CN110846314A - 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用 - Google Patents

一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用 Download PDF

Info

Publication number
CN110846314A
CN110846314A CN201911079333.7A CN201911079333A CN110846314A CN 110846314 A CN110846314 A CN 110846314A CN 201911079333 A CN201911079333 A CN 201911079333A CN 110846314 A CN110846314 A CN 110846314A
Authority
CN
China
Prior art keywords
rice
grna
spacer
prgeb32
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911079333.7A
Other languages
English (en)
Inventor
戴伟民
强胜
宋小玲
孔梦瑶
孙茜茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201911079333.7A priority Critical patent/CN110846314A/zh
Publication of CN110846314A publication Critical patent/CN110846314A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及了一种基于CRISPR/Cas9变换水稻果皮色(白至红、红至白)的基因编辑方法,其包括如下步骤:(1)合成转录因子rc基因的特定gRNA‑spacer;(2)构建CRISPR/Cas‑gRNA‑spacer载体;(3)采用农杆菌转化法转化水稻品种的成熟胚、再生植株。T0代种子即可实现水稻品种果皮色的白至红、红至白的相互转变。红米在世界各国长期用作滋补食品,是水稻育种的重要目标之一。经过人工长期驯化的水稻果皮色为白色,抗性弱,而来自栽培稻脱驯化的杂草稻果皮色为红色,抗性强。通过相互转换果皮色,可能培育出抗性强的白\红果皮水稻品种。本技术具有良好的商业化应用前景。

Description

一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其 应用
技术领域
本发明属于分子生物学领域,涉及一种基于CRISPR/Cas9转变水稻果皮色(白至红、红至白)的基因编辑方法及其应用。
背景技术
有色大米,包括红米,因为富含类黄酮类物质而倍受关注,该类物质属于植物来源的膳食多酚,被认为具有抗氧化、保护心脏、降血糖、预防癌症和心血管疾病等功能(Tsudaet al.,2002;Engler et al.,2004;Walter et al.,2011;Jaeger et al.,2017)。长期的人工选择驯化使得现代水稻品种基本为不含类黄酮类生物活性物质的白色果皮,而随着经济的发展越来越多的居民开始追求健康饮食而不仅仅满足于温饱。向现代品种中重新引入富含类黄酮类物质已成为水稻育种重要目标之一(Gunaratne et al.,2013;Sharma etal.,2014;Jun et al.,2018)。经过人工长期驯化的水稻果皮色为白色,抗性弱,而来自栽培稻脱驯化的杂草稻果皮色为红色,抗性强。通过相互转换果皮色,可能培育出抗性强的白/红果皮水稻品种。
Rc等位基因对于红色果皮的形成具有关键作用。Rc(LOC_Os07g11020)位于7号染色体上,全长约6400bp,翻译产物是一个具有碱性螺旋-环-螺旋(bHLH)元件的蛋白(Sweeney et al.,2006)。bHLH蛋白具有4个保守功能区域,分别为交互作用区(I)、酸性区(A)、碱性的螺旋-环-螺旋区(bHLH)及C末端区域(C)(Buck and Atchley,2003;Fan etal.,2014;;Hichr et al.,2011)。
rc等位基因相比于Rc等位基因而言,在其第6外显子上缺失了14bp。97.9%的白色颖果都是由于这缺失的14bp导致翻译出的bHLH蛋白结构不完整(Sweeney et al.,2006;Sweeney et al.,2007)。Brooks et al.(2008)发现美国栽培品种“Wells”的天然红果皮是由于14bp缺失上游20bp处的单碱基缺失产生的,即相对于Rc等位基因总共缺失了15个碱基,从而恢复了Rc基因的bHLH蛋白结构。Lee et al.(2009)报道了意大利品种水稻“Perla”是在14bp上游44bp处的单碱基缺失,恢复了Rc基因的bHLH蛋白结构,也导致红果皮恢复。因此,理论上可以通过rc基因突变,从而恢复Rc的功能。
近几年新发展的CRISPR/Cas9(clustered regularly interspaced shortpalindromic repeats)基因编辑技术,可以精确编辑基因的功能,为实现果皮色的红/白的相互转换提供了一种可能。CRISPR-Cas9系统可用于在多种生物(包括植物和农作物物种)中进行基因组编辑,通过在染色体DNA的特定位点产生双链断裂(DSB),并在DSB处引入INDEL突变(Xie and Yang 2013)。该系统显示可以实现水稻基因组定点突变并稳定遗传,能够显著提高育种效率(Feng et al.,2013;Zhang et al.,2014;Xu et al.,2015)。目前尚未建立红白果皮色的自由转变的基因编辑方法,本研究在利用CRISPR/Cas9技术对Rc\rc基因突变的过程中,无意中发现通过该引物的突变,可以实现红白果皮色的自由转变。
发明内容
为解决红白果皮色的相互转换,培育抗性强的白/红果皮水稻品种的技术问题,本发明通过以上我们前期对水稻转录因子rc基因的蛋白质结构研究的基础上,设计和筛选了特定的gRNA-spacer,进而构建CRISPR/Cas9-gRNA-spacer载体。通过农杆菌侵染方法导入载体,获得T0代植株,T0代种子即可获得果皮色突变。本研究实现了水稻品种果皮色的白至红、红至白的自由转变。
本发明的目的可以通过以下技术方案实现:
本发明的第一个目的为提供一种基于CRISPR/Cas9转变水稻果皮色的gRNAspacer序列,所述gRNA spacer-Rc1的核苷酸序列包括
gRNA-Spacer-Rc1F:5’-GGCAGGGGCGGGAAAGGCGCAAG-3’(SEQ ID NO.1),和
gRNA-Spacer-Rc1R:5’-AAACCTTGCGCCTTTCCCGCCCC-3’(SEQ ID NO.2)。
本发明的第二个目的为提供CRISPR/Cas9-gRNA-spacer载体的构建方法,所述构建方法包括以下步骤:
(1)将SEQ ID NO.1所示gRNA-Spacer-Rc1F和SEQ ID NO.2所示gRNA-Spacer-Rc1R退火形成双链。
(2)采用BsaI酶切质粒pRGEB32,连接SEQ ID NO.1所示gRNA spacer-Rc1F和SEQID NO.2所示gRNA spacer-Rc1 R形成的双链,构建得到表达载体pRGEB32-Rc 1;
(3)使用引物pRGEB32-3对表达载体pRGEB32-Rc 1进行PCR扩增,送测序公司测序验证,如测序结果包括SEQ ID NO.1所示序列,即表示为构建成功的pRGEB32-Rc 1。
进一步的,步骤(1)中所述gRNA-Spacer-Rc1F和gRNA-Spacer-Rc1R的退火体系为10μl体系:gRNA-Spacer-Rc1F 1ul(100μM);gRNA-Spacer-Rc1R 1ul(100μM);10×T4 DNA连接酶缓冲液、1μl(50mMTris-HCl,10mM MgCl2,10mM DTT,1mM ATP,pH7.5,25℃;NEBcompany;http://www.neb-china.com/);ddH20 7μl;将PCR管放于PCR仪(PCR ThermalCycler Dice;Takara company),37℃60min,95℃10min,自然冷却至25℃1min,以形成双链。
进一步的,步骤(3)中所述引物pRGEB32-3包括:
pRGEB32-3-F:5’-CTGGGTACGTTGGAAACCAC-3’(SEQ ID NO.3),
pRGEB32-3-R:5’-CGGCCCAAATTGAAAAGATA-3’(SEQ ID NO.4)。
所述表达载体pRGEB32-Rc 1的PCR扩增体系为2×PCR Mix 4.0μL,ddH2O 4.5μL,pRGEB32-3-F(10μmol/L)0.25μL,pRGEB32-3-R(10μmol/L)0.25μL,DNA(10-20ng/μL)1μL,PCR反应程序为:94℃下预变性5min;94℃下变性45s,55℃下退火45s,72℃下延伸1min,30个循环;72℃下延伸8min。
本发明的第三个目的为提供基于前述的构建方法构建得到的CRISPR/Cas9-gRNA-spacer表达载体pRGEB32-Rc 1。
本发明的第四个目的为提供一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法,所述方法包括如下步骤:
(1)针对水稻rc蛋白结构,设计合成转录因子rc基因的特定gRNA-spacer:所述gRNA spacer的核苷酸序列包括:
gRNA-Spacer-Rc1F:5’-GGCAGGGGCGGGAAAGGCGCAAG-3’(SEQ ID NO.1),和
gRNA-Spacer-Rc1R:5’-AAACCTTGCGCCTTTCCCGCCCC-3’(SEQ ID NO.2);
(2)构建前述CRISPR/Cas9-gRNA-spacer载体pRGEB32-Rc 1:
优选的,所述构建方法为:将gRNA-Spacer-Rc1F和gRNA-Spacer-Rc1R,退火形成双链。退火体系为10μl体系:gRNA-Spacer-Rc1F 1ul(100μM);gRNA-Spacer-Rc1R 1ul(100μM);10×T4 DNA连接酶缓冲液1μl(50mM Tris-HCl,10mM MgCl2,10mM DTT,1mM ATP,pH7.5,25℃;);ddH20 7μl。将PCR管放于PCR仪(PCR Thermal Cycler Dice),37℃60min,95℃10min,自然冷却至25℃1min,以形成双链。采用BsaI酶切质粒pRGEB32,连接SEQ ID NO.1所示gRNA spacer-Rc1 F和SEQ ID NO.2所示gRNA spacer-Rc1 R形成的双链,构建得到表达载体pRGEB32-Rc 1。PCR扩增检测,PCR体系为2×PCR Mix 4.0μL,ddH2O 4.5μL,pRGEB32-3-F(10μmol/L)0.25μL,pRGEB32-3-R(10μmol/L)0.25μL,DNA(10-20ng/μL)1μL,PCR反应程序为:94℃下预变性5min;94℃下变性45s,55℃下退火45s,72℃下延伸l min,30个循环;72℃下延伸8min。送测序公司测序验证,如测序结果包括SEQ ID NO.1所示序列,即表示为构建成功的pRGEB32-Rc 1。所述引物pRGEB32-3包括:
pRGEB32-3-F:5’-CTGGGTACGTTGGAAACCAC-3’(SEQ ID NO.3),
pRGEB32-3-R:5’-CGGCCCAAATTGAAAAGATA-3’(SEQ ID NO.4)。
(3)农杆菌侵染再生、获得果皮突变种子:将构建好的pRGEB32-Rc 1转入根癌农杆菌EHA105中,使用感染后农杆菌与成熟水稻和杂草稻的愈伤组织养愈伤,然后在含50mg/L潮霉素的培养基中筛选和再生,获得转变水稻果皮色的突变种子。
进一步的,将构建好的pRGEB32-Rc 1转入根癌农杆菌EHA105中,通过农杆菌介导的方法进行遗传转化试验,将水稻和杂草稻种子分别进行脱壳,挑选颗粒饱满且无病斑的健康种子用75vol%乙醇和30vol%次氯酸钠对种子消毒,接种于含2,4-D激素的培养基上。暗培养两周后进行继代培养,挑选淡黄色、活力好的愈伤组织进行农杆菌侵染转化。愈伤组织侵染后暗培养两天,转入含潮霉素的培养基进行两轮筛选。一轮15天,一个月后获得抗性愈伤,转入分化培养基。26℃光照培养分化获得T0代植株,然后在含50mg/L潮霉素的培养基中筛选和再生,获得转变水稻果皮色的突变种子。
进一步的,所述转变水稻果皮色为将白色果皮转变为红色果皮,或将红色果皮转变为白色果皮。
本发明的第五个目的为提供前述SEQ ID NO.1和SEQ ID NO.2所示的基于CRISPR/Cas9转变水稻果皮色的gRNA spacer-Rc1序列,或
前述CRISPR/Cas9-gRNA-spacer载体pRGEB32-Rc 1,或
前述的基于CRISPR/Cas9转变水稻果皮色的基因编辑方法在转变水稻果皮色中的应用。
进一步的,所述转变水稻果皮色为将白色果皮转变为红色,或将红色果皮转变为白色。
本发明的有益效果:
通过本发明的方法,可以实现水稻品种果皮色的红与白的自由转变。本方法具有简便,快速,准确等优点。红色果皮水稻品种往往适应性强,但品质不好;而白色水稻品种往往品质好,但适应性不强。通过自由相互切换,可能培育更好的品种。此外,由于红色果皮中含有原花青素,临床上表明其可以有效抑制多种癌症发生和其它保健功能,逐渐受到越来越多的人们的喜爱。本技术具有良好的商业化应用前景。
附图说明
图1 CRISPR/Cas9表达载体的单克隆PCR
其中,“M”为D2000标记;“+”表示质粒为阳性对照;“-”表示ddH2O为阴性对照;
1-6为pRGEB32-Rc 1单克隆菌
图2 pRGEB32-Rc1载体与原质粒pRGEB32序列比对
其中,“gRNA spacer-Rc1”为目标位置1
图3栽培稻(Nipponbare)和杂草水稻(WRL-162)成熟胚愈伤组织农杆菌遗传转化
其中,图3(a)诱导愈伤组织;(b)愈伤组织继代培养;(c)农杆菌感染后农杆菌与愈伤组织共
培养;(d)在潮霉素培养基上筛选愈伤组织;(e)潮霉素培养基上愈伤组织分化;(f)支持文化;(g)
桶内驯化;(h)植株。
图4水稻和杂草稻的T0代植株分子鉴定
潮霉素(Hpt)、Cas9和UBI均为pREGB32载体上序列;
图4(a)为水稻,总共再生出22株苗,检测潮霉素(Hpt)、Cas9和UBI,其中有9株(图中1、2、3、4、16、17、18、20、21样品)为阳性植株,进一步对Rc基因测序,发现其中发生Rc突变的有5株分别是16、17、18、20和21号,命名为:Rc 1-557-16、Rc 1-557-17、Rc 1-557-18、Rc1-557-20、Rc 1-557-21;
图4(b)为杂草稻,共再生出20株苗,检测潮霉素(Hpt)、Cas9和UBI,9株为阳性植株(图中1、2、3、8、9、15、16、17、18样品),进一步对Rc基因测序,发现其中发生Rc突变有2株分别为1、和18号,命名为:Rc1-162-1和Rc1-162-18。
图5 T0代突变体的种子与颖果。
其中,图5(a)为水稻日本晴的种子和颖果;以及Rc1载体水稻突变体的种子和颖果;
图5(b)为杂草稻的种子和颖果;以及Rc1载体杂草稻突变体的种子和颖果。
具体实施方式
实施例1 CRISPR/Cas9-Rc表达载体的构建和农杆菌介导的遗传转化
(1)针对水稻rc蛋白结构,设计合成转录因子rc基因的特定gRNA-spacer-Rc1:
gRNA-Spacer-Rc1F:5’-GGCAGGGGCGGGAAAGGCGCAAG-3’(SEQ ID NO.1),
gRNA-Spacer-Rc1R:5’-AAACCTTGCGCCTTTCCCGCCCC-3’(SEQ ID NO.2);
(2)构建权利要求5所述CRISPR/Cas9-gRNA-spacer载体pRGEB32-Rc 1:
将SEQ ID NO.1所示gRNA spacer-Rc1F和SEQ ID NO.2所示gRNA spacer-Rc1R退火形成双链。
退火体系为10μl体系:gRNA-Spacer-Rc1F 1ul(100μM);gRNA-Spacer-Rc1R 1ul(100μM);10×T4 DNA ligase buffer 1μl(50mM Tris-HCl,10mM MgCl2,10mM DTT,1mMATP,pH7.5,25℃;NEB company;http://www.neb-china.com/);ddH20 7μl。
将PCR管放于PCR仪(PCR Thermal Cycler Dice;Takara company),37℃60min,95℃10min,自然冷却至25℃1min,以形成双链。
采用BsaI酶切质粒pRGEB32,连接SEQ ID NO.1所示gRNA spacer-Rc1F和SEQ IDNO.2所示gRNA spacer-Rc1 R的双链,构建得到表达载体pRGEB32-Rc 1,使用引物pRGEB32-3对表达载体pRGEB32-Rc 1进行PCR扩增(图.1),
表达载体pRGEB32-Rc 1的PCR体系为2×PCR Mix 4.0μL,ddH2O 4.5μL,pRGEB32-3-F(10μmol/L)0.25μL,pRGEB32-3-R(10μmol/L)0.25μL,DNA(10-20ng/μL)1μL,PCR反应程序为:94℃下预变性5min;94℃下变性45s,55℃下退火45s,72℃下延伸l min,30个循环;72℃下延伸8min。送上海生工生物有限公司测序验证,如测序结果包括SEQ ID NO.1所示序列,即表示为构建成功的pRGEB32-Rc 1(图.2)。
所述引物pRGEB32-3包括:
Figure BDA0002263440540000061
(3)农杆菌侵染再生、获得果皮突变种子:
将构建好的pRGEB32-Rc 1转入根癌农杆菌EHA105中。通过农杆菌介导的方法进行遗传转化试验,将水稻和杂草稻种子分别进行脱壳,挑选颗粒饱满且无病斑的健康种子100粒,用75vol%乙醇和30vol%次氯酸钠对种子消毒,接种于含2,4-D激素的培养基上。暗培养两周后进行继代培养,挑选淡黄色、活力好的愈伤组织进行农杆菌侵染转化。愈伤组织侵染后暗培养两天,转入含潮霉素的培养基进行两轮筛选。一轮15d,一个月后获得抗性愈伤,转入分化培养基。26℃光照培养分化获得T0代植株,然后在含50mg/L潮霉素的培养基中筛选和再生,获得转变水稻果皮色的突变种子(图.3),其步骤具体包括:(a)诱导愈伤组织;(b):愈伤组织继代培养;(c):农杆菌感染后农杆菌与愈伤组织共培养;(d):在潮霉素培养基上筛选愈伤组织;(e):潮霉素培养基上愈伤组织分化;(f):生根培养;(g):桶内驯化;(h):植株。
实施例2 T0代植株的鉴定
取水稻和杂草稻T0代植株的叶片,提取基因组DNA。检测了转基因载体上的潮霉素基因、Cas9蛋白基因和启动子UBI(图.4)。
接着对阳性植株进行Rc基因靶位点PCR扩增和测序验证,潮霉素(Hpt)、Cas9、UBI和Rc基因检测引物见表1,栽培稻(Nipponbare)和杂草稻(WRL-162)的T0代突变体的果皮颜色和Rc基因型见表2:
表1潮霉素(Hpt)、Cas9、UBI和Rc基因检测引物(5’→3’)
Figure BDA0002263440540000071
潮霉素(Hpt)、Cas9、UBI和Rc基因检测体系为:2×PCR Mix 4.0μL,ddH2O 4.5μL,Primer F(10μmol/L)0.25μL,Primer R(10μmol/L)0.25μL,DNA(10-20ng/μL)1μL.PCR反应程序为:94℃下预变性5min;94℃下变性45s,55℃下退火45s,72℃下延伸1min,30个循环;72℃下延伸8min。
实施例1转化结果显示,水稻总共再生出22株苗,其中有9株为阳性植株,发生Rc突变的有5株分别是16、17、18、20和21号,命名为:Rc-1 557-16、Rc-1 557-17、Rc-1 557-18、Rc-1 557-20、Rc-1 557-21;
即,水稻的发生突变的T0代突变体为Rc-1 557-16、Rc-1 557-17、Rc-1 557-18、Rc-1 557-20和Rc-1 557-21,而另外Rc-1 557-1、Rc-1 557-2、Rc-1 557-3、Rc-1 557-4是栽培稻的插入载体但未发生Rc突变的T0代(表2)。
Rc-1 557-17和Rc-1 557-21都具有缺失7bp的突变,颖果由白色变为红色。
Rc-1 557-20是双等位基因突变,一个等位基因缺失7bp的突变,另一个等位基因缺失4bp,颖果由白色变为红色。
Rc-1 557-16和Rc-1 557-18都是双等位基因突变,Rc-1 557-16的等位基因分别缺失3和5个碱基,Rc-1 557-18的等位基因一个单插入“C”另一个缺失6bp,两株突变体的果皮色由红色变为白色(表1,2,3)
杂草稻共再生出20株苗,9株为阳性植株,其中有2株发生突变分别为1和18号,命名为:Rc-1 162-1和Rc-1 162-18。
即,杂草稻WRL-162的发生突变的T0代突变体为Rc-1 162-1和Rc-1 162-18,而另外Rc-1 162-2、Rc-1 162-3、Rc-1 162-8、Rc-1 162-9是杂草稻WRL-162的插入载体但未发生Rc突变的T0代(表2)。
Rc-1 162-1的靶位点位于14bp前(rc与Rc的差异片段14bp),是插入单碱基“T”的纯合突变,颖果由红色变为白色;
Rc-1 162-18是缺失6个碱基的突变,颖果由白色变为红色(表1,2,3)。
表2栽培稻(Nipponbare)和杂草稻(WRL-162)的T0代突变体的果皮颜色和Rc基因型
Table 2 Pericarp color and rc/Rc genotype of T0mutant for cultivatedrice(Nipponbare)and weedy rice(WRL-162)
Figure BDA0002263440540000081
Figure BDA0002263440540000091
注:加粗单下划线处为gRNA spacer-Rc1的靶位点核苷酸序列:
GGGGCGGGAAAGGCGCAAG。
双下划线处为水稻rc基因与杂草稻Rc之间差异片段序列为ACGCGAAAAGTCGG,在栽培稻(日本晴)中缺失的14bp以双下划线的“-”号表示。
Rc 1-557-16、Rc 1-162-1中斜体黑体碱基为突变后插入的碱基。
“-”号为突变后缺失的碱基(“-”号个数与缺失碱基的个数一致)。
实施例3 T0代Rc突变体的bHLH蛋白氨基酸序列预测分析
以野生型杂草稻(WRL-162)和栽培稻(日本晴)为对照,对T0代Rc突变体进行氨基酸序列预测分析。
结果发现:Rc 1-162-1的颖果变白是由于突变导致移码,打乱了靶位点后氨基酸的翻译,导致形成不了bHLH蛋白的结构域;而日本晴的突变体正好相反,突变使得bHLH蛋白的结构域恢复,果皮变为红色;由于Rc基因是显性,Rc 1-557-20仅单个等位基因恢复bHLH的结构域,就可以使得果皮色变红(表3)。
对已经报道的7种Rc等位基因样品进行了bHLH蛋白氨基酸序列预测分析。结果表明:不论在Rc\rc差异的14bp前后进行基因编辑,只要bHLH蛋白的氨基酸序列出现,果皮则变为红色;相反,则为白色(表3)。
表3栽培稻(Nipponbare)和杂草稻(WRL-162)的T0代Rc突变植株与Rc已报道等位基因的bHLH蛋白氨基酸序列预测分析
Figure BDA0002263440540000092
Figure BDA0002263440540000101
注:双下划线处为pRGEB32-Rc 1的靶位点氨基酸为RGGKGA。
单下划线处为水稻rc基因与杂草稻Rc之间差异氨基酸片段序列(即rc相比于Rc基因天然缺失的氨基酸序列)为TRKVG。
加粗斜体处为bHLH蛋白的氨基酸序列,具有该段序列的突变体果皮色为红色:
AIQGDFSANHVLKERRRREKLNEKFIILRSLVPFMTKMDKASILGDTIEYVKQLRNRIQE。
双等位基因突变的Rc-1 557-16、Rc-1 557-18、Rc-1 557-20有两段不同的氨基酸序列;
Rc-r(Perla)序列来自Lee et al.,2009;Rc(H75)序列来自Sweeney et al.,2006;
Rc(Oryza rufipogon)序列来自Sweeney et al.,2006;
Rc-g(WELL mutant)and rc(WELL)序列来自Brooks et al.,2008;
rc(Jefferson)序列来自Sweeney et al.,2006;
Rc-s(Surjamkuhi)序列来自Sweeney et al.,2007。
此外,7株Rc基因突变体(Rc-1 557-16、Rc-1 557-17、Rc-1 557-18、Rc-1 557-20、Rc-1 557-21、Rc-1 162-1和Rc-1 162-18)及其野生型的成熟种子在解剖镜下观察发现:突变体仅果皮色发生改变,其它形态与野生型相比没有显著变化(图5)。
序列表
<110> 南京农业大学
<120> 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggcaggggcg ggaaaggcgc aag 23
<210> 2
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
aaaccttgcg cctttcccgc ccc 23
<210> 3
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ctgggtacgt tggaaaccac 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
cggcccaaat tgaaaagata 20
<210> 5
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tacacaggcc atcggtccag a 21
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
taggagggcg tggatatgtc 20
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tcctggaaaa gatggacggc 20
<210> 8
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
atccgctcga tgaagctctg 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
acggagacaa acggcatctt 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aggagaggag aagcagcgta 20
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
tcaaaagcac ccttgttcca 20
<210> 12
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tggttggcac tgaaatcacc 20
<210> 13
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
ctgaaggaag tgatgacaac aagacc 26
<210> 14
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
ctagattcat gctgccatta gtgagg 26

Claims (10)

1.一种基于CRISPR/Cas9转变水稻果皮色的gRNA spacer-Rc1序列,其特征在于,所述gRNA spacer-Rc1的核苷酸序列包括
gRNA-Spacer-Rc1F:5’-GGCAGGGGCGGGAAAGGCGCAAG-3’(SEQ ID NO.1),和
gRNA-Spacer-Rc1R:5’-AAACCTTGCGCCTTTCCCGCCCC-3’(SEQ ID NO.2)。
2.CRISPR/Cas9-gRNA-spacer表达载体pRGEB32-Rc 1的构建方法,其特征在于,所述构建方法包括以下步骤:
(1)将SEQ ID NO.1所示gRNA-Spacer-Rc1F和SEQ ID NO.2所示gRNA-Spacer-Rc1R退火形成双链;
(2)采用BsaI酶切质粒pRGEB32,连接gRNA spacer-Rc1F和gRNA spacer-Rc1R形成的双链,构建得到表达载体pRGEB32-Rc 1;
(3)使用引物pRGEB32-3对表达载体pRGEB32-Rc 1进行PCR扩增,送测序公司测序验证,如测序结果包括SEQ ID NO.1所示序列,即表示为构建成功的pRGEB32-Rc 1。
3.根据权利要求2所述CRISPR/Cas9-gRNA-spacer表达载体pRGEB32-Rc 1的构建方法,其特征在于,步骤(1)中所述gRNA-Spacer-Rc1F和gRNA-Spacer-Rc1R的退火体系为10μl体系:gRNA-Spacer-Rc1F 1ul(100μM);gRNA-Spacer-Rc1R 1ul(100μM);10×T4 DNA连接酶缓冲液1μl(50mMTris-HCl,10mM MgCl2,10mM DTT,1mM ATP,pH7.5,25℃);ddH20 7μl;将PCR管放于PCR仪,37℃60min,95℃10min,自然冷却至25℃1min,以形成双链。
4.根据权利要求2所述CRISPR/Cas9-gRNA-spacer表达载体pRGEB32-Rc 1的构建方法,其特征在于,步骤(3)中所述引物pRGEB32-3包括:
pRGEB32-3-F:5’-CTGGGTACGTTGGAAACCAC-3’(SEQ ID NO.3),
pRGEB32-3-R:5’-CGGCCCAAATTGAAAAGATA-3’(SEQ ID NO.4);
所述表达载体pRGEB32-Rc 1的PCR扩增体系为2×PCR Mix 4.0μL,ddH2O 4.5μL,pRGEB32-3-F(10μmol/L)0.25μL,pRGEB32-3-R(10μmol/L)0.25μL,DNA(10-20ng/μL)1μL,
PCR反应程序为:94℃下预变性5min;94℃下变性45s,55℃下退火45s,72℃下延伸lmin,30个循环;72℃下延伸8min。
5.基于权利要求2至4任一项权利要求所述的构建方法构建得到的CRISPR/Cas9-gRNA-spacer表达载体pRGEB32-Rc 1。
6.一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法,其特征在于,所述方法包括如下步骤:
(1)针对水稻rc蛋白结构,设计合成转录因子rc基因的特定gRNA-spacer-Rc1:所述gRNA spacer的核苷酸序列包括:
gRNA-Spacer-Rc1F:5’-GGCAGGGGCGGGAAAGGCGCAAG-3’(SEQ ID NO.1),和
gRNA-Spacer-Rc1R:5’-AAACCTTGCGCCTTTCCCGCCCC-3’(SEQ ID NO.2);
(2)构建权利要求5所述CRISPR/Cas9-gRNA-spacer载体pRGEB32-Rc 1;
(3)农杆菌侵染再生、获得果皮突变种子:将构建好的pRGEB32-Rc 1转入根癌农杆菌EHA105中,使用感染后农杆菌与成熟水稻和杂草稻的愈伤组织养愈伤,然后在含50mg/L潮霉素的培养基中筛选和再生,获得转变水稻果皮色的突变种子。
7.根据权利要求6所述的基于CRISPR/Cas9转变水稻果皮色的基因编辑方法,其特征在于,步骤(3)具体步骤为包括:将构建好的pRGEB32-Rc 1转入根癌农杆菌EHA105中,通过农杆菌介导的方法进行遗传转化试验,将水稻和杂草稻种子分别进行脱壳,挑选颗粒饱满且无病斑的健康种子用75vol%乙醇和30vol%次氯酸钠对种子消毒,接种于含2,4-D激素的培养基上;暗培养两周后进行继代培养,挑选淡黄色、活力好的愈伤组织进行农杆菌侵染转化;愈伤组织侵染后暗培养两天,转入含50mg/L潮霉素的培养基进行两轮筛选;一轮15天,一个月后获得抗性愈伤,转入分化培养基;26℃光照培养分化获得T0代植株然后在含50mg/L潮霉素的培养基中筛选和再生,获得转变水稻果皮色的突变种子。
8.根据权利要求6所述的基于CRISPR/Cas9转变水稻果皮色的基因编辑方法,其特征在于,所述转变水稻果皮色为将白色果皮转变为红色果皮,或将红色果皮转变为白色果皮。
9.权利要求1所述的基于CRISPR/Cas9转变水稻果皮色的gRNA spacer-Rc1序列,或
权利要求5所述CRISPR/Cas9-gRNA-spacer载体pRGEB32-Rc 1,或
权利要求6所述的基于CRISPR/Cas9转变水稻果皮色的基因编辑方法在转变水稻果皮色中的应用。
10.根据权利要求9所述的应用,其特征在于,所述转变水稻果皮色为将白色果皮转变为红色,或将红色果皮转变为白色。
CN201911079333.7A 2019-11-07 2019-11-07 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用 Pending CN110846314A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911079333.7A CN110846314A (zh) 2019-11-07 2019-11-07 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911079333.7A CN110846314A (zh) 2019-11-07 2019-11-07 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用

Publications (1)

Publication Number Publication Date
CN110846314A true CN110846314A (zh) 2020-02-28

Family

ID=69598576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911079333.7A Pending CN110846314A (zh) 2019-11-07 2019-11-07 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用

Country Status (1)

Country Link
CN (1) CN110846314A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403336A (zh) * 2021-08-03 2021-09-17 广东省农业科学院水稻研究所 一种编辑水稻巨胚基因ge培育巨胚粳稻品种的方法
CN114231540A (zh) * 2022-01-05 2022-03-25 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 中国菰ZlRc基因在提高水稻种子原花青素含量中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132062A1 (en) * 2008-11-26 2010-05-27 Deren Christopher W Rice Mutant Allele
CN107699632A (zh) * 2017-11-20 2018-02-16 安徽省农业科学院水稻研究所 分析水稻遗传多样性、鉴定品种的InDel标记、引物及应用
CN108823235A (zh) * 2018-05-25 2018-11-16 福建省农业科学院生物技术研究所 一种以基因编辑技术打靶Rc基因创制红米品系的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132062A1 (en) * 2008-11-26 2010-05-27 Deren Christopher W Rice Mutant Allele
CN107699632A (zh) * 2017-11-20 2018-02-16 安徽省农业科学院水稻研究所 分析水稻遗传多样性、鉴定品种的InDel标记、引物及应用
CN108823235A (zh) * 2018-05-25 2018-11-16 福建省农业科学院生物技术研究所 一种以基因编辑技术打靶Rc基因创制红米品系的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张树林等: "亚洲杂草稻红色果皮分子鉴定及其Rc-bHLH序列多态性分析", 《分子植物育种》 *
李燕 等: "《精编分子生物学实验技术》", 30 September 2017, 世界图书出版公司 *
杨杰等: "杂草稻红色果皮基因的遗传分析", 《西北植物学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403336A (zh) * 2021-08-03 2021-09-17 广东省农业科学院水稻研究所 一种编辑水稻巨胚基因ge培育巨胚粳稻品种的方法
CN113403336B (zh) * 2021-08-03 2021-11-19 广东省农业科学院水稻研究所 一种编辑水稻巨胚基因ge培育巨胚粳稻品种的方法
CN114231540A (zh) * 2022-01-05 2022-03-25 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 中国菰ZlRc基因在提高水稻种子原花青素含量中的应用
CN114231540B (zh) * 2022-01-05 2023-03-28 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) 中国菰ZlRc基因在提高水稻种子原花青素含量中的应用

Similar Documents

Publication Publication Date Title
AU2019299296B2 (en) Method for site-specific mutagenesis of medicago sativa gene by using CRISPR/Cas9 system
CN109097387B (zh) 一种运用CRISPR/Cas9基因编辑系统创制紫果番茄突变体的方法和应用
CN112961231B (zh) 雄性不育基因ZmbHLH122及其在创制玉米雄性不育系中的应用
CN111333707B (zh) 一种植物粒型相关蛋白及其编码基因与应用
AU2019297209A1 (en) Method of obtaining multi-leaf alfalfa material by means of MsPALM1 artificial site-directed mutant
CN113265418B (zh) 一种CRISPR/Cas9特异性敲除大豆SOC1基因的方法及其应用
CN110684796B (zh) CRISPR-Cas9特异性敲除大豆脂肪氧化酶基因的方法及其应用
CN113637688B (zh) 水稻稻米直链淀粉含量调控基因OsACF1及其应用
CN113265422B (zh) 靶向敲除水稻粒型调控基因slg7的方法、水稻粒型调控基因slg7突变体及其应用
CN108823235B (zh) 一种以基因编辑技术打靶Rc基因创制红米品系的方法
CN110846314A (zh) 一种基于CRISPR/Cas9转变水稻果皮色的基因编辑方法及其应用
KR100616369B1 (ko) 벼의 트랜스포존 유전자
CN110540582B (zh) 蛋白质OrC1在调控水稻稃尖和芒颜色中的应用
CN113637060B (zh) 大豆GmSPA3a/3b蛋白及其相关生物材料在调控植物开花和株高中的应用
US20210147844A1 (en) Method for Site-Specific Mutagenesis of Medicago Sativa Genes by Using CRISPR/Cas9 System
CN116769796B (zh) ZmENR1及其编码蛋白在玉米育性控制中的应用
CN112813098A (zh) 利用人工突变创制玉米bhlh51雄性不育系
CN114990139B (zh) CsHLS1基因或其编码的蛋白在调控黄瓜植株器官大小中的应用
CN108165578B (zh) 一种同时针对芥蓝同一基因家族多个成员突变体的高效制备方法
Li et al. Rapid generation of selectable marker-free transgenic rice with three target genes by co-transformation and anther culture
CN108456683B (zh) 一个调控水稻抽穗期基因sid1的功能及应用
CN112680460B (zh) 雄性不育基因ZmTGA9及其在创制玉米雄性不育系中的应用
CN116536327A (zh) 一种小麦黄花叶病感病基因TaEIF4E及其应用
CN108866075A (zh) 影响番茄果色形成调控基因yft2的可变剪切子及应用
CN112553245B (zh) OsPIL16基因的新用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200228

WD01 Invention patent application deemed withdrawn after publication