CN110838597A - 一种薄膜锂电池的制备方法 - Google Patents
一种薄膜锂电池的制备方法 Download PDFInfo
- Publication number
- CN110838597A CN110838597A CN201810930459.XA CN201810930459A CN110838597A CN 110838597 A CN110838597 A CN 110838597A CN 201810930459 A CN201810930459 A CN 201810930459A CN 110838597 A CN110838597 A CN 110838597A
- Authority
- CN
- China
- Prior art keywords
- film
- lithium battery
- thin film
- substrate
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种薄膜锂电池的制备方法,包括采用Al2O3单晶衬底为薄膜锂电池的基底,采用DC磁控溅射将弱取向的多晶Au膜进行沉积;采用红外激光加热,并在真空环境下退火;在脉冲激光沉积系统中,沉积LCO膜作为阴极,采用Li1.2CoO2的烧结陶瓷靶材;在射频磁控溅射沉积系统中,采用RF磁控溅射沉积的LiPON固体电解质层;采用常规蒸发方法将用于阳极的金属Li膜沉积在LiPON层上。本发明制备的薄膜电池也性能稳定,获得了清洁的电解质/电极界面,避免表面污染,实现全固态电池的较低界面电阻。
Description
技术领域
本发明涉及电池领域,特别是涉及一种薄膜锂电池的制备方法。
背景技术
与目前基于液体有机电解质的锂离子电池相比,使用无机固体电解质的全固态锂电池由于其安全性,大容量和高电位窗口而有望成为下一代电池。全固态锂电池为固体电解质,并且在电极界面处存在大内阻,这极大地影响了电池的电化学性质。
目前,可以通过受控的晶体取向和/或由薄膜生长技术提供的限定的界面区域,用于检测固体电解质/电极界面处的界面电阻。由于薄膜电池在制造过程中暴露在空气中并经过退火处理,导致界面的原子结构模糊不清,因此无法了解电解质/电极界面处的离子传导机制。如果电极表面在沉积固体电解质之前一暴露在空气中,则诸如碳氢化合物和反应层之类的污染物就会成为锂离子传导的电阻层或非活性界面。为了进一步提高锂离子传导机制,制备清洁的电解质/电极界面至关重要。
发明内容
为解决上述问题,本发明旨在提供一种薄膜锂电池的制备方法,本发明制备的薄膜电池也性能稳定,获得了清洁的电解质/电极界面,避免表面污染,实现全固态电池的较低界面电阻。
本发明的具体技术方案为:一种薄膜锂电池的制备方法,该制备方法包括以下步骤:
步骤一:采用 Al2O3单晶衬底为薄膜锂电池的基底,将基底输送至Au集电器腔中,采用DC磁控溅射将弱取向的多晶Au膜进行沉积;
步骤二:将沉积的Au膜转移到脉冲激光沉积系统中,采用红外激光加热,并在真空环境下退火,退火的Au膜呈现111晶格位相;
步骤三:在脉冲激光沉积系统中,沉积LCO膜作为阴极,采用Li1.2CoO2的烧结陶瓷靶材来补偿沉积期间Li的损失;
步骤四:输送至射频磁控溅射沉积系统中,在室温下采用RF磁控溅射沉积的LiPON固体电解质层,用于覆盖LCO膜;
步骤五:采用常规蒸发方法将用于阳极的金属Li膜沉积在LiPON层上。
进一步地,在所述步骤一中,所述Al2O3单晶衬底的晶格位相为0001。
进一步地,在所述步骤二中,退火温度为600℃,退火时间为10分钟。
进一步地,在所述步骤三中,基板保持在400℃,氧分压为0.13Pa,在靶上以5Hz的重复频率照射KrF准分子激光,波长为248nm,能量密度为1.0J cm-2。
进一步地,在所述步骤四中,采用2英寸Li3 PO4靶,沉积环境为0.5Pa N 2气,RF磁控溅射的功率为100W;靶与基板之间的垂直距离为55mm,水平距离为45mm。
一种采用如上所述薄膜锂电池的制备方法制备的薄膜锂电池,该薄膜锂电池Li,LiPON,LCO和Au层的厚度分别为500~550,800~1000,100~200和150~250nm。
一种用于实施如上所述的薄膜锂电池的制备方法的锂电池真空薄膜沉积系统,该系统包括脉冲激光沉积系统,射频磁控溅射沉积系统,Au集电器,Li金属热蒸发系统及传输系统;上述四个系统与线性样品传输系统相连接,样品基板固定到与样品基板兼容的衬底支架上,将衬底支架放在掩模支架上。
进一步地,锂电池真空薄膜沉积系统还包括X射线光电子能谱检测装置,多个探针及装载工位。
本发明与现有技术相比可实现以下有益效果:
本发明需要在超高真空环境中制造电解质/电极界面,在制备或评估过程中,电池不会暴露在空气中;防止在薄膜的表面和界面处吸附或与H2O,N 2或CO 2等反应,可确保得到清洁的界面。
本发明制备的薄膜电池也性能稳定,在没有后沉积退火的情况下获得了清洁的电解质/电极界面,避免表面污染,实现全固态电池的较低界面电阻,提供高离子电导率,可广泛应用于制造具有高性能电解质/电极接口的全固态电池。
附图说明
图1为锂电池真空薄膜沉积系统组成结构示意图;
图2为薄膜锂电池的结构组成示意图;
图3为薄膜锂电池的XRD图;
图4为薄膜锂电池的充电/放电曲线;
图5为退火前后的XPS光谱图。
具体实施方式
结合附图和具体实施例对本发明作进一步的详细说明。
如图1所示,为锂电池真空薄膜沉积系统由四个腔室组成:用于电极材料LCO的脉冲激光沉积(PLD)系统1,用于Li3PO4-xNx(LiPON)电解质的射频磁控溅射沉积系统2,Au集电器3和Li金属热蒸发系统4。脉冲激光沉积(PLD)系统的沉积室保持在高真空中,PLD室的真空度为-1×10-7Pa。四个腔室与线性样品传输系统相连接,传输系统能够将样品在真空度≤10−8 Pa状态下运送至评估室。将样品基板8固定到与样品基板兼容的衬底支架9上,然后将衬底支架放在掩模支架10上。锂电池真空薄膜沉积系统还包括X射线光电子能谱检测装置6,多个探针7及装载工位5。
在脉冲激光沉积(PLD)系统中,Li阳极图案的面积比LCO阴极图案小,即以金属掩模未对准也可以评估界面电阻。进行Li阳极沉积时,采用铬镍铁合金掩模,并在1000℃下进行退火处理。掩模表面退火处理后形成绝缘体,避免了Li通过金属掩模与阴极之间的形成短路。
基板尺寸为5×5毫米,每个基板上制造四个直径为0.25毫米的薄膜圆形电池。为了最大限度地降低源自基板上残留颗粒的内部短路的可能性,我们采用了可破裂的基板,该基板可以沿预先存在的断裂槽裂开,避免在轮锯切割过程中产生的颗粒对基板的粘附。可破坏基底防止了在基板的轮锯切割过程中产生的颗粒的粘附。
本发明中的电性能测量系统可在5至550K的样品温度下,进行充电/放电曲线,循环伏安法(CV)和阻抗谱的检测。在该系统中,x,y和z压电线性致动器将探针精确地定位在薄膜装置上。探针采用Ni涂覆的BeCu材料,可避免探针尖端和Li阳极之间的反应。使用具有广角镜头(WAL)的半球形电子光谱仪(VG Scienta R4000)进行光电发射实验。采用透射模式拍摄所有X射线光电子能谱(XPS)数据。
薄膜锂电池的基底为Al2O3(0001)单晶衬底(11),将基底输送至Au集电器腔中,采用DC磁控溅射将弱(111)取向的多晶Au膜进行沉积。
将沉积的Au膜转移到脉冲激光沉积(PLD)系统中,通过使用红外激光加热,并在真空中在600℃下退火10分钟。退火的Au膜呈现(111)取向,改善了微晶的取向,摇摆曲线半峰全宽(FWHM)为1.7°。
在该取向(111)的Au层上,输送到脉冲激光沉积(PLD)系统中,将LCO膜沉积为阴极。在沉积LCO膜期间,将基板保持在400℃,氧分压为0.13Pa。使用富含Li1.2CoO2的烧结陶瓷靶材来补偿沉积期间Li的损失。在靶上以5Hz的重复频率照射KrF准分子激光(波长248nm),能量密度为1.0J cm-2。
将处理的后电池在输送至射频磁控溅射沉积系统,在室温下采用RF磁控溅射沉积的LiPON固体电解质层,用于覆盖LCO膜。采用2英寸Li3 PO4靶,沉积环境为在0.5Pa的N 2气氛。RF磁控溅射的功率固定在100W。这是由于因为在高于200W的磁控溅射功率条件下所形成的LiPON膜,容易从Al2O3基板上剥离。在溅射沉积中,靶与基板之间的垂直距离为55mm,水平距离为45mm。
采用常规蒸发方法将用于阳极的金属Li膜沉积在LiPON层上。我们采用触针分析仪(VEECO DEKTAK150)测量了Au,LiCoO2和LiPON层的厚度。用石英晶体微量天平(QCM)厚度监测器估算Li层的厚度。采用该方法制备的薄膜锂电池中Li(15),LiPON(14),LCO(13)和Au(12)层的厚度分别为500~550,800~1000,100~200和150~250nm。
图3示出了薄膜锂电池的XRD图,其中包括Al2O3基板和Au膜引起的衍射峰之外,沉积在退火的Au膜上的LCO膜的的LCO峰,从图中可看出LCO膜为c轴取向。LCO(0006)和(00012)峰分别与Au(111)和(222)峰重叠。
图4示出了在3.5至4.3V的电压范围内,所制备的薄膜锂电池的充电/放电曲线,薄膜电池即使在20C的高速率下也表现出稳定的电池工作,并且20C的放电容量保持为1C的74%。这是由于清洁电解质/电极界面,使得电池具有稳定的性能。清洁电解质/电极界面通过真空系统形成有利的活性接触,用于传导Li离子而没有阻挡层。
在形成电解质/电极界面之后,在没有退火的情况下,制备的薄膜锂电池具有稳定性,而这克服了现有技术中只有在后沉积退火后才能实现具有低界面电阻的稳定电池操作。
为了证明界面的稳定性,我们使用XPS测量了LiPON / LCO界面的化学状态。在50nm厚的LCO上沉积1nm厚的LiPON固体电解质层,并在180℃下将样品在真空中退火30分钟。将检测样品转移到XPS测量室,进行化学状态。 由于LiPON层的厚度非常薄,可能够直接探测界面处LiPON和LCO的化学状态。图5显示退火前后的Co 2p和LiPON / LCON的 1s XPS光谱,位于下方的为退火前的 XPS光谱,位于上方的为退火后的 XPS光谱。可看出,在退火前和退火后并没有显着差异。这清楚地表明在热处理之后Co和N的化学状态是完整的。因此,本实施例在真空中堆叠的薄膜产生了清洁和稳定的LiPON / LCO界面。
本发明的实施方式不限于此,按照本发明的上述内容,利用本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的修改、替换或变更,均落在本发明权利保护范围之内。
Claims (8)
1.一种薄膜锂电池的制备方法,其特征在于,该制备方法包括以下步骤:
步骤一:采用 Al2O3单晶衬底为薄膜锂电池的基底,将基底输送至Au集电器腔中,采用DC磁控溅射将弱取向的多晶Au膜进行沉积;
步骤二:将沉积的Au膜转移到脉冲激光沉积系统中,采用红外激光加热,并在真空环境下退火,退火的Au膜呈现111晶格位相;
步骤三:在脉冲激光沉积系统中,沉积LCO膜作为阴极,采用Li1.2CoO2的烧结陶瓷靶材来补偿沉积期间Li的损失;
步骤四:输送至射频磁控溅射沉积系统中,在室温下采用RF磁控溅射沉积的LiPON固体电解质层,用于覆盖LCO膜;
步骤五:采用常规蒸发方法将用于阳极的金属Li膜沉积在LiPON层上。
2.根据权利要求1所述的薄膜锂电池的制备方法,其特征在于,在所述步骤一中,所述Al2O3单晶衬底的晶格位相为0001。
3.根据权利要求1所述的薄膜锂电池的制备方法,其特征在于,在所述步骤二中,退火温度为600℃,退火时间为10分钟。
4.根据权利要求1所述的薄膜锂电池的制备方法,其特征在于,在所述步骤三中,基板保持在400℃,氧分压为0.13Pa,在靶上以5Hz的重复频率照射KrF准分子激光,波长为248nm,能量密度为1.0J cm-2。
5.根据权利要求1所述的薄膜锂电池的制备方法,其特征在于,在所述步骤四中,采用2英寸Li3 PO4靶,沉积环境为0.5Pa N 2气,RF磁控溅射的功率为100W;靶与基板之间的垂直距离为55mm,水平距离为45mm。
6.一种采用如权利要求1所述薄膜锂电池的制备方法制备的薄膜锂电池,其特征在于,该薄膜锂电池Li,LiPON,LCO和Au层的厚度分别为500~550,800~1000,100~200和150~250nm。
7.一种用于实施权利要求1所述的薄膜锂电池的制备方法的锂电池真空薄膜沉积系统,其特征在于:该系统包括脉冲激光沉积系统,射频磁控溅射沉积系统,Au集电器,Li金属热蒸发系统及传输系统;上述四个系统与线性样品传输系统相连接,样品基板固定到与样品基板兼容的衬底支架上,将衬底支架放在掩模支架上。
8.根据权利要求7所述的锂电池真空薄膜沉积系统,其特征在于,锂电池真空薄膜沉积系统还包括X射线光电子能谱检测装置,多个探针及装载工位。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810930459.XA CN110838597A (zh) | 2018-08-15 | 2018-08-15 | 一种薄膜锂电池的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810930459.XA CN110838597A (zh) | 2018-08-15 | 2018-08-15 | 一种薄膜锂电池的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110838597A true CN110838597A (zh) | 2020-02-25 |
Family
ID=69574150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810930459.XA Pending CN110838597A (zh) | 2018-08-15 | 2018-08-15 | 一种薄膜锂电池的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110838597A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697222A (zh) * | 2020-04-07 | 2020-09-22 | 电子科技大学 | 一种高能量密度锂电池电芯及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1747217A (zh) * | 2005-07-28 | 2006-03-15 | 复旦大学 | 一种原位沉积制备全固态薄膜锂电池的设备和方法 |
-
2018
- 2018-08-15 CN CN201810930459.XA patent/CN110838597A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1747217A (zh) * | 2005-07-28 | 2006-03-15 | 复旦大学 | 一种原位沉积制备全固态薄膜锂电池的设备和方法 |
Non-Patent Citations (1)
Title |
---|
MASAKAZU HARUTA: "Preparation and in-situ characterization of well-defined solid electrolyte/electrode interfaces in thin-film lithium batteries", 《SOLID STATE IONICS》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697222A (zh) * | 2020-04-07 | 2020-09-22 | 电子科技大学 | 一种高能量密度锂电池电芯及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuwata et al. | Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition | |
JP5095412B2 (ja) | LiCoO2の堆積 | |
Haruta et al. | Preparation and in-situ characterization of well-defined solid electrolyte/electrode interfaces in thin-film lithium batteries | |
US7959769B2 (en) | Deposition of LiCoO2 | |
Kuwata et al. | Thin film lithium ion batteries prepared only by pulsed laser deposition | |
US20170149093A1 (en) | Configurations of solid state thin film batteries | |
WO2016033453A1 (en) | Electrochemical device stacks including interlayers for reducing interfacial resistance and over-potential | |
JP5129530B2 (ja) | LiCoO2の堆積 | |
JP2010251113A (ja) | 固体電解質電池の製造方法および固体電解質電池 | |
JP2010182447A (ja) | 薄膜固体リチウムイオン二次電池及びその製造方法 | |
KR100652324B1 (ko) | 고체전해질 및 그것을 이용한 전고체전지 | |
Chen et al. | Electrode and solid electrolyte thin films for secondary lithium-ion batteries | |
JP3677509B2 (ja) | 固体電解質およびそれを用いた全固体電池 | |
CN107464913B (zh) | 一种生产全固态薄膜锂电池的方法 | |
Nakagawa et al. | Characterization of stable solid electrolyte lithium silicate for thin film lithium battery | |
TWI610367B (zh) | 電化學裝置的微波快速熱處理 | |
CN110838597A (zh) | 一种薄膜锂电池的制备方法 | |
EP1900845A1 (en) | Deposition of LiCoO2 | |
JPWO2012086512A1 (ja) | 薄膜リチウム二次電池製造装置及び薄膜リチウム二次電池製造方法 | |
KR20110112067A (ko) | 음극 성능이 개선된 박막전지 및 이의 제조방법 | |
TW201742293A (zh) | 雙側薄膜電池的配置 | |
JP2004183078A (ja) | 積層薄膜とその製造方法ならびにそれを用いた全固体リチウムイオン二次電池 | |
Nakagawa et al. | Thin film lithium battery using stable solid electrolyte Li4SiO4 fabricated by PLD | |
Yahya et al. | CHARACTERIZATION OF LITHIUM THIN FILM BATTERY COMPONENTS PREPAREDBY DIRECT CURRENT SPUTTERING | |
KR101069256B1 (ko) | 박막전지 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200225 |
|
WD01 | Invention patent application deemed withdrawn after publication |