CN110885524A - 基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法 - Google Patents

基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法 Download PDF

Info

Publication number
CN110885524A
CN110885524A CN201811057412.3A CN201811057412A CN110885524A CN 110885524 A CN110885524 A CN 110885524A CN 201811057412 A CN201811057412 A CN 201811057412A CN 110885524 A CN110885524 A CN 110885524A
Authority
CN
China
Prior art keywords
glycinamide
sodium alginate
naga
solution
acryloyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811057412.3A
Other languages
English (en)
Inventor
刘文广
范川川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811057412.3A priority Critical patent/CN110885524A/zh
Publication of CN110885524A publication Critical patent/CN110885524A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明提供基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法,先将甘氨酰胺和丙烯酰氯制备丙烯酰基甘氨酰胺(NAGA),然后将丙烯酰基甘氨酰胺(NAGA)单体与海藻酸钠(alginate)溶液共混,加入热引发剂共聚反应后,将凝胶浸泡在Ca2+溶液中,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。由氢键和离子键构成的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,在这种水凝胶中,丙烯酰基甘氨酰胺(NAGA)强的氢键作用使得凝胶具有泡水稳定以及具有高强度的性能,而海藻酸钠(alginate)的引入可以通过离子交联使得凝胶的力学性能得到一定的延续。

Description

基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制 备方法
技术领域
本发明涉及双网络高强水凝胶制备技术领域,更具体地说涉及一种基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法。
背景技术
高分子水凝胶是一类内部含有大量水的三维网络结构,其在结构形态上与生物体内软组织存在较大的相似性,并且高分子水凝胶一般具有良好的生物相容性,因此水凝胶已经广泛应用于组织工程支架、药物递送载体、创伤敷料等各个领域。但是,水凝胶是一种多孔网络结构,其内部含量大量的水,并且在水中聚合物链段处于高溶胀的状态,在受力过程中,这些链段表现出了较大的脆性和较低的能量耗散机制,从而导致水凝胶较弱的力学性能,使得水凝胶的应用受到极大的限制。
为了克服水凝胶力学性能差的缺陷,人们采用了各种策略来提高水凝胶的力学性能:1)纳米复合水凝胶,在聚合物基体中,均匀的引入纳米粒子:一方面,纳米粒子本身的高模量,可以使得水凝胶的模量得到显著的提升;另一方面,纳米颗粒往往具有高的比表面积和丰富的活性官能团,可以通过物理吸附或者化学键合作用,与高分子链段之间形成较强的界面作用,从而实现高效能量传输,进而获得高性能的复合水凝胶;另外,采用纳米颗粒作为高分子链段的交联单元,可以实现能量在巨型交联单元中的原位耗散,从而获得高强度、高韧性以及刺激响应性功能水凝胶。2)双氢键水凝胶,氢键作为物理键,键能较低,尤其单氢键在水能极性溶剂中容易解离,从而使得水凝胶具有较弱的机械性能以及泡水不稳定性的缺点,但是双氢键却可以使得凝胶在水溶液中维持稳定,并使得凝胶具有高的强度和韧性。3)双网络结构水凝胶,通过引入牺牲键来提高凝胶的韧性和强度,当有外力作用时,水凝胶中牺牲键断裂起到能量耗散作用,从而赋予水凝胶良好的力学性能。4)通过分子链取向使得高分子链形成纳米纤维结构,类似于生物体的肌腱或韧带等结构,从而获得高模量水凝胶。
发明内容
本发明克服了现有技术中的不足,提供了一种基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法,由氢键和离子键构成的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,在这种水凝胶中,丙烯酰基甘氨酰胺(NAGA)强的氢键作用使得凝胶具有泡水稳定以及具有高强度的性能,而海藻酸钠(alginate)的引入可以通过离子交联使得凝胶的力学性能得到一定的延续。
本发明的目的通过下述技术方案予以实现。
基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法,按照下述步骤进行:
步骤1,将甘氨酰胺盐酸盐、去离子水、碳酸钾和乙醚置于反应容器中混合冰浴,再将丙烯酰氯与乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为0.5-1.5h,滴加完后再在冰浴下搅拌反应3-5h,将反应液的PH调节为1-3,乙醚洗涤后,调节反应液的pH为6-7后,将反应液冻干、乙醇/甲醇混合溶剂洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)溶解到水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为(5-12):1,向上述混合溶液中加入热引发剂,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的1-3%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到50-70℃烘箱中交联6-9h后,浸泡在250-350mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
在步骤1中,甘氨酰胺盐酸盐的加入量为6.0-7.0g,碳酸钾溶液的加入量为32-35mL,碳酸钾溶液的浓度为2mol/L,乙醚的加入量为16-20mL,丙烯酰氯的乙醚溶液中:丙烯酰氯的加入量为5.0-6.5g,乙醚的加入量为20-30mL。
在步骤1中,低温搅拌反应的时间为3-4h。
在步骤2中,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为(6-10):1。
在步骤2中,热引发剂用量为丙烯酰基甘氨酰胺(NAGA)单体质量的2-3%,热引发剂采用过硫酸铵(APS)。
在步骤2中,总体固含量为15-25%(总体固含量为全部反应物总质量占全部反应物及溶剂总质量的比例)。
利用傅里叶变换红外光谱仪(FTIR,Spectrum 100FTIR Spectrometer,PerkinElmer Inc.,USA)测定干燥的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的粉末。如图1所示,双网络水凝胶和聚丙烯酰基甘氨酰胺(PNAGA)红外谱图相比较,在3424cm-1处出现了羟基的伸缩振动峰,在1702cm-1处出现了羧基中羰基的伸缩振动峰,表明双网络结构中存在海藻酸钠高分子结构的存在,进一步证明了聚合物两种高分子结构的存在。
利用拉伸仪测试水凝胶的力学性能,如图2所示,丙烯酰基甘氨酰胺(NAGA)与海藻酸钠(alginate)分别按比例6:1,8:1,10:1制备双网络水凝胶并进行拉伸测试,拉伸曲线如图2所示,当丙烯酰基甘氨酰胺(NAGA):海藻酸钠(alginate)为8:1时,拉伸强度和断裂伸长率均高于同等固含量下的其他比例凝胶的拉伸强度和断裂伸长率。
本发明的有益效果为:通过加入不同比例的丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate),可以制备不同拉伸强度的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,这种水凝胶的制备过程中并未加入交联剂,仅仅通过单体之间的氢键和离子键构成的双网络以达到聚合的目的,同时也拓宽了双网络水凝胶的制备方法,具有广阔的应用前景。
附图说明
图1是本发明制备的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶和聚丙烯酰基甘氨酰胺(PNAGA)的红外谱图;
图2是本发明制备的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的应力-应变图,其中,a为实施例1制备得到的水凝胶,b为实施例2制备得到的水凝胶,c为实施例3制备得到的水凝胶。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的说明。
实施例1
步骤1,将6.0g甘氨酰胺盐酸盐、6mL去离子水、32mL 2mol/L碳酸钾和16mL乙醚置于反应容器中混合冰浴,再将5.0g丙烯酰氯与20mL乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为0.5h,滴加完后再在冰浴下搅拌反应3h,将反应液的PH调节为1,乙醚洗涤后,调节反应液的pH为6后,将反应液冻干、乙醇/甲醇混合溶剂(乙醇与甲醇的比例为4:1)洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的0.171g丙烯酰基甘氨酰胺(NAGA)和0.029g海藻酸钠(alginate)溶解到800μL水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为6:1,向上述混合溶液中加入热引发剂,热引发剂采用过硫酸铵(APS),过硫酸铵(APS)的加入量为3.4mg,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的2%,总体固含量为20%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到50℃烘箱中交联6h后,浸泡在250mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
实施例2
步骤1,将7.0g甘氨酰胺盐酸盐、6mL去离子水、35mL 2mol/L碳酸钾和20mL乙醚置于反应容器中混合冰浴,再将6.5g丙烯酰氯与30mL乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为1.5h,滴加完后再在冰浴下搅拌反应5h,将反应液的PH调节为3,乙醚洗涤后,调节反应液的pH为7后,将反应液冻干、乙醇/甲醇混合溶剂(乙醇与甲醇的比例为4:1)洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的0.178g丙烯酰基甘氨酰胺(NAGA)和0.022g海藻酸钠(alginate)溶解到800μL水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为8:1,向上述混合溶液中加入热引发剂,热引发剂采用过硫酸铵(APS),过硫酸铵(APS)的加入量为3.5mg,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的2%,总体固含量为20%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到70℃烘箱中交联9h后,浸泡在350mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
实施例3
步骤1,将6.3g甘氨酰胺盐酸盐、6mL去离子水、33.6mL 2mol/L碳酸钾和18mL乙醚置于反应容器中混合冰浴,再将5.7g丙烯酰氯与24mL乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为1h,滴加完后再在冰浴下搅拌反应4h,将反应液的PH调节为2,乙醚洗涤后,调节反应液的pH为7后,将反应液冻干、乙醇/甲醇混合溶剂(乙醇与甲醇的比例为4:1)洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的0.182g丙烯酰基甘氨酰胺(NAGA)和0.018g海藻酸钠(alginate)溶解到800μL水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为10:1,向上述混合溶液中加入热引发剂,热引发剂采用过硫酸铵(APS),过硫酸铵(APS)的加入量为3.6mg,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的2%,总体固含量为20%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到60℃烘箱中交联8h后,浸泡在300mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
实施例4
步骤1,将6.5g甘氨酰胺盐酸盐、6mL去离子水、34mL 2mol/L碳酸钾和17mL乙醚置于反应容器中混合冰浴,再将5.5g丙烯酰氯与24mL乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为1.2h,滴加完后再在冰浴下搅拌反应4h,将反应液的PH调节为1,乙醚洗涤后,调节反应液的pH为6后,将反应液冻干、乙醇/甲醇混合溶剂(乙醇与甲醇的比例为4:1)洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的0.36g丙烯酰基甘氨酰胺(NAGA)和0.072g海藻酸钠(alginate)溶解到2.5mL水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为5:1,向上述混合溶液中加入热引发剂,热引发剂采用过硫酸铵(APS),过硫酸铵(APS)的加入量为3.6mg,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的1%,总体固含量为15%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到55℃烘箱中交联7h后,浸泡在280mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
实施例5
步骤1,将6.8g甘氨酰胺盐酸盐、6mL去离子水、32mL 2mol/L碳酸钾和18mL乙醚置于反应容器中混合冰浴,再将5.9g丙烯酰氯与28mL乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为0.9h,滴加完后再在冰浴下搅拌反应4h,将反应液的PH调节为3,乙醚洗涤后,调节反应液的pH为7后,将反应液冻干、乙醇/甲醇混合溶剂(乙醇与甲醇的比例为4:1)洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的0.12g丙烯酰基甘氨酰胺(NAGA)和0.01g海藻酸钠(alginate)溶解到390μL水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为12:1,向上述混合溶液中加入热引发剂,热引发剂采用过硫酸铵(APS),过硫酸铵(APS)的加入量为3.6mg,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的3%,总体固含量为25%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到65℃烘箱中交联8h后,浸泡在330mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,其特征在于:按照下述步骤进行:
步骤1,将甘氨酰胺盐酸盐、去离子水、碳酸钾和乙醚置于反应容器中混合冰浴,再将丙烯酰氯与乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为0.5-1.5h,滴加完后再在冰浴下搅拌反应3-5h,将反应液的PH调节为1-3,乙醚洗涤后,调节反应液的pH为6-7后,将反应液冻干、乙醇/甲醇混合溶剂洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)溶解到水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为(5-12):1,向上述混合溶液中加入热引发剂,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的1-3%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到50-70℃烘箱中交联6-9h后,浸泡在250-350mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
2.根据权利要求1所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,其特征在于:在步骤1中,甘氨酰胺盐酸盐的加入量为6.0-7.0g,碳酸钾溶液的加入量为32-35mL,碳酸钾溶液的浓度为2mol/L,乙醚的加入量为16-20mL,丙烯酰氯的乙醚溶液中:丙烯酰氯的加入量为5.0-6.5g,乙醚的加入量为20-30mL,低温搅拌反应的时间为3-4h。
3.根据权利要求1所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,其特征在于:在步骤2中,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为(6-10):1。
4.根据权利要求1所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,其特征在于:在步骤2中,热引发剂用量为丙烯酰基甘氨酰胺(NAGA)单体质量的2-3%,热引发剂采用过硫酸铵(APS)。
5.根据权利要求1所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶,其特征在于:在步骤2中,总体固含量为15-25%。
6.制备如权利要求1所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的方法,其特征在于:按照下述步骤进行:
步骤1,将甘氨酰胺盐酸盐、去离子水、碳酸钾和乙醚置于反应容器中混合冰浴,再将丙烯酰氯与乙醚进行混合后缓慢滴加到上述反应溶液中,滴加时间为0.5-1.5h,滴加完后再在冰浴下搅拌反应3-5h,将反应液的PH调节为1-3,乙醚洗涤后,调节反应液的pH为6-7后,将反应液冻干、乙醇/甲醇混合溶剂洗涤、旋蒸、干燥后,得到丙烯酰基甘氨酰胺(NAGA);
步骤2,将上述得到的丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)溶解到水中,获得丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的混合溶液,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为(5-12):1,向上述混合溶液中加入热引发剂,热引发剂的用量为丙烯酰基甘氨酰胺(NAGA)单体质量的1-3%,除掉溶液中氧气,将上述混合溶液注入到模具中,将装有混合溶液的模具转移到50-70℃烘箱中交联6-9h后,浸泡在250-350mM的Ca2+溶液中,取出后,得到基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶。
7.根据权利要求6所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的制备方法,其特征在于:在步骤1中,甘氨酰胺盐酸盐的加入量为6.0-7.0g,碳酸钾溶液的加入量为32-35mL,碳酸钾溶液的浓度为2mol/L,乙醚的加入量为16-20mL,丙烯酰氯的乙醚溶液中:丙烯酰氯的加入量为5.0-6.5g,乙醚的加入量为20-30mL,低温搅拌反应的时间为3-4h。
8.根据权利要求6所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的制备方法,其特征在于:在步骤2中,丙烯酰基甘氨酰胺(NAGA)和海藻酸钠(alginate)的质量比为(6-10):1。
9.根据权利要求6所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的制备方法,其特征在于:在步骤2中,热引发剂用量为丙烯酰基甘氨酰胺(NAGA)单体质量的2-3%,热引发剂采用过硫酸铵(APS)。
10.根据权利要求6所述的基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶的制备方法,其特征在于:在步骤2中,总体固含量为15-25%。
CN201811057412.3A 2018-09-11 2018-09-11 基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法 Pending CN110885524A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811057412.3A CN110885524A (zh) 2018-09-11 2018-09-11 基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811057412.3A CN110885524A (zh) 2018-09-11 2018-09-11 基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法

Publications (1)

Publication Number Publication Date
CN110885524A true CN110885524A (zh) 2020-03-17

Family

ID=69745592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811057412.3A Pending CN110885524A (zh) 2018-09-11 2018-09-11 基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN110885524A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112220971A (zh) * 2020-07-20 2021-01-15 四川大学 一种人工生物心脏瓣膜及其制备方法
CN112876695A (zh) * 2021-01-07 2021-06-01 南开大学 多重氢键水凝胶作为高灵敏度、高强度和自修复离子传感器的制备方法
WO2021217621A1 (zh) * 2020-04-30 2021-11-04 深圳先进技术研究院 生物墨水、小口径管状结构支架及其制备方法和应用
CN115068671A (zh) * 2022-06-20 2022-09-20 常州华联医疗器械集团股份有限公司 一种海藻酸钠水凝胶敷料的制备方法
CN116284570A (zh) * 2022-11-23 2023-06-23 中国石油大学(华东) 一种水基钻井液用抗高温抗高盐降滤失剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396562A (zh) * 2013-07-09 2013-11-20 西安交通大学 一种基于海藻酸钠-聚丙烯酰胺水凝胶的制备方法
CN104804115A (zh) * 2015-04-21 2015-07-29 天津大学 一种高强度超分子水凝胶及其制备方法和应用
CN105504166A (zh) * 2016-01-20 2016-04-20 武汉理工大学 一种海藻酸钠-丙烯酰胺复合水凝胶及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396562A (zh) * 2013-07-09 2013-11-20 西安交通大学 一种基于海藻酸钠-聚丙烯酰胺水凝胶的制备方法
CN104804115A (zh) * 2015-04-21 2015-07-29 天津大学 一种高强度超分子水凝胶及其制备方法和应用
CN105504166A (zh) * 2016-01-20 2016-04-20 武汉理工大学 一种海藻酸钠-丙烯酰胺复合水凝胶及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAOFEI LI ET AL.: "A highly tough and stiff supramolecular polymer double network hydrogel", 《POLYMER》 *
XIYANG DAI ET AL.: "A Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel", 《ADVANCED MATERIALS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217621A1 (zh) * 2020-04-30 2021-11-04 深圳先进技术研究院 生物墨水、小口径管状结构支架及其制备方法和应用
CN112220971A (zh) * 2020-07-20 2021-01-15 四川大学 一种人工生物心脏瓣膜及其制备方法
CN112220971B (zh) * 2020-07-20 2021-08-31 四川大学 一种人工生物心脏瓣膜及其制备方法
WO2022057841A1 (zh) * 2020-07-20 2022-03-24 吉林启明皓月生物科技有限公司 一种人工生物心脏瓣膜及其制备方法
CN112876695A (zh) * 2021-01-07 2021-06-01 南开大学 多重氢键水凝胶作为高灵敏度、高强度和自修复离子传感器的制备方法
CN115068671A (zh) * 2022-06-20 2022-09-20 常州华联医疗器械集团股份有限公司 一种海藻酸钠水凝胶敷料的制备方法
CN116284570A (zh) * 2022-11-23 2023-06-23 中国石油大学(华东) 一种水基钻井液用抗高温抗高盐降滤失剂及其制备方法与应用
CN116284570B (zh) * 2022-11-23 2024-04-12 中国石油大学(华东) 一种水基钻井液用抗高温抗高盐降滤失剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110885524A (zh) 基于聚丙烯酰基甘氨酰胺和海藻酸钠的双网络水凝胶及其制备方法
CN105732999B (zh) 高强度交联水凝胶和弹性体及其制备方法
CN105175755B (zh) 一种高强度高拉伸双网络物理交联水凝胶及其制备方法
CN110229374A (zh) 一种高强度取向型聚乙烯醇水凝胶的制备方法及应用
CN109836596B (zh) 强氢键作用高强度与高粘附的支链淀粉复合水凝胶的制备方法
CN110922611B (zh) 高强度导电且耐高低温的MXene水凝胶及其制备方法和应用
CN103881126B (zh) 一种用于提高材料血液相容性的方法
CN105542483B (zh) 一种聚三亚甲基碳酸酯与聚对二氧环己酮改进聚乙烯醇膜耐水性及柔顺性的方法
Chen et al. Mussel-inspired ultra-stretchable, universally sticky, and highly conductive nanocomposite hydrogels
CN110885476B (zh) 一锅法制备的二次掺杂型氧化石墨烯/碱溶壳聚糖-聚苯胺-聚丙烯酰胺复合导电水凝胶
CN106750450A (zh) 含有环氧磷酰胆碱聚合物与多巴胺交联粘附仿生涂层的制备方法
CN104861179A (zh) 一种羽毛角蛋白-海藻酸钠复合高分子双敏感水凝胶的制备及作为药物载体的应用
Yang et al. Highly stretchable and self-healing hydrogels based on poly (acrylic acid) and functional POSS
CN106632855A (zh) 一种高强度多功能凝胶及其制备方法
CN105694476B (zh) 一种聚三亚甲基碳酸酯与聚乳酸乙醇酸改进聚乙烯醇膜耐水性及柔顺性的方法
CN110330669B (zh) 聚(丙烯酰胺-vdt)/ta高强度水凝胶的制备方法
CN113150325A (zh) 一种pva/pam复合水凝胶的制备方法
CN108129687A (zh) 一种表面为磷酰胆碱的仿细胞外层膜结构涂层的制备方法
CN111171237A (zh) 一种腐植酸高强度自修复水凝胶及其制备方法
CN105418861A (zh) 一种基于聚氨基酸分子交联水凝胶及其制备方法
CN110540661B (zh) 一种丝素蛋白与聚乙烯醇的复合水凝胶及其制备方法和应用
CN112175139A (zh) 海藻酸钠接枝丙烯酰胺水凝胶的制备方法
CN103145916A (zh) 一种可酸降解的温度响应poss杂化水凝胶的制备方法
CN105294934B (zh) 一种高强度抗菌水凝胶及其制备方法
CN110183566A (zh) 一种膨润土复合甲基丙烯酸聚合物高强度吸水剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200317