求1所述的方法,其特征在于,所述光吸收层采用共蒸发三步法制备得到。
6.一种薄膜太阳电池的制备方法,其特征在于,包括如下步骤:
(1)在衬底上沉积背电极层,并在所述背电极层上沉积光吸收层;
(2)采用权利要求1-5任意一项所述的方法在所述光吸收层上沉积缓冲层Zn(O,S);
(3)在所述缓冲层Zn(O,S)上沉积窗口层,并在所述窗口层上形成栅极。
7.如权利要求6所述的制备方法,其特征在于,所述衬底是钠钙玻璃;所述背电极是Mo;所述窗口层是镁掺杂的氧化锌和掺铝氧化锌;所述栅极是Ni-Al栅极。
CN201811066796.5A 2018-09-13 2018-09-13 Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法 Active CN110896109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811066796.5A CN110896109B (zh) 2018-09-13 2018-09-13 Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811066796.5A CN110896109B (zh) 2018-09-13 2018-09-13 Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法

Publications (2)

Publication Number Publication Date
CN110896109A CN110896109A (zh) 2020-03-20
CN110896109B true CN110896109B (zh) 2022-06-07

Family

ID=69785357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811066796.5A Active CN110896109B (zh) 2018-09-13 2018-09-13 Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法

Country Status (1)

Country Link
CN (1) CN110896109B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171636B (zh) * 2021-11-24 2024-06-21 湖北工业大学 一种CZTS薄膜太阳能电池用无Cd隧穿缓冲层的制备方法
CN117174593B (zh) * 2023-08-22 2024-04-09 中山大学 一种基于添加氨水制备铜锌锡硫硒薄膜前驱体溶液、铜锌锡硫硒薄膜及其光伏器件的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296131A (zh) * 2012-03-05 2013-09-11 任丘市永基光电太阳能有限公司 一种新的Cu(InGa)Se2薄膜太阳电池缓冲层制备方法
CN105914262A (zh) * 2016-06-03 2016-08-31 中国科学院上海微系统与信息技术研究所 一种薄膜太阳能电池缓冲层后处理工艺
CN107623046B (zh) * 2017-08-25 2020-06-30 中国科学院上海微系统与信息技术研究所 铜铟镓硒吸收层后处理方法及基于其的太阳电池制备方法

Also Published As

Publication number Publication date
CN110896109A (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
US20090235987A1 (en) Chemical Treatments to Enhance Photovoltaic Performance of CIGS
JP5180188B2 (ja) Cis系薄膜太陽電池デバイスの製造方法
Li et al. Effects of substrate orientation and solution movement in chemical bath deposition on Zn (O, S) buffer layer and Cu (In, Ga) Se2 thin film solar cells
TWI677105B (zh) 製造薄膜光電子裝置之方法及可藉由該方法獲得的薄膜光電子裝置
US8748217B2 (en) Metal-based solution treatment of CIGS absorber layer in thin-film solar cells
KR101170681B1 (ko) Cigs박막의 제조방법
US9276157B2 (en) Methods of treating a semiconductor layer
CN110896109B (zh) Cu基薄膜太阳电池光吸收层后处理及沉积缓冲层的方法
CN107910390B (zh) 一种银单质掺杂的CZTSSe薄膜的制备方法和应用
JP2003318424A (ja) 薄膜太陽電池およびその製造方法
JP2011146595A (ja) Czts系半導体用cbd溶液、czts系半導体用バッファ層の製造方法及び光電素子
KR20140031190A (ko) I-iii-vi2 재료층과 몰리브덴 기판 간의 향상된 인터페이스
JP4055064B2 (ja) 薄膜太陽電池の製造方法
KR101484156B1 (ko) 틴이 도핑된 인듐 설파이드 박막의 제조방법 및 이를 버퍼층으로 이용한 cigs 박막태양전지의 제조방법
AU2013216698A1 (en) Photovoltaic devices
Bayhan et al. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS= CdTe Heterojunction Devices
KR102042656B1 (ko) 균일한 조성의 광흡수층을 포함하는 czts 박막 태양전지 및 그의 제조방법
CN105405900B (zh) 一种碲化镉太阳能电池及其制备方法
KR101559102B1 (ko) Czts 박막 태양전지의 제조방법 및 이에 따라 제조되는 czts 박막 태양전지
US20120309125A1 (en) Buffer layer deposition methods for group ibiiiavia thin film solar cells
JP2003258282A (ja) 光吸収層の作製方法
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
KR101582121B1 (ko) 이종 적층형 cis계 광활성층 박막의 제조방법, 이로부터 제조된 cis계 광활성층 박막 및 상기 박막을 포함하는 박막 태양전지
WO2019196025A1 (zh) Azo透明导电薄膜及其制备方法和应用
CN110957393B (zh) 薄膜太阳能电池的光吸收层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant