CN110799645A - 新型vi型crispr直系同源物和系统 - Google Patents

新型vi型crispr直系同源物和系统 Download PDF

Info

Publication number
CN110799645A
CN110799645A CN201880038907.3A CN201880038907A CN110799645A CN 110799645 A CN110799645 A CN 110799645A CN 201880038907 A CN201880038907 A CN 201880038907A CN 110799645 A CN110799645 A CN 110799645A
Authority
CN
China
Prior art keywords
rna
cas13b
cell
target
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880038907.3A
Other languages
English (en)
Inventor
F·张
D·B·T·科克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Broad Institute Inc
Original Assignee
Massachusetts Institute of Technology
Broad Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology, Broad Institute Inc filed Critical Massachusetts Institute of Technology
Publication of CN110799645A publication Critical patent/CN110799645A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6823Release of bound markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

本发明提供了用于靶向核酸的系统、方法和组合物。具体地,本发明提供了包含新型RNA靶向CRISPR效应蛋白和至少一种靶向核酸组分如向导RNA的非天然存在的或工程化的RNA靶向系统。

Description

新型VI型CRISPR直系同源物和系统
相关申请和引用并入
本申请要求提交于2017年4月12日的美国临时申请号62/484,791、提交于2017年9月21日的美国临时申请号62/561,662以及提交于2017年10月4日的美国临时申请号62/568,129的优先权,这些申请中的每一件申请全文通过引用并入本文。
参考提交于2016年10月21日的PCT申请,当其特别指定美国时,包括申请号PCT/US2016/058302。参考提交于2015年10月22日的美国临时专利申请62/245,270、提交于2016年2月17日的美国临时专利申请62/296,548以及提交于2016年8月17日的美国临时专利申请62/376,367和62/376,382。进一步参考提交于2017年3月15日的US 62/471,792。进一步参考提交于2017年3月17日的美国临时专利申请62/471,170。进一步参考提交于2017年4月12日的美国临时专利申请62/484,791。进一步参考提交于2017年9月21日的美国临时专利申请62/561,662。提到了以下文献:Smargon等人(2017),“Cas13b Is a Type VI-BCRISPR-Associated RNA-Guided RNase Differentially Regulated by AccessoryProteins Csx27 and Csx28,”Molecular Cell 65,618-630(2017年2月16日)doi:10.1016/j.molcel.2016.12.023.(2017年1月5日的电子版)以及Smargon等人(2017),“Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase DifferentiallyRegulated by Accessory Proteins Csx27 and Csx28,”bioRxiv 092577;doi:https://doi.org/10.1101/092577.(2017年12月9日发布)。前述申请和文献引用中的每一者均据此通过引用并入本文。
在本文引用的文献中引用或参考的所有文献,连同针对在本文中提及或通过引用并入本文的任何文献中的任何产品的任何制造商说明书、说明、产品规格和产品表据此通过引用并入本文,并且可用于本发明的实践中。更具体地,所有参考的文献均通过引用并入,其程度就如同每个单独的文献被确切且单独地指明通过引用并入一样。
关于联邦资助研究的声明
本发明是根据由美国国立卫生研究院(National Institutes of Health)授予的授权号MH100706和MH110049在美国政府支持下完成的。美国政府享有本发明的某些权利。
技术领域
本发明整体涉及用于控制涉及序列靶向的基因表达(诸如基因转录干扰或核酸编辑)的系统、方法和组合物,所述系统、方法和组合物可使用与成簇规律间隔短回文重复序列(CRISPR)及其组分有关的载体系统。
背景技术
基因组测序技术和分析方法的最新进展显著加速了对与各种生物学功能和疾病相关联的遗传因子进行编目和标测的能力。精确的基因组靶向技术是通过对单个遗传元件进行选择性干扰来实现因果遗传变异的系统性逆向工程化以及推进合成生物学、生物技术和医学应用所需要的。尽管基因组编辑技术(诸如设计者锌指、转录激活子样效应物(TALE)或归巢大范围核酸酶)可用于产生靶向基因组干扰,但仍需要采用新型的策略和分子机制并且负担得起、易于建立、可扩展、便于靶向真核基因组和转录组内的多个位置的新基因组和转录组工程化技术。这将为基因组工程化和生物技术中的新应用提供主要资源。
细菌和古细菌适应性免疫的CRISPR-Cas系统显示出蛋白质组成和基因组基因座结构的极端多样性。CRISPR-Cas系统基因座具有超过50个基因家族,并且不存在严格通用的基因,这表明基因座结构进化快速且极具多样性。到目前为止,采用多管齐下的方法,对93种Cas蛋白,全面的cas基因鉴定得到约395种图谱。分类包括标签基因图谱加上基因座结构的标签。提出了一种新的CRISPR-Cas系统分类,其中将这些系统大致分为两类:1类具有多亚基效应物复合物,2类具有Cas9蛋白例示的单亚基效应物模块。与2类CRISPR-Cas系统相关的新型效应蛋白可作为强大的基因组工程化工具开发,并且对推定的新型效应蛋白及其工程化和优化进行预测非常重要。
CRISPR-Cas自适应免疫系统通过DNA或RNA-DNA干扰保护微生物免受外来遗传元件的影响。2类VI型单组分CRISPR-Cas效应物靶向RNA。一种这样的效应物是Cas13a(也称为C2c2;参见Shmakov等人(2015)“Discovery and Functional Characterization ofDiverse Class 2CRISPR-Cas Systems”;Molecular Cell 60:1-13;doi:http://dx.doi.org/10.1016/j.molcel.2015.10.008),其被表征为RNA引导的RNase(Abudayyeh等人(2016),Science,[印刷版前的电子版],6月2日;“C2c2 is a single-componentprogrammable RNA-guided RNA-targeting CRISPR effector”;doi:10.1126/science.aaf5573)。根据目前的分类,Cas13a是2类VI-A型CRISPR-Cas系统。Cas13b提供了另一种选择,它是2类VI-B型效应蛋白。2类VI-B型效应蛋白包括两个亚组,即VI-B1型和VI-B2型,也称为29组蛋白和30组蛋白,并且其成员包括RNA可编程核酸酶、RNA干扰物并且可能涉及细菌对RNA噬菌体的过继免疫。(参见Smargon A等人,“Cas13b is a Type VI-BCRISPR-associated RNA-Guided RNAse differentially regulated by accessoryproteins Csx27 and Csx28”Molecular Cell(online)2017年1月5日.DOI:10.1016/j.molcel.2016.12.023)。
29组和30组系统包括一个大型效应物(长度为约1100个氨基酸,称为Cas13b),以及CRISPR阵列附近的两个小型推定辅助蛋白(长度为约200个氨基酸,分别称为Csx27和Csx28)中的一个或者两个都不包括。根据附近的小蛋白,该系统被分类为VI-B1型(Csx27)或VI-B2型(Csx28)。每个基因座在物种之间都不存在从阵列上游或下游向外25千碱基对都保守的其他蛋白质。除少数例外,CRISPR阵列包含长度为36个核苷酸的正向重复序列和长度为30个核苷酸的间隔序列。正向重复序列通常很保守,尤其是在末端,5'端的GTTG/GUUG与3'端的CAAC反向互补。对于可能与基因座中的一种或多种蛋白质相互作用的RNA环结构,这种保守性表示强碱基配对。与正向重复序列互补的基序搜索结果显示在阵列附近没有候选tracrRNA,表明只有一个类似于在Cpf1基因座中发现的crRNA。
在本申请中对任何文献的引用或确认均不是承认该文献可用作本发明的现有技术。
发明内容
迫切需要特别是在真核系统中、更特别是在哺乳动物系统中具有广泛应用的用于靶向核酸或多核苷酸(例如,DNA或RNA或者其任何杂合体或衍生物)的可选的且可靠的系统和技术。本发明满足了这种需要并提供了相关优点。将本申请的新型RNA靶向系统添加到基因组、转录组和表观基因组靶向技术库中可通过特别是在真核系统中、更特别是在哺乳动物系统(包括细胞、器官、组织或生物)中直接检测、分析和操纵来转化研究以及特定靶位点的干扰或编辑。为了有效地利用本申请的RNA靶向系统进行RNA靶向而无有害作用,了解这些RNA靶向工具的工程化和优化方面至关重要。
2类VI-B型效应蛋白Cas13b是RNA引导的RNase,可以对其进行有效编程以降解ssRNA。发明人已经进行了筛选以鉴定来自不同物种的代表性数量的Cas13b直系同源物,并确定这些直系同源物在真核细胞环境中的功效。在各种实施方案中,本发明涉及、包括或利用VI-B型CRISPR-Cas效应蛋白或Cas13b效应蛋白;以及编码此类蛋白质的核酸。
在一些实施方案中,该效应蛋白与选自卟啉单胞菌属(Porphyromonas)、普雷沃菌属(Prevotella)、拟杆菌属(Bacteroides)、里氏杆菌属(Riemerella)、伯杰菌属(Bergeyella)、另枝菌属(Alistipes)、香味菌属(Myroides)、二氧化碳噬纤维菌属(Capnocytophaga)和黄杆菌属(Flavobacterium)的原核生物的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性。在一些实施方案中,该效应蛋白与选自口腔卟啉单胞菌(Porphyromonas gulae)、普雷沃菌属种(Prevotella sp.)、牙龈卟啉单胞菌(Porphyromonas gingivalis)、化脓拟杆菌(Bacteroides pyogenes)、鸭疫里默氏杆菌(Riemerella anatipestifer)、动物溃疡伯杰菌(Bergeyella zoohelcum)、中间普雷沃菌(Prevotella intermedia)、颊普雷沃菌(Prevotella buccae)、另枝菌属种(Alistipessp.)、桔红色普雷沃菌(Prevotella aurantiaca)、类香味菌(Myroides odoratimimus)、犬咬二氧化碳噬纤维菌(Capnocytophaga canimorsus)、嗜鳃黄杆菌(Flavobacteriumbranchiophilum)和柱状黄杆菌(Flavobacterium columnare)的原核生物的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性。在优选的实施方案中,该效应蛋白与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属COT-052OH4946 Cas13b(登录号WP_039428968)、化脓拟杆菌Cas13b(登录号WP_034542281)、鸭疫里默氏杆菌Cas13b(登录号WP_004919755)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性。最优选的效应蛋白是与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属COT-052 OH4946 Cas13b(登录号WP_039428968);并且最特别优选的是与口腔卟啉单胞菌Cas13b(登录号WP_039434803)或普雷沃菌属P5-125 Cas13b(登录号WP_044065294)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白。这些Cas13b效应蛋白中的每一个以及其他效应蛋白的完整氨基酸序列如图1所示。
在一些实施方案中,该Cas13b效应蛋白(a)包含900-1800个氨基酸和两个HEPN结构域,(b)天然存在于原核基因组中,位于CRISPR阵列上游或下游10kb内,(c)是在CRISPR阵列上游或下游10kb内包含700个以上氨基酸的唯一编码蛋白,并且/或者(d)在CRISPR阵列上游或下游10kb内没有Cas1基因或Cas2基因。在一些实施方案中,Csx27或Csx28中的至少一个也存在于CRISPR阵列上游或下游10kb内。
在某些实施方案中,与野生型蛋白相比,该Cas13b效应蛋白具有经修饰的序列。在某些实施方案中,该效应蛋白与野生型Cas13b效应蛋白在两个或更多个Cas13b效应蛋白之间共用的至少一个或多个共同基序上相同。可通过标准序列比对工具确定共同基序,以鉴定共有序列。在特定的实施方案中,该Cas13b效应蛋白是包含与由DKHXFGAFLNLARHN(SEQID NO:1)、GLLFFVSLFLDK(SEQ ID NO:2)、SKIXGFK(SEQ ID NO:3)、DMLNELXRCP(SEQ ID NO:4)、RXZDRFPYFALRYXD(SEQ ID NO:5)和LRFQVBLGXY(SEQ ID NO:6)组成的序列中的一个或多个具有至少70%序列同一性的序列的蛋白质。在另外的特定实施方案中,该Cas13b效应蛋白包含与这些序列中的至少2个、3个、4个、5个或全部6个具有至少70%序列同一性的序列。在另外的特定实施方案中,与这些序列的序列同一性为至少75%、80%、85%、90%、95%或100%。在另外的特定实施方案中,该Cas 13b效应蛋白是包含与GLLFFVSLFL(SEQ IDNO:7)和RHQXRFPYF(SEQ ID NO:8)具有100%序列同一性的序列的蛋白。在另外的特定实施方案中,该Cas13b效应物是包含与RHQDRFPY(SEQ ID NO:9)具有100%序列同一性的序列的Cas13b效应蛋白。
应当理解,术语“Cas酶”、“CRISPR酶”、“CRISPR蛋白”、“Cas蛋白”和“CRISPR Cas”通常可互换使用,并且在本文的所有提及处类似地是指本申请中进一步描述的CRISPR效应蛋白,除非另有明显说明,诸如具体提及Cas9。
在本发明的实施方案中,VI-B型系统包含Cas13b效应蛋白以及任选的在Cas13b效应蛋白上游或下游编码的小型辅助蛋白。在某些实施方案中,该小型辅助蛋白增强了Cas13b效应物靶向RNA的能力。
在本发明的某些实施方案中,VI-B型系统包含Cas13b效应蛋白以及任选的在Cas13b效应蛋白上游或下游编码的小型辅助蛋白。在某些实施方案中,该小型辅助蛋白阻遏了Cas13b效应物靶向RNA的能力。
本发明提供了一种非天然存在的或工程化的组合物,其包含:i)VI-B型CRISPR-Cas效应蛋白,以及ii)VI-B型CRISPR-Cas crRNA,其中crRNA包含a)能够与靶RNA序列杂交的指导序列,以及b)正向重复序列。VI-B型CRISPR-Cas效应蛋白与crRNA形成复合物,并且指导序列指导复合物与靶RNA序列进行序列特异性结合,由此形成包含与指导序列复合的VI-B型CRISPR-Cas效应蛋白的CRISPR复合物,该指导序列与靶RNA序列杂交。在指导序列与靶RNA序列杂交时形成的复合物包括原间隔侧接序列(PFS)的相互作用(识别)。
在一些实施方案中,本发明的非天然存在的或工程化的组合物可包含增强VI-B型CRISPR-Cas效应蛋白活性的VI-B型CRISPR-Cas辅助蛋白。在某些此类实施方案中,增强VI-B型CRISPR-Cas效应蛋白活性的辅助蛋白是csx28蛋白。在此类实施方案中,VI-B型CRISPR-Cas效应蛋白和VI-B型CRISPR-Cas辅助蛋白可来自相同来源或来自不同来源。
在一些实施方案中,本发明的非天然存在的或工程化的组合物包含阻遏VI-B型CRISPR-Cas效应蛋白活性的VI-B型CRISPR-Cas辅助蛋白。在某些此类实施方案中,阻遏VI-B型CRISPR-Cas效应蛋白活性的辅助蛋白是csx27蛋白。在此类实施方案中,VI-B型CRISPR-Cas效应蛋白和VI-B型CRISPR-Cas辅助蛋白可来自相同来源或来自不同来源。
在一些实施方案中,本发明的非天然存在的或工程化的组合物包含两种或更多种VI-B型CRISPR-Cas crRNA。
在一些实施方案中,本发明的非天然存在的或工程化的组合物包含与原核细胞中的靶RNA序列杂交的指导序列。在一些实施方案中,本发明的非天然存在的或工程化的组合物包含与真核细胞中的靶RNA序列杂交的指导序列。本文所提供的CRISPR系统可以利用包含指导序列的crRNA或类似多核苷酸,其中多核苷酸是RNA、DNA或者RNA和DNA的混合物,并且/或者其中多核苷酸包含一种或多种核苷酸类似物。该序列可以包含任何结构,包括但不限于天然crRNA的结构,诸如凸起、发夹或茎环结构。在某些实施方案中,包含指导序列的多核苷酸与第二多核苷酸序列形成双链体,第二多核苷酸序列可以是RNA或DNA序列。
在某些实施方案中,这些方法利用经化学修饰的向导RNA。向导RNA化学修饰的实例包括但不限于在一个或多个末端核苷酸处并入2'-O-甲基(M)、2'-O-甲基3'硫代磷酸酯(MS)或2'-O-甲基3'硫代膦酰基乙酸酯(MSP)。与未修饰的向导RNA相比,此类经化学修饰的向导RNA的稳定性和活性可能有所增加,但是无法预测在靶和脱靶特异性。(参见Hendel,2015,Nat Biotechnol.33(9):985-9,doi:10.1038/nbt.3290,2015年6月29日在线发布)。经化学修饰的向导RNA还包括但不限于具有硫代磷酸酯键以及在核糖环的2'和4'碳之间包含亚甲基桥的锁核酸(LNA)核苷酸的RNA。
在一些实施方案中,VI-B型CRISPR-Cas效应蛋白包含一个或多个核定位信号(NLS)。
与在CRISPR-Cas系统中发现的其他已知RNase的催化机制相比之下,Cas13b通过其两个HEPN结构域内的保守碱性残基来实现RNA裂解。HEPN结构域的突变,诸如四个预测的HEPN结构域催化残基中的任何一个的(例如,丙氨酸)取代,都可以将Cas13b转化为无活性的可编程RNA结合蛋白(dCas13b,类似于dCas9)。
dCas13b结合特定序列的能力可用于根据本发明的若干个方面,以(i)将效应物模块引入特定转录物,从而调节功能或翻译,这可用于大规模筛选、合成调控回路的构建以及其他目的;(ii)荧光标记特定RNA,以可视化其转运和/或定位;(iii)通过对特定亚细胞区室具有亲和力的结构域改变RNA定位;以及(iv)捕获特定转录物(通过直接下拉(pulldown)dCas13b或使用dCas13b将生物素连接酶活性定位到特定转录物),以富集包括RNA和蛋白在内的近端分子伴侣。
活性Cas13b也应当有许多应用。本发明的一方面涉及靶向特定转录物进行破坏。另外,Cas13b一旦被同源靶标引发,就可以在体外裂解其他(非互补)RNA分子并且可以在体内抑制细胞生长。生物学上,这种混杂的RNase活性可反映VI-B型CRISPR-Cas系统的基于程序性细胞死亡/休眠(PCD/D)的保护机制。因此,在本发明的一个方面,它可以用于触发特定细胞中的PCD或休眠,例如表达特定转录物的癌细胞、给定类别的神经元、被特定病原体感染的细胞,或者其他异常细胞或其他不希望存在的细胞。
本发明提供了一种修饰特别是真核细胞、组织、器官或生物中,更特别是在哺乳动物细胞、组织、器官或生物中的与目标靶基因座相关的或目标靶基因座处的核酸序列的方法,所述方法包括将包含VI-B型CRISPR-Cas基因座效应蛋白以及一种或多种核酸组分的非天然存在的或工程化的组合物递送到所述基因座,其中效应蛋白与一种或多种核酸组分形成复合物,并且在所述复合物与目标基因座结合时,效应蛋白诱导与目标靶基因座相关的或目标靶基因座处的序列的修饰。在一个优选的实施方案中,修饰是引入链断裂。在一个优选的实施方案中,与目标靶基因座相关的或目标靶基因座处的序列包含RNA,并且效应蛋白由VI-B型CRISPR-Cas基因座编码。所述复合物可以体外或离体形成并且被引入细胞中或与RNA接触;或者可以体内形成。
本发明提供了一种靶向(诸如修饰)与目标靶基因座相关的或目标靶基因座处的序列的方法,所述方法包括将包含Cas13b基因座效应蛋白(其可有催化活性,或者另选地无催化活性)以及一种或多种核酸组分的非天然存在的或工程化的组合物递送到与所述基因座相关的或所述基因座处的所述序列,其中Cas13b效应蛋白与一种或多种核酸组分形成复合物,并且在所述复合物与目标基因座结合时,效应蛋白诱导与目标靶基因座相关的或目标靶基因座处的序列的修饰。在一个优选的实施方案中,修饰是引入链断裂。在一个优选的实施方案中,Cas13b效应蛋白与一种核酸组分、有利地与工程化的或非天然存在的核酸组分形成复合物。所述复合物可以体外或离体形成并且被引入细胞中或与RNA接触;或者可以体内形成。与目标靶基因座相关的或目标靶基因座处的序列的修饰的诱导可以由Cas13b效应蛋白-核酸引导。在一个优选的实施方案中,一种核酸组分是CRISPR RNA(crRNA)。在一个优选的实施方案中,一种核酸组分是成熟crRNA或向导RNA,其中成熟crRNA或向导RNA包含间隔序列(或指导序列)和正向重复序列或其衍生物。在一个优选的实施方案中,间隔序列或其衍生物包含种子序列,其中种子序列对于靶基因座处的序列的识别和/或杂交至关重要。
本发明的各方面涉及具有一种或多种非天然存在的或工程化的或经修饰的或优化的核酸组分的Cas13b效应蛋白复合物。在一个优选的实施方案中,该复合物的核酸组分可包含与正向重复序列连接的指导序列,其中正向重复序列包含一个或多个茎环或优化的二级结构。在一个实施方案中,正向重复序列的长度可为约36个核苷酸。在一个特定的实施方案中,正向重复序列在5'端包含GTTG/GUUG,其与3'端的CAAC反向互补。在某些实施方案中,正向重复序列的最小长度为16nt,诸如至少28nt,并且具有单个茎环。在另外的实施方案中,正向重复序列的长度大于16nt,优选大于17nt,诸如至少28nt,并且具有多于一个的茎环或优化的二级结构。在特定的实施方案中,正向重复序列具有25个或更多个nt,诸如26nt、27nt、28nt或更多,以及一个或多个茎环结构。在一个优选的实施方案中,可将正向重复序列修饰为包含一种或多种蛋白结合RNA适配体。在一个优选的实施方案中,可包括一种或多种适配体,诸如优化的二级结构的一部分。此类适配体可能能够结合噬菌体外壳蛋白。噬菌体外壳蛋白可选自Qβ、F2、GA、fr、JP501、MS2、M12、R17、BZ13、JP34、JP500、KU1、M11、MX1、TW18、VK、SP、FI、ID2、NL95、TW19、AP205、φCb5、φCb8r、φCb12r、φCb23r、7s和PRR1。在一个优选的实施方案中,噬菌体外壳蛋白是MS2。本发明还提供了复合物的核酸组分,其长度为30个或更多个、40个或更多个或者50个或更多个核苷酸。
本发明提供了包含Cas13b效应蛋白和/或其指导物和/或与靶核酸的复合物的细胞,包括包含瞬时表达的或引入的Cas13b效应蛋白和/或其指导物和/或复合物的细胞。在某些实施方案中,细胞是真核细胞,包括但不限于酵母细胞、植物细胞、哺乳动物细胞、动物细胞或人类细胞。
本发明提供了一种修饰特别是真核细胞、组织、器官或生物中,更特别是在哺乳动物细胞、组织、器官或生物中的目标靶基因座的方法,所述方法包括将包含Cas13b基因座效应蛋白以及一种或多种核酸组分的非天然存在的或工程化的组合物递送到所述基因座,其中Cas13b效应蛋白与一种或多种核酸组分形成复合物,并且在所述复合物与目标基因座结合时,效应蛋白诱导目标靶基因座的修饰。在一个优选的实施方案中,修饰是引入链断裂。复合物可以体外或离体形成并且被引入细胞中或与RNA接触;或者可以体内形成。
在此类方法中,目标靶基因座可包含在RNA分子中。而且,目标靶基因座可包含在DNA分子内,并且在某些实施方案中,可包含在转录的DNA分子内。在此类方法中,目标靶基因座可包含在体外核酸分子中。
在此类方法中,目标靶基因座可包含在细胞、特别是真核细胞诸如哺乳动物细胞或植物细胞内的核酸分子中。哺乳动物细胞可以是非人类灵长类动物、牛科动物、猪科动物、啮齿动物或小鼠细胞。细胞可以是非哺乳动物真核细胞,诸如家禽、鱼或虾。植物细胞可以是作物植物,诸如木薯、玉米、高粱、小麦或水稻。植物细胞也可以是藻类、树木或蔬菜。通过本发明引入细胞的修饰可以是使得改变细胞和细胞子代用于提高生物产物诸如抗体、淀粉、醇或其他所需细胞输出的产量。通过本发明引入细胞的修饰可以是使得细胞和细胞子代包括改变所产生的生物产物的改变。
哺乳动物细胞可以是非人类哺乳动物(例如,灵长类动物、牛科动物、绵羊科动物、猪科动物、犬科动物、啮齿动物、兔科动物,诸如猴、奶牛、绵羊、猪、狗、兔、大鼠或小鼠)细胞。细胞可以是非哺乳动物真核细胞,诸如禽鸟(例如,鸡)、脊椎鱼类(例如,鲑鱼)或贝类(例如,牡蛎、蛤蜊、龙虾、虾)细胞。细胞也可以是植物细胞。植物细胞可以是单子叶植物或双子叶植物,也可以是作物或谷物植物,诸如木薯、玉米、高粱、大豆、小麦、燕麦或水稻。植物细胞也可以是藻类、树木或生产植物、水果或蔬菜(例如,树木诸如柑橘属树,例如橙树、葡萄柚树或柠檬树;桃树或油桃树;苹果树或梨树;坚果树诸如扁桃树或胡桃树或开心果树;茄属植物;芸苔属(Brassica)植物;莴苣属(Lactuca)植物;菠菜属(Spinacia)植物;辣椒属(Capsicum)植物;棉花、烟草、芦笋、胡萝卜、卷心菜、西兰花、花椰菜、番茄、茄子、胡椒、生菜、菠菜、草莓、蓝莓、覆盆子、黑莓、葡萄、咖啡、可可等)。
本发明提供了一种修饰目标靶基因座的方法,所述方法包括将包含VI-B型CRISPR-Cas基因座效应蛋白以及一种或多种核酸组分的非天然存在的或工程化的组合物递送到所述基因座,其中效应蛋白与一种或多种核酸组分形成复合物,并且在所述复合物与目标基因座结合时,效应蛋白诱导目标靶基因座的修饰。在一个优选的实施方案中,修饰是引入链断裂。
本发明提供了一种修饰目标靶基因座的方法,所述方法包括将包含Cas13b基因座效应蛋白以及一种或多种核酸组分的非天然存在的或工程化的组合物递送到所述基因座,其中Cas13b效应蛋白与一种或多种核酸组分形成复合物,并且在所述复合物与目标基因座结合时,效应蛋白诱导目标靶基因座的修饰。在一个优选的实施方案中,修饰是引入链断裂。
在此类方法中,目标靶基因座可包含在体外核酸分子中。在此类方法中,目标靶基因座可包含在细胞内的核酸分子中。优选地,在此类方法中,目标靶基因座可包含在体外RNA分子中。同样优选地,在此类方法中,目标靶基因座可包含在细胞内的RNA分子中。细胞可以是原核细胞或真核细胞。细胞可以是哺乳动物细胞。细胞可以是啮齿动物细胞。细胞可以是小鼠细胞。
在所描述的任何方法中,目标靶基因座可以是目标基因组或表观基因组基因座。在所描述的任何方法中,可将复合物与多种指导物一起递送以供多重使用。在所描述的任何方法中,可使用一种以上的蛋白质。
在本发明的其他方面,核酸组分可包含CRISPR RNA(crRNA)序列。不受限制地,申请人假设在这种情况下,前crRNA可包含足以加工产生成熟crRNA以及加载到效应蛋白上的crRNA的二级结构。举例来说而非限制,这种二级结构可在前crRNA内、更特别是在正向重复序列内包含茎环、基本上由茎环组成或由茎环组成。
在所描述的任何方法中,效应蛋白和核酸组分可通过编码所述蛋白和/或一种或多种核酸组分的一种或多种多核苷酸分子来提供,并且其中所述一种或多种多核苷酸分子可操作地被构造成表达所述蛋白和/或一种或多种核酸组分。一种或多种多核苷酸分子可包含可操作地被构造成表达所述蛋白和/或一种或多种核酸组分的一个或多个调控元件。一种或多种多核苷酸分子可包含在一个或多个载体内。在所描述的任何方法中,目标靶基因座可以是目标基因组或表观基因组基因座。在所描述的任何方法中,可将复合物与多种指导物一起递送以供多重使用。在所描述的任何方法中,可使用一种以上的蛋白质。
调控元件可包含诱导型启动子。多核苷酸和/或载体系统可包含诱导系统。
在所描述的任何方法中,一种或多种多核苷酸分子可包含在递送系统中,或者一个或多个载体可包含在递送系统中。
在所描述的任何方法中,非天然存在的或工程化的组合物可通过脂质体、包括纳米颗粒在内的颗粒、外泌体、微泡、基因枪或者一个或多个病毒载体来递送。
本发明还提供了一种非天然存在的或工程化的组合物,其是具有本文所讨论的或本文所述的任何方法中所定义的特征的组合物。
因此,在某些实施方案中,本发明提供了一种非天然存在的或工程化的组合物,诸如特别是能够或被构造成修饰目标靶基因座的组合物,所述组合物包含VI-B型CRISPR-Cas基因座效应蛋白以及一种或多种核酸组分,其中效应蛋白与一种或多种核酸组分形成复合物,并且在所述复合物与目标基因座结合时,效应蛋白诱导目标靶基因座的修饰。在某些实施方案中,效应蛋白可以是Cas13b基因座效应蛋白。
在另一方面,本发明还提供了一种非天然存在的或工程化的组合物,诸如特别是能够或被构造成修饰目标靶基因座的组合物,所述组合物包含:(a)向导RNA分子(或向导RNA分子的组合,例如第一向导RNA分子和第二向导RNA分子,诸如用于多重化)或编码该向导RNA分子的核酸(或编码向导RNA分子的组合的一种或多种核酸);(b)VI-B型CRISPR-Cas基因座效应蛋白或编码该VI-B型CRISPR-Cas基因座效应蛋白的核酸。在某些实施方案中,效应蛋白可以是Cas13b基因座效应蛋白。
在另一方面,本发明还提供了一种非天然存在的或工程化的组合物,其包含:(a)向导RNA分子(或向导RNA分子的组合,例如第一向导RNA分子和第二向导RNA分子)或编码该向导RNA分子的核酸(或编码向导RNA分子的组合的一种或多种核酸);(b)Cas13b基因座效应蛋白。
本发明还提供了一种包含一个或多个载体的载体系统,所述一个或多个载体包含编码非天然存在的或工程化的组合物的组分的一种或多种多核苷酸分子,所述组合物是具有本文所述的任何方法中所定义的特征的组合物。
本发明还提供了一种包含一个或多个载体或者一种或多种多核苷酸分子的递送系统,所述一个或多个载体或多核苷酸分子包含编码非天然存在的或工程化的组合物的组分的一种或多种多核苷酸分子,所述组合物是具有本文所讨论或本文所述的任何方法中所定义的特征的组合物。
本发明还提供了一种用于治疗方法的非天然存在的或工程化的组合物,或者编码所述组合物的组分的一种或多种多核苷酸,或者包含编码所述组合物的组分的一种或多种多核苷酸的载体或递送系统。治疗方法可包括基因或转录组编辑或者基因疗法。
本发明还提供了其中可修饰效应蛋白例如工程化的或非天然存在的效应蛋白或Cas13b的一个或多个氨基酸残基的方法和组合物。在一个实施方案中,修饰可包括效应蛋白的一个或多个氨基酸残基的突变。一个或多个突变可在效应蛋白的一个或多个有催化活性的结构域中。效应蛋白的核酸酶活性与缺乏所述一个或多个突变的效应蛋白相比可能有所降低甚至消除。效应蛋白可能不指导在目标靶基因座处裂解RNA链。在一个优选的实施方案中,一个或多个突变可包含两个突变。在一个优选的实施方案中,在Cas13b效应蛋白例如工程化的或非天然存在的效应蛋白或Cas13b中修饰一个或多个氨基酸残基。在某些实施方案中,效应蛋白包含以下一个或多个突变:R116A、H121A、R1177A、H1182A(其中氨基酸位置对应于源自动物溃疡伯杰菌ATCC 43767的Cas13b蛋白的氨基酸位置),诸如R116A、H121A、R1177A和H1182A;R116A、H121A和R1177A;R116A、H121A和H1182A;R116A、R1177A和H1182A;H121A、R1177A和H1182A;R116A和H121A;R116A和R1177A;R116A和H1182A;H121A和R1177A;H121A和H1182A;R1177A和H1182A;R116A;H121A;R1177A;H1182A。技术人员将理解,可将不同Cas13b蛋白中的对应氨基酸位置突变以达到相同的效果。在某些实施方案中,突变R116A、H121A、R1177A、H1182A中的一个或多个完全或部分消除了蛋白的催化活性(例如,裂解速率改变、特异性改变等),诸如R116A、H121A、R1177A和H1182A;R116A、H121A和R1177A;R116A、H121A和H1182A;R116A、R1177A和H1182A;H121A、R1177A和H1182A;R116A和H121A;R116A和R1177A;R116A和H1182A;H121A和R1177A;H121A和H1182A;R1177A和H1182A;R116A;H121A;R1177A;H1182A。在某些实施方案中,其中氨基酸位置对应于源自普雷沃菌属P5-125的Cas13b蛋白的氨基酸位置,效应蛋白包含H133A和H1058A突变。在某些实施方案中,本文所述的效应蛋白是“死亡”效应蛋白,诸如死亡Cas13b效应蛋白(即dCas13b)。在某些实施方案中,效应蛋白在HEPN结构域1中具有一个或多个突变。在某些实施方案中,效应蛋白在HEPN结构域2中具有一个或多个突变。在某些实施方案中,效应蛋白在HEPN结构域1和HEPN结构域2中具有一个或多个突变。效应蛋白可包含一个或多个异源功能结构域。一个或多个异源功能结构域可包含一个或多个核定位信号(NLS)结构域。一个或多个异源功能结构域可包含至少两个或更多个NLS结构域。一个或多个NLS结构域可定位在效应蛋白(例如,Cas13b效应蛋白)的末端处或其附近或者靠近该末端定位,并且如果有两个或更多个NLS,则两个中的每一个可定位在效应蛋白(例如,Cas13b效应蛋白)的末端处或其附近或者靠近该末端定位。一个或多个异源功能结构域可包含一个或多个转录激活结构域。在一个优选的实施方案中,转录激活结构域可包含VP64。一个或多个异源功能结构域可包含一个或多个转录阻遏结构域。在一个优选的实施方案中,转录阻遏结构域包含KRAB结构域或SID结构域(例如,SID4X)。一个或多个异源功能结构域可包含一个或多个核酸酶结构域。在一个优选的实施方案中,核酸酶结构域包含Fok1。
本发明还提供了一个或多个异源功能结构域以具有以下一种或多种活性:甲基化酶活性、脱甲基酶活性、翻译激活活性、翻译阻遏活性、转录激活活性、转录阻遏活性、转录释放因子活性、组蛋白修饰活性、核酸酶活性、单链RNA裂解活性、双链RNA裂解活性、单链DNA裂解活性、双链DNA裂解活性和核酸结合活性。至少一个或多个异源功能结构结构域可在效应蛋白的氨基末端处或其附近,并且/或者其中至少一个或多个异源功能结构域在效应蛋白的羧基末端处或其附近。一个或多个异源功能结构域可与效应蛋白融合。一个或多个异源功能结构域可联接至效应蛋白。一个或多个异源功能结构域可通过接头部分连接到效应蛋白。
在本发明的某些实施方案中,一个或多个异源功能结构域可包含表位标签或报告物。表位标签的非限制性实例包括组氨酸(His)标签、V5标签、FLAG标签、流感血凝素(HA)标签、Myc标签、VSV-G标签和硫氧还蛋白(Trx)标签。报告物的实例包括但不限于谷胱甘肽-S-转移酶(GST)、辣根过氧化物酶(HRP)、氯霉素乙酰转移酶(CAT)β-半乳糖苷酶、β-葡萄糖醛酸酶、荧光素酶、绿色荧光蛋白(GFP)、HcRed、DsRed、青色荧光蛋白(CFP)、黄色荧光蛋白(YFP)以及包括蓝色荧光蛋白(BFP)在内的自发荧光蛋白。
本发明还提供了以下效应蛋白:其包含与选自卟啉单胞菌属、普雷沃菌属、拟杆菌属、里氏杆菌属、伯杰菌属、另枝菌属、香味菌属、二氧化碳噬纤维菌属和黄杆菌属的原核属的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白。本发明还提供了以下效应蛋白:其包含与选自口腔卟啉单胞菌、普雷沃菌属种、牙龈卟啉单胞菌、化脓拟杆菌、鸭疫里默氏杆菌、动物溃疡伯杰菌、中间普雷沃菌、颊普雷沃菌、另枝菌属种、桔红色普雷沃菌、类香味菌、犬咬二氧化碳噬纤维菌、嗜鳃黄杆菌和柱状黄杆菌的原核物种的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白。本发明还提供了以下效应蛋白:其包含与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属种P5-125Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属种COT-052OH4946 Cas13b(登录号WP_039428968)、化脓拟杆菌Cas13b(登录号WP_034542281)、鸭疫里默氏杆菌Cas13b(登录号WP_004919755)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大同源性或同一性的效应蛋白。最优选的效应蛋白是与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属种P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属种COT-052OH4946 Cas13b(登录号WP_039428968)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白;并且最特别优选的是与野生型口腔卟啉单胞菌Cas13b(登录号WP_039434803)或普雷沃菌属种P5-125 Cas13b(登录号WP_044065294)具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白。该效应蛋白可包含嵌合效应蛋白,其包含来自第一效应蛋白直系同源物的第一片段和来自第二效应蛋白直系同源物的第二片段,并且其中第一效应蛋白直系同源物和第二效应蛋白直系同源物不同。
在某些实施方案中,该效应蛋白的长度可为至少700个氨基酸。在优选的实施方案中,该效应蛋白的长度可为约900至约1500个氨基酸,例如约900至约1000个氨基酸、约1000至约1100个氨基酸、约1100至约1200个氨基酸,或约1200至约1300个氨基酸,或约1300至约1400个氨基酸,或约1400至约1500个氨基酸,例如约900、约1000、约1100、约1200、约1300、约1400、约1500、约1600、约1700或约1800个氨基酸。
在一些实施方案中,该Cas13b效应蛋白(a)包含900-1800个氨基酸和两个HEPN结构域,(b)天然存在于原核基因组中,位于CRISPR阵列上游或下游10kb内,(c)是在CRISPR阵列上游或下游10kb内包含700个以上氨基酸的唯一蛋白,并且/或者(d)在CRISPR阵列上游或下游10kb内没有Cas1基因或Cas2基因。在一些实施方案中,Csx27或Csx28也存在于CRISPR阵列上游或下游10kb内。
在某些实施方案中,该效应蛋白、特别是VI-B型基因座效应蛋白、更特别是Cas13b包含至少一个且优选至少两个诸如更优选正好两个保守的RxxxxH基序。催化性RxxxxH基序表现出HEPN(高级真核生物和原核生物核苷酸-结合)结构域的特征。因此,在某些实施方案中,该效应蛋白包含至少一个且优选至少两个诸如更优选正好两个HEPN结构域。在某些实施方案中,HEPN结构域可具有RNAse活性。在其他实施方案中,HEPN结构域可具有DNAse活性。
在某些实施方案中,如本文预期的Cas13b效应蛋白可与包含短CRISPR重复序列的基因座相关,所述短CRISPR重复序列的长度在30至40bp之间,更通常在34至38bp之间,甚至更通常在36至37bp之间,例如为30、31、32、33、34、35、36、37、38、39或40bp。在某些实施方案中,CRISPR重复序列是长重复序列或双重复序列,其长度在80至350bp之间,诸如在80至200bp之间,甚至更通常在86至88bp之间,例如为80、81、82、83、84、85、86、87、88、89或90bp。
在某些实施方案中,原间隔邻近基序(PAM)或PAM样基序指导本文公开的效应蛋白(例如,Cas13b效应蛋白)复合物与目标靶基因座结合。PAM可称为PFS或原间隔侧接位点。在一些实施方案中,PAM可以是5'PAM(即,位于原间隔序列的5'端上游)。在其他实施方案中,PAM可以是3'PAM(即,位于原间隔序列的5'端下游)。在其他实施方案中,需要5'PAM和3'PAM两者。在本发明的某些实施方案中,指导效应蛋白(例如,Cas13b效应蛋白)结合可能不需要PAM或PAM样基序。在某些实施方案中,5'PAM是D(即A、G或U)。在某些实施方案中,对于VI-B1型效应物,5'PAM是D。参见表2的实例1。存在确定给定Cas13b系统的共有5'和3'PAM的方法。在本发明的某些实施方案中,在重复序列处进行裂解可产生crRNA(例如,短crRNA或长crRNA),其包含在5'端由短核苷酸(例如,如果是双重复序列,则为5、6、7、8、9或10nt或更长)重复序列(可称为crRNA“标签”)侧接并且在3'端由其余重复序列侧接的完整间隔序列。在某些实施方案中,通过本文所述的效应蛋白靶向可能要求在crRNA标签和靶5'侧接序列之间缺乏同源性。该要求可类似于Samai等人在“Co-transcriptional DNA and RNACleavage during Type III CRISPR-Cas Immunity”Cell 161,1164–1174,2015年5月21日中进一步描述的要求,其中该要求被认为用于区分入侵核酸上的真实靶标与CRISPR阵列本身,并且重复序列的存在会导致与crRNA标签完全同源并阻止自身免疫。
在某些实施方案中,该Cas13b效应蛋白被工程化并且可以包含降低或消除核酸酶活性,从而降低或消除RNA干扰活性的一个或多个突变。还可以在邻近残基处例如在参与核酸酶活性的氨基酸附近的氨基酸处进行突变。在一些实施方案中,使一个或多个推定的催化核酸酶结构域失活,并且效应蛋白复合物缺乏裂解活性并起RNA结合复合物的作用。在一个优选的实施方案中,所得的RNA结合复合物可与本文所述的一个或多个功能结构域连接。
在某些实施方案中,本文所述的根据本发明的效应蛋白(CRISPR酶;Cas13;效应蛋白)是无催化活性的或死亡Cas13效应蛋白(dCas13)。在一些实施方案中,该dCas13效应物在核酸酶结构域中包含突变。在一些实施方案中,该dCas13效应蛋白已被截短。在一些实施方案中,为了减小Cas13b效应物和一个或多个功能结构域的融合蛋白的大小,可以在仍保持Cas13b效应物的RNA结合功能的同时将其C端截短。例如,可在Cas13b效应物的C端截短至少20个氨基酸、至少50个氨基酸、至少80个氨基酸,或至少100个氨基酸,或至少150个氨基酸,或至少200个氨基酸,或至少250个氨基酸,或至少300个氨基酸,或至少350个氨基酸,或最多120个氨基酸,或最多140个氨基酸,或最多160个氨基酸,或最多180个氨基酸,或最多200个氨基酸,或最多250个氨基酸,或最多300个氨基酸,或最多350个氨基酸,或最多400个氨基酸。Cas13b截短的具体实例包括C端Δ984-1090、C端Δ1026-1090和C端Δ1053-1090、C端Δ934-1090、C端Δ884-1090、C端Δ834-1090、C端Δ784-1090和C端Δ734-1090,其中氨基酸位置对应于普雷沃菌属P5-125 Cas13b蛋白的氨基酸位置。参见图15B。
在某些实施方案中,一个或多个功能结构域是可控的,即可诱导的。
在本发明的某些实施方案中,向导RNA或成熟crRNA包含正向重复序列和指导序列或间隔序列、基本上由所述序列组成或由所述序列组成。在某些实施方案中,向导RNA或成熟crRNA包含与指导序列或间隔序列连接的正向重复序列、基本上由该正向重复序列组成或由该正向重复序列组成。在本发明的优选实施方案中,成熟crRNA包含茎环或优化的茎环结构或优化的二级结构。在优选的实施方案中,成熟crRNA在正向重复序列中包含茎环或优化的茎环结构,其中茎环或优化的茎环结构对于裂解活性很重要。在某些实施方案中,成熟crRNA优选地包含单个茎环。在某些实施方案中,正向重复序列优选地包含单个茎环。在某些实施方案中,通过引入影响茎环RNA双链体结构的突变来修饰效应蛋白复合物的裂解活性。在优选的实施方案中,可引入维持茎环的RNA双链体的突变,由此保持效应蛋白复合物的裂解活性。在其他优选的实施方案中,可引入破坏茎环的RNA双链体结构的突变,由此完全消除效应蛋白复合物的裂解活性。
本发明还在本文所述的任何方法或组合物中提供了针对在真核生物或真核细胞中表达而进行密码子优化的编码效应蛋白的核苷酸序列。在本发明的一个实施方案中,编码效应蛋白的经密码子优化的核苷酸序列编码本文所讨论的任何Cas13b,并且针对在真核细胞或生物例如在本文中其他地方提到的这种细胞或生物(例如但不限于酵母细胞或者哺乳动物细胞或生物,包括小鼠细胞、大鼠细胞和人类细胞或非人类真核生物,例如植物)中的可操作性进行密码子优化。
在本发明的某些实施方案中,至少一个核定位信号(NLS)附接到编码Cas13b效应蛋白的核酸序列。在优选的实施方案中,附接有至少一个或多个C端或N端NLS(因此编码Cas13b效应蛋白的一种或多种核酸分子可以包括编码一个或多个NLS,使得所表达的产物附接有或连接有所述一个或多个NLS)。在本发明的某些实施方案中,至少一个核输出信号(NES)附接到编码Cas13b效应蛋白的核酸序列。在优选的实施方案中,附接有至少一个或多个C端或N端NES(因此编码Cas13b效应蛋白的一种或多种核酸分子可以包括编码一个或多个NES,使得所表达的产物附接有或连接有所述一个或多个NES)。在一个优选的实施方案中,附接有C端和/或N端NLS或NES,以便在真核细胞、优选人类细胞中进行最佳表达和核靶向。在一个优选的实施方案中,经密码子优化的效应蛋白是Cas13b,并且向导RNA的间隔序列长度为15至35nt。在某些实施方案中,向导RNA的间隔序列长度为至少16个核苷酸,诸如至少17个核苷酸、优选至少18nt,诸如优选至少19nt、至少20nt、至少21nt或至少22nt。在某些实施方案中,间隔序列长度为15至17nt、17至20nt、20至24nt(例如,20、21、22、23或24nt)、23至25nt(例如,23、24或25nt)、24至27nt、27至30nt、30至35nt或35nt或更长。在本发明的某些实施方案中,经密码子优化的效应蛋白是Cas13b,并且向导RNA的正向重复序列长度为至少16个核苷酸。在某些实施方案中,经密码子优化的效应蛋白是Cas13b,并且向导RNA的正向重复序列长度为16至20nt,例如16、17、18、19或20个核苷酸。在某些优选的实施方案中,向导RNA的正向重复序列长度为19个核苷酸。
本发明还包括用于递送多种核酸组分的方法,其中每种核酸组分对不同的目标靶基因座具有特异性,从而修饰多个目标靶基因座。复合物的核酸组分可包含一种或多种蛋白结合RNA适配体。一种或多种适配体可能能够结合噬菌体外壳蛋白。噬菌体外壳蛋白可选自Qβ、F2、GA、fr、JP501、MS2、M12、R17、BZ13、JP34、JP500、KU1、M11、MX1、TW18、VK、SP、FI、ID2、NL95、TW19、AP205、φCb5、φCb8r、φCb12r、φCb23r、7s和PRR1。在一个优选的实施方案中,噬菌体外壳蛋白是MS2。本发明还提供了复合物的核酸组分,其长度为30个或更多个、40个或更多个或者50个或更多个核苷酸。
在另一方面,本发明提供了一种包含经修饰的目标靶基因座的真核细胞,其中已根据本文所述的任何方法对目标靶基因座进行了修饰。另一方面提供了所述细胞的细胞系。另一方面提供了一种包含一个或多个所述细胞的多细胞生物。
在某些实施方案中,对目标靶基因座的修饰可导致:真核细胞包括至少一种基因产物的表达改变;真核细胞包括至少一种基因产物的表达改变,其中该至少一种基因产物的表达增加;真核细胞包括至少一种基因产物的表达改变,其中该至少一种基因产物的表达降低;或者真核细胞包括基因组编辑。
在某些实施方案中,真核细胞可以是哺乳动物细胞或人类细胞。
在另外的实施方案中,本说明书中描述的非天然存在的或工程化的组合物、载体系统或递送系统可用于:位点特异性基因敲除;位点基因组编辑;RNA序列特异性干扰;或者多重基因组工程化。
还提供了一种来自本文所述的细胞、细胞系或生物的基因产物。在某些实施方案中,所表达的基因产物的量可大于或小于来自未改变表达或未编辑基因组的细胞的基因产物的量。在某些实施方案中,与来自未改变表达或未编辑基因组的细胞的基因产物相比,该基因产物可能有所改变。
还提供了一种工程化和非天然存在的真核细胞,其包含以下至少一种:(i)本文所述的Cas13b效应蛋白,或(ii)能够与Cas13b效应蛋白形成CRISPR-Cas复合物的向导RNA。在一些实施方案中,将(i)和/或(ii)瞬时表达或引入细胞中。还提供了包含此类细胞、细胞系、所述细胞系或生物的子代的生物。该生物可以是脊椎动物,例如哺乳动物。另选地,该生物可以是植物或真菌。
在另一方面,本发明提供了一种包含编码本文所述的CRISPR系统的核苷酸序列的真核细胞,该系统确保产生经修饰的目标靶基因座,其中根据本文所述的任何方法对目标靶基因座进行修饰。另一方面提供了所述细胞的细胞系。另一方面提供了一种包含一个或多个所述细胞的多细胞生物。
在某些实施方案中,对目标靶基因座的修饰可导致:真核细胞包括至少一种基因产物的(蛋白)表达改变;真核细胞包括至少一种基因产物的(蛋白)表达改变,其中该至少一种基因产物的(蛋白)表达增加;真核细胞包括至少一种基因产物的(蛋白)表达改变,其中该至少一种基因产物的(蛋白)表达降低;或者真核细胞包括转录组编辑。
在某些实施方案中,真核细胞可以是哺乳动物细胞或人类细胞。
在另外的实施方案中,本说明书中描述的非天然存在的或工程化的组合物、载体系统或递送系统可用于RNA序列特异性干扰、RNA序列特异性表达(包括同种型特异性表达)调节、稳定性、定位、功能性(例如,核糖体RNA或miRNA)等;或者此类过程的多重化。
在另外的实施方案中,本说明书中描述的非天然存在的或工程化的组合物、载体系统或递送系统可用于样品诸如生物样品中的RNA检测和/或定量。在某些实施方案中,RNA检测在细胞中进行。在一个实施方案中,本发明提供了一种检测样品中的靶RNA的方法,其包括(a)将样品与以下物质一起孵育:i)能够裂解RNA的VI-B型CRISPR-Cas效应蛋白,ii)能够与靶RNA杂交的向导RNA,以及iii)能够被效应蛋白非特异性且可检测地裂解的基于RNA的裂解诱导型报告物,(b)基于通过裂解所述基于RNA的裂解诱导型报告物产生的信号来检测所述靶RNA。
在一个实施方案中,VI-B型CRISPR-Cas效应蛋白是Cas13b效应蛋白;例如本文所述的Cas13b效应蛋白。在一个实施方案中,基于RNA的裂解诱导型报告物构建体包含荧光染料和猝灭剂。在某些实施方案中,样品包括无细胞生物样品。在其他实施方案中,样品包括细胞样品,例如但不限于植物细胞或动物细胞。在本发明的一个实施方案中,靶RNA包括病原体RNA,包括但不限于来自病毒、细菌、真菌或寄生虫的靶RNA。在一个实施方案中,向导RNA被设计成检测包含RNA转录物的单核苷酸多态性或剪接变体的靶RNA。在一个实施方案中,向导RNA包含与靶RNA错配的一个或多个核苷酸。在某些实施方案中,向导RNA与诊断疾病状态诸如但不限于癌症或免疫疾病的靶分子杂交。
本发明提供了一种核糖核酸(RNA)检测系统,其包含:a)能够裂解RNA的VI-B型CRISPR-Cas效应蛋白,b)能够与靶RNA结合的向导RNA,以及c)能够被效应蛋白非特异性且可检测地裂解的基于RNA的裂解诱导型报告物。此外,本发明提供了一种用于RNA检测的试剂盒,其包含:a)能够裂解RNA的VI-B型CRISPR-Cas效应蛋白,以及b)能够被效应蛋白非特异性且可检测地裂解的基于RNA的裂解诱导型报告物。在某些实施方案中,基于RNA的裂解诱导型报告物构建体包含荧光染料和猝灭剂。
在其他实施方案中,本说明书中描述的非天然存在的或工程化的组合物、载体系统或递送系统可用于产生疾病模型和/或筛选系统。
在另外的实施方案中,本说明书中描述的非天然存在的或工程化的组合物、载体系统或递送系统可用于:位点特异性转录组编辑或干扰;核酸序列特异性干扰;或者多重基因组工程化。
在本发明的各方面,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的病毒发病、感染或传播。本发明的各方面提供了一种用于治疗、防治、抑制和/或减轻受试者的病毒发病、感染和/或传播的Cas13b CRISPR系统,其包含(a)Cas13b CRISPR效应蛋白和/或编码Cas13b CRISPR效应蛋白的多核酸,以及(b)一种或多种向导RNA和/或编码一种或多种向导RNA的一种或多种多核酸,所述一种或多种向导RNA被设计成与病毒的一个或多个靶分子结合。Cas13b效应蛋白可如本文所定义,包括关于优选的野生型Cas13b蛋白及其优选的衍生物和修饰方面。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的拉沙病毒发病、感染或传播。拉沙病毒与DC和血管内皮细胞有关(参见Kunz,S.等人2005.Journal of Virology)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的埃博拉病毒发病、感染或传播。埃博拉病毒与许多组织和细胞类型有关,包括DC、巨噬细胞、肝细胞等(参见Martines,R.B.等人2015.Journal ofPathology)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的SARS-CoV发病、感染或传播。SARS-CoV与肺组织和细胞有关(参见To,KF.等人2004.Journal of Pathology)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的寨卡病毒发病、感染或传播。寨卡病毒与许多组织和细胞类型有关,包括体液、胎盘、脑等(参见Miner,J.J.和Diamond,M.S.2017.Cell Host&Microbe)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的登革病毒发病、感染或传播。登革病毒与许多组织和细胞类型有关,包括DC、巨噬细胞、肝脏等(参见Flipse,J.等人2016.Journal of General Virology)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的基孔肯雅病毒发病、感染或传播。基孔肯雅病毒与许多组织和细胞类型有关,包括免疫细胞、肝脏、中枢神经系统等(参见Schwartz,O.和Albert,M.L.,2010.Nature Reviews)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的流感病毒发病、感染或传播。流感病毒与肺上皮细胞和巨噬细胞有关(参见Medina,R.A.和Garcia-Sastre A.2011 Nature Reviews)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的HIV病毒发病、感染或传播。HIV病毒与T细胞和巨噬细胞有关(参见Weiss,R.A.2002.IUBMB Life)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的轮状病毒发病、感染或传播。轮状病毒与肠道组织和细胞有关(参见Lopez,S和Arias,C.F.2006.CTMI)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的单纯疱疹(HSV-1)发病、感染或传播。HSV-1与上皮细胞和神经元细胞有关(参见Schelhaas,M.等人2003.Journal of General Virology)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的HCV发病、感染或传播。HCV与肝脏组织和细胞有关(参见Ding,Q等人2014.Cell Host&Microbe)。
在一些实施方案中,本文所述的Cas13b效应蛋白或系统可用于治疗、防治、预防或抑制哺乳动物受试者的HBV发病、感染或传播。HBV与肝脏组织和细胞有关(参见Schieck,A.等人2013.Hepatology)。
还提供了一种来自本文所述的细胞、细胞系或生物的基因产物。在某些实施方案中,所表达的基因产物的量可大于或小于来自未改变表达或未编辑基因组的细胞的基因产物的量。在某些实施方案中,与来自未改变表达或未编辑基因组的细胞的基因产物相比,该基因产物可能有所改变。
这些实施方案和其他实施方案根据以下具体实施方案公开或变得显而易见,并且被以下具体实施方式所涵盖。
因此,本发明的目的是不将任何先前已知的产品、制造该产品的过程或使用该产品的方法涵盖在本发明内,使得申请人保留权利并据此公开对任何先前已知的产品、过程或方法的免责声明。还应当注意,本发明无意将任何产品、过程、制造该产品或使用该产品的方法涵盖在本发明的范围内,这不符合USPTO(35 U.S.C.§112,第一段)或EPO(EPC的第83条)的书面描述和实施要求,使得申请人保留权利并据此公开对任何先前描述的产品、制造该产品的过程或使用该产品的方法的免责声明。在本发明的实践中,完全遵照EPC第53(c)条以及EPC规则28(b)和(c)可能是有利的。本文中的任何内容均不得视为承诺。
应当注意,在本公开中,特别是在权利要求和/或段落中,术语诸如“包含”可以具有在美国专利法中赋予其的含义;例如,其可以表示“包括”;并且术语诸如“基本上由……组成”具有在美国专利法中赋予其的含义,例如,其允许未明确叙述的要素,但排除在现有技术中发现或者影响本发明的基本或新型特征的要素。
附图说明
本发明的新型特征在所附权利要求书中具体阐述。通过参考阐述说明性实施方案(其中利用了本发明的原理)的以下详细描述以及附图,将更好地理解本发明的特征和优点,在附图中:
图1示出了野生型Cas13b直系同源物的列表及其氨基酸序列,以及来源生物和蛋白登录号。
图2示出了图1的每个Cas13b直系同源物的分类以及它们在哺乳动物细胞培养中敲低荧光素酶表达的相对功效。
图3在针对指导序列进行控制的情况下比较每个活性Cas13b直系同源物的活性。
图4在各种指导序列间比较两个Cas13b直系同源物口腔卟啉单胞菌WP_039434803和普雷沃菌属P5-125 WP_044065294的活性以及C2c2/Cas13a的活性。
图5:对高活性Cas13b直系同源物的RNA敲低的表征。(A)定型Cas13基因座和对应crRNA结构的示意图。(B)使用两种不同的指导物评估19个Cas13a、15个Cas13b和7个Cas13c直系同源物的荧光素酶敲低。使用两种指导物有效敲低的直系同源物标有其宿主生物名称。(C)通过针对Gluc平铺指导物并测量荧光素酶表达来比较PspCas13b和LwaCas13a敲低活性。(D)通过针对Cluc平铺指导物并测量荧光素酶表达来比较PspCas13b和LwaCas13a敲低活性。(E)与LwaCas13a(红色)和shRNA(黑色)的Gluc靶向条件(y轴)相比,在非靶向对照(x轴)的RNA-seq文库中检测到的所有基因的表达水平(用log2(每百万转录物(TPM))值表示)。显示的是三个生物学重复的平均值。Gluc转录物数据点被标记。(F)与PspCas13b(蓝色)和shRNA(黑色)的Gluc靶向条件(y轴)相比,在非靶向对照(x轴)的RNA-seq文库中检测到的所有基因的表达水平(用log2(每百万转录物(TPM))值表示)。显示的是三个生物学重复的平均值。Gluc转录物数据点被标记。(G)从E和F中的全转录组分析得出的LwaCas13a、PspCas13b和shRNA的Gluc敲低的显著脱靶数量。
图6:对dCas13b-ADAR融合体进行工程化以用于RNA编辑。(A)dCas13b-ADAR融合蛋白进行RNA编辑的示意图。(B)海萤(Cypridina)荧光素酶W85X靶标和靶向指导物设计的示意图。(C)利用长度为30、50、70或84nt的平铺指导物对Cas13b-dADAR1(左)和Cas13b-ADAR2-cd(右)的荧光素酶活性恢复进行定量。(D)用于靶向海萤荧光素酶W85X的靶位点的示意图。(E)对靶向海萤荧光素酶W85X的50nt指导物的A->I编辑进行测序定量。
图7:测量通过REPAIRv1进行RNA编辑的序列灵活性。(A)用于确定通过REPAIRv1进行RNA编辑的原间隔侧接位点(PFS)偏好的筛选示意图。(B)两个不同的编辑位点处所有4-NPFS组合的RNA编辑效率的分布(C)对所有可能的3碱基基序在Cluc W85处的REPAIRv1编辑百分比进行定量。(D)所有可能的3碱基基序在Cluc W85处的RNA编辑的5'和3'碱基偏好的热图
图8:利用REPAIRv1校正与疾病相关的突变。(A)靶标以及用于靶向AVPR2 878G>A的指导物设计的示意图。(B)使用具有三种不同指导物设计的REPAIRv1将AVPR2中的878G>A突变校正为不同百分比。(C)靶标以及用于靶向FANCC 1517G>A的指导物设计的示意图。(D)使用具有三种不同指导物设计的REPAIRv1将FANCC中的1517G>A突变校正为不同百分比。(E)使用REPAIRv1对34种与疾病相关的G>A突变的编辑百分比进行定量。(F)对如ClinVar数据库所注释的可被校正的所有可能的G>A突变进行分析。(G)相对于每个基序的REPAIRv1编辑效率(如在Gluc转录物上定量),示出了ClinVar中所有G>A突变的编辑基序的分布。
图9:表征REPAIRv1的特异性。(A)KRAS靶位点和指导物设计的示意图。(B)对平铺的KRAS靶向指导物的编辑百分比进行定量。编辑百分比示出于在靶和相邻腺苷位点处。对于每种指导物,双链体RNA的区由红色矩形表示。(C)利用Cluc靶向指导物通过REPAIRv1进行重要RNA编辑的全转录组位点。在靶位点Cluc位点(254A>G)用橙色突出显示。(D)利用非靶向指导物通过REPAIRv1进行重要RNA编辑的全转录组位点。
图10:对ADAR2进行合理诱变以提高REPAIRv1的特异性。(A)对通过各种dCas13-ADAR2突变体恢复荧光素酶信号进行定量,以及它们的特异性得分,所述特异性得分沿着关键ADAR2脱氨酶残基与dsRNA靶标之间的接触示意图绘制。特异性得分被定义为靶向指导物和非靶向指导物条件之间的荧光素酶信号之比。(B)对通过各种dCas13-ADAR2突变体恢复荧光素酶信号进行定量,以及它们的特异性得分。(C)通过对mRNA进行全转录组测序对每个dCas13-ADAR2突变体的在靶编辑分数以及显著脱靶的数量进行测量。(D)利用靶向Cluc中预先终止位点的指导物通过REPAIRv1和REPAIRv2进行重要RNA编辑的全转录组位点。在靶Cluc位点(254A>G)用橙色突出显示。(E)在靶Cluc编辑位点(254A>G)周围的RNA测序读数,突出显示了REPAIRv1和REPAIRv2之间的脱靶编辑差异。所有A>G编辑均用红色突出显示,而测序错误用蓝色突出显示。(F)利用靶向内源KRAS和PPIB转录物中的框外UAG位点的指导物通过REPAIRv1和REPAIRv2进行RNA编辑。每个条件行的在靶编辑分数被示为右侧的横向条形图。由向导RNA形成的双链体区由红色轮廓框示出。
图11:对Cas13b直系同源物进行细菌筛选以用于体内效率和PFS测定。(A)用于确定Cas13b直系同源物的PFS的细菌测定的示意图。将具有β-内酰胺酶靶向间隔序列的Cas13b直系同源物与β-内酰胺酶表达质粒共转化并进行双重选择。(B)对靶向β-内酰胺酶的Cas13b直系同源物的干扰活性进行定量,由集落形成单位(cfu)测量。(C)Cas13b直系同源物的PFS标识,由细菌测定中的耗竭序列确定。
图12:对Cas13b敲低的优化以及对错配特异性的进一步表征。(A)使用与各种核定位和核输出标签融合的前2个Cas13a和前4个Cas13b直系同源物测量利用两种不同指导物进行的Gluc敲低。(B)利用四种不同指导物测量LwaCas13a、RanCas13b、PguCas13b和PspCas13b对KRAS的敲低进行测量,并且与四个位置匹配的shRNA对照进行比较。(C)用于评估LwaCas13a和PspCas13b敲低特异性的单错配和双错配质粒文库的示意图。在靶序列中以及在正向侧接靶位点5'和3'端的3个位置中存在每种可能的单错配和双错配。(D)对于LwaCas13a和PspCas13b条件两者,将具有指示的单错配的转录物的耗竭水平绘制为热图。(E)对于LwaCas13a和PspCas13b条件两者,将具有指示的双错配的转录物的耗竭水平绘制为热图。
图13:对用于dCas13-ADAR2 RNA编辑的设计参数的表征。(A)野生型Cas13b和无催化活性的H133A/H1058A Cas13b(dCas13b)的Gluc靶向的敲低效率。(B)对通过与野生型ADAR2催化结构域或高活性E488Q突变体ADAR2催化结构域融合的dCas13b恢复荧光素酶活性进行定量,用平铺Cluc靶向指导物进行测试。(C)对靶向海萤荧光素酶W85X的30nt指导物的A->I编辑进行指导物设计和测序定量。(D)对靶向PPIB的50nt指导物的A->I编辑进行指导物设计和测序定量。(E)接头选择对REPAIRv1恢复荧光素酶活性的影响。(F)与靶腺苷相对的碱基鉴定对REPAIRv1恢复荧光素酶活性的影响。
图14:G>A突变的ClinVar基序分布。在ClinVar数据库中观察到的所有G>A突变的每个可能的三联体基序的数量。
图15:(A)dCas13b的截短物仍具有RNA编辑功能。dCas13b的各种N端和C端截短物允许进行RNA编辑,如通过恢复荧光素酶信号所测量。图15:(B)具有dCas13b的不同C端截短物的dCas13b-ADAR构建体的其他实例。
图16:将其他可编程ADAR系统与dCas13-ADAR2编辑器进行比较。(A)两种可编程ADAR方案的示意图:基于BoxB的靶向和全长ADAR2靶向。在BoxB方案(上图)中,将ADAR2脱氨酶结构域(ADAR2DD(E488Q))与被称为lambda N
Figure BDA0002313867470000331
的小细菌病毒蛋白融合,该蛋白与被称为
Figure BDA0002313867470000332
的小RNA序列特异性结合。然后,包含两个
Figure BDA0002313867470000333
发夹的向导RNA可以指导ADAR2DD(E488Q),
Figure BDA0002313867470000334
进行位点特异性编辑。在全长ADAR2方案(下图)中,ADAR2的dsRNA结合结构域与向导RNA中的发夹结合,从而允许进行可编程ADAR2编辑。(B)利用靶向Cluc的指导物和非靶向指导物通过BoxB-ADAR2DD(E488Q)进行重要RNA编辑的全转录组位点。在靶Cluc位点(254A>G)用橙色突出显示。(C)利用靶向Cluc的指导物和非靶向指导物通过ADAR2进行重要RNA编辑的全转录组位点。在靶Cluc位点(254A>G)用橙色突出显示。(D)利用靶向Cluc的指导物和非靶向指导物通过REPAIRv1进行重要RNA编辑的全转录组位点。在靶Cluc位点(254A>G)用橙色突出显示。(E)对BoxB-ADAR2DD(E488Q)、ADAR2和REPAIRv1针对Cluc靶向指导物的在靶编辑率百分比进行定量。(F)可编程ADAR系统在不同靶向和非靶向条件之间的脱靶位点的重叠。
图17:dCas13b-ADAR2突变体的效率和特异性。(A)对Cluc靶向和非靶向指导物通过dCas13b-ADAR2DD(E488Q)突变体恢复荧光素酶活性进行定量。(B)如通过全转录组测序定量的靶向和非靶向指导物的比例与RNA编辑脱靶的数量之间的关系。(C)对dCas13b-ADAR2DD(E488Q)突变体的全转录组脱靶RNA编辑位点的数量与在靶Cluc编辑效率进行定量。
图18:dCas13b-ADAR2DD(E488Q)突变体进行RNA编辑的全转录组特异性。(A)dCas13b-ADAR2DD(E488Q)突变体利用靶向Cluc的指导物进行重要RNA编辑的全转录组位点。在靶Cluc位点(254A>G)用橙色突出显示。(B)dCas13b-ADAR2DD(E488Q)突变体利用非靶向指导物进行重要RNA编辑的全转录组位点。
图19:对dCas13b-ADAR2DD(E488Q)编辑的脱靶中的基序偏倚的表征。(A)对于每个dCas13b-ADAR2DD(E488Q)突变体,示出了转录组中所有A>G脱靶编辑中存在的基序。(B)示出了利用靶向和非靶向指导物进行REPAIRv1时每个基序身份的脱靶A>G编辑的分布。(C)示出了利用靶向和非靶向指导物进行REPAIRv2时每个基序身份的脱靶A>G编辑的分布。
图20:对REPAIRv1和REPAIRv2脱靶的进一步表征。(A)REPAIRv1的每个转录物的脱靶数量的直方图。(B)REPAIRv2的每个转录物的脱靶数量的直方图。(C)REPAIRv1脱靶的变异效应预测。(D)REPAIRv1脱靶的潜在致癌效应的分布。(E)REPAIRv2脱靶的变异效应预测。(F)REPAIRv2脱靶的潜在致癌效应的分布。
图21:REPAIRv1和REPAIRv2的RNA编辑效率和特异性。(A)对REPAIRv1和REPAIRv2在靶腺苷和相邻位点处利用KRAS靶向指导物1对KRAS进行编辑的百分比进行定量。(B)对REPAIRv1和REPAIRv2在靶腺苷和相邻位点处利用KRAS靶向指导物3对KRAS进行编辑的百分比进行定量。(C)对REPAIRv1和REPAIRv2在靶腺苷和相邻位点处利用PPIB靶向指导物2对PPIB进行编辑的百分比进行定量。
图22:对具有A>G RNA编辑器的所有潜在的密码子变化的展示。(A)通过A>I编辑实现的所有潜在密码子转换的表。(B)展示通过A>I编辑实现的所有潜在密码子转换的密码子表。
本文中的附图仅用于说明性目的,不一定按比例绘制。
具体实施方式
一般来讲,在前述文献诸如WO 2014/093622(PCT/US2013/074667)中使用的CRISPR-Cas或CRISPR系统统指涉及与CRISPR相关的(“Cas”)基因的表达或指导该基因的活性的转录物和其他元件,包括编码Cas基因的序列、tracr(反式激活CRISPR)序列(例如,tracrRNA或活性部分tracrRNA)、tracr-mate序列(在内源CRISPR系统的情况下,包含“正向重复序列”和tracrRNA处理的部分正向重复序列)、指导序列(在内源CRISPR系统的情况下,也称为“间隔序列”),或者本文使用的术语“一种或多种RNA”(例如,用于指导Cas诸如Cas9的一种或多种RNA,例如CRISPR RNA和反式激活(tracr)RNA或单个向导RNA(sgRNA)(嵌合RNA)),或者来自CRISPR基因座的其他序列和转录物。一般来讲,CRISPR系统的特征在于具有在靶序列位点(在内源CRISPR系统的情况下,也称为原间隔序列)处促进CRISPR复合物形成的元件。
当CRISPR蛋白是2类VI-B型效应物(例如,Cas13b效应蛋白)时,不需要tracrRNA。在本发明的工程化系统中,正向重复序列可包括天然存在的序列或非天然存在的序列。本发明的正向重复序列不限于天然存在的长度和序列。正向重复序列的长度可以为36nt,但是更长或更短的正向重复序列可以变化。例如,正向重复序列可以为30nt或更长,诸如30-100nt或更长。例如,正向重复序列的长度可以为30nt、40nt、50nt、60nt、70nt、80nt、90nt、100nt或更长。在一些实施方案中,本发明的正向重复序列可以包括插入天然存在的正向重复序列的5'端和3'端之间的合成核苷酸序列。在某些实施方案中,所插入的序列可以是自身互补的,例如20%、30%、40%、50%、60%、70%、80%、90%或100%自身互补。此外,本发明的正向重复序列可包括核苷酸的插入序列,诸如适配体或与衔接蛋白结合(用于与功能结构域缔合)的序列。在某些实施方案中,含有这种插入序列的正向重复序列的一端大约是短DR的前半部分,而另一端大约是短DR的后半部分。
在形成CRISPR复合物的情况下,“靶序列”是指指导序列被设计成与其具有互补性的序列,其中靶序列和指导序列之间的杂交促进了CRISPR复合物的形成。靶序列可包含RNA多核苷酸。在一些实施方案中,靶序列位于细胞的细胞核或细胞质中。在一些实施方案中,可通过搜索满足任何或所有以下标准的重复基序在计算机上鉴定正向重复序列:1.在侧接CRISPR基因座的2Kb基因组序列窗口中发现;2.跨度为20至50bp;以及3.间隔20至50bp。在一些实施方案中,可使用这些标准中的2个,例如1和2、2和3或者1和3。在一些实施方案中,可使用所有3个标准。
在本发明的实施方案中,术语指导序列和向导RNA(即,能够将Cas13b指导至靶基因组基因座的RNA)可互换使用,如在前文引用的文献诸如WO 2014/093622(PCT/US2013/074667)中。一般来讲,指导序列是与靶多核苷酸序列具有足够互补性以与靶序列杂交并且指导CRISPR复合物与靶序列进行序列特异性结合的任何多核苷酸序列。在一些实施方案中,当使用合适的比对算法进行最佳比对时,指导序列与其对应靶序列之间的互补程度为约或大于约50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更高。可使用用于比对序列的任何合适的算法来确定最佳比对,这些算法的非限制性实例包括Smith-Waterman算法、Needleman-Wunsch算法、基于Burrows-Wheeler变换的算法(例如,Burrows WheelerAligner)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies;可从www.novocraft.com获取)、ELAND(Illumina,San Diego,CA)、SOAP(可从soap.genomics.org.cn获取)和Maq(可从maq.sourceforge.net获取)。在一些实施方案中,指导序列的长度为约或大于约5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50、75个或更多的核苷酸。在一些实施方案中,指导序列的长度小于约75、50、45、40、35、30、25、20、15、12个或更少的核苷酸。优选地,指导序列的长度为10-40个核苷酸,诸如20-30或20-40个核苷酸或更长,诸如30个核苷酸或约30个核苷酸。在某些实施方案中,对于Cas13b效应物,指导序列的长度为10-30个核苷酸,诸如20-30或20-40个核苷酸或更长,诸如30个核苷酸或约30个核苷酸。在某些实施方案中,对于源自动物溃疡伯杰菌(诸如动物溃疡伯杰菌ATCC 43767)的Cas13b效应物,指导序列的长度为10-30个核苷酸,诸如20-30个核苷酸,诸如30个核苷酸或约30个核苷酸。可通过任何合适的测定来评估指导序列指导CRISPR复合物与靶序列进行序列特异性结合的能力。例如,可诸如通过用编码CRISPR序列的组分的载体进行转染,然后诸如通过本文所述的Surveyor测定对靶序列内的优先裂解进行评估,将足以形成CRISPR复合物的CRISPR系统组分(包括待测试的指导序列)提供给具有对应靶序列的宿主细胞。类似地,可通过提供靶序列、CRISPR复合物的组分(包括待测试的指导序列和不同于该测试指导序列的对照指导序列),并比较测试指导序列和对照指导序列反应之间在靶序列处的结合或裂解速率,在试管中对靶多核苷酸序列的裂解进行评估。其他测定也是可能的,并且是本领域技术人员可以想到的。
在经典的CRISPR-Cas系统中,指导序列与其对应靶序列之间的互补程度可以为或大于约50%、60%、75%、80%、85%、90%、95%、97.5%、99%或100%;指导物或RNA或sgRNA的长度可以为约或大于约5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50、75个或更多的核苷酸;或者指导物或RNA或sgRNA的长度可以小于约75、50、45、40、35、30、25、20、15、12个或更少的核苷酸。然而,在本发明的某些方面,可减少脱靶相互作用,例如减少指导物与互补性低的靶序列相互作用。实际上,某些突变可能导致CRISPR-Cas系统能够区分互补性大于80%至约95%例如互补性为83%-84%或88-89%或94-95%的靶序列和脱靶序列(例如,区分具有18个核苷酸的靶标与具有1、2或3个错配的18个核苷酸的脱靶标)。因此,在本发明的上下文中,指导序列与其对应靶序列之间的互补程度可大于94.5%、或95%、或95.5%、或96%、或96.5%、或97%、或97.5%、或98%、或98.5%、或99%、或99.5%、或99.9%或100%。脱靶在序列和指导物之间的互补性小于100%、或99.9%、或99.5%、或99%、或99%、或98.5%、或98%、或97.5%、或97%、或96.5%、或96%、或95.5%、或95%、或94.5%、或94%、或93%、或92%、或91%、或90%、或89%、或88%、或87%、或86%、或85%、或84%、或83%、或82%、或81%或80%,有利的是脱靶在序列和指导物之间的互补性为100%、或99.9%、或99.5%、或99%、或99%、或98.5%、或98%、或97.5%、或97%、或96.5%、或96%、或95.5%、或95%或94.5%。
在某些实施方案中,可以通过引入错配,例如1个或更多个错配,诸如间隔序列和靶序列之间的1个或2个错配,包括沿着间隔序列/靶标的错配位置来利用裂解效率的调节。例如,双错配越居中(即,不在3'或5'),裂解效率受到的影响越大。因此,通过选择沿着间隔序列的错配位置,可以调节裂解效率。举例来说,如果希望靶标的裂解小于100%(例如,在细胞群体中),则可在间隔序列中引入间隔序列和靶序列之间的1个或多个诸如优选2个错配。沿着错配位置的间隔序列越居中,裂解百分比越低。
本文所述的根据本发明的方法包括如本文所讨论在真核细胞中(在体外,即在分离的真核细胞中)诱导一个或多个核苷酸修饰,包括如本文所讨论将载体递送到细胞。一个或多个突变可以包括经由一种或多种向导RNA或sgRNA在一个或多个细胞的每个靶序列处引入、缺失或取代一个或多个核苷酸。突变可以包括经由一种或多种向导RNA在所述一个或多个细胞的每个靶序列处引入、缺失或取代1-75个核苷酸。突变可以包突变可以包括经由一种或多种向导RNA在所述一个或多个细胞的每个靶序列处引入、缺失或取代1、5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或75个核苷酸。突变可以包括经由一种或多种向导RNA在所述一个或多个细胞的每个靶序列处引入、缺失或取代5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或75个核苷酸。突变包括经由一种或多种向导RNA在所述一个或多个细胞的每个靶序列处引入、缺失或取代10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或75个核苷酸。突变可以包括经由一种或多种向导RNA在所述一个或多个细胞的每个靶序列处引入、缺失或取代20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或75个核苷酸。突变可以包括经由一种或多种向导RNA在所述一个或多个细胞的每个靶序列处引入、缺失或取代40、45、50、75、100、200、300、400或500个核苷酸。
为了最大程度地降低毒性和脱靶效应,控制所递送的Cas mRNA或蛋白和向导RNA的浓度非常重要。可以通过在细胞或非人类真核生物动物模型中测试不同的浓度并且使用深度测序来分析潜在脱靶基因组基因座处的修饰程度来确定Cas mRNA或蛋白和向导RNA的最佳浓度。
通常,在内源性CRISPR系统的情况下,CRISPR复合物(包含与靶序列杂交并与一种或多种Cas蛋白复合的指导序列)的形成会导致在靶序列中或附近(例如,在距靶序列1、2、3、4、5、6、7、8、9、10、20、50个或更多个碱基对内)发生裂解,但是可取决于例如二级结构,特别是在RNA靶标的情况下。
编码Cas的核酸分子有利地是经密码子优化的Cas。在这种情况下,经密码子优化的序列的实例是针对在真核生物例如人类中表达而优化(即,针对在人类中表达而优化)的序列,或针对在本文所讨论的另一种真核生物、动物或哺乳动物中表达而优化的序列。参见例如WO 2014/093622(PCT/US2013/074667)中的经SaCas9人类密码子优化的序列。尽管这一实例是优选的,但应当理解其他实例也是可能的,并且针对除人类以外的宿主物种进行的密码子优化或针对特定器官进行的密码子优化是已知的。在一些实施方案中,针对在特定细胞诸如真核细胞中表达对编码Cas的酶编码序列进行密码子优化。真核细胞可以是特定生物诸如哺乳动物的细胞或来源于该特定生物的细胞,所述哺乳动物包括但不限于人类或本文所讨论的非人类真核生物或动物或哺乳动物,例如小鼠、大鼠、兔、狗、家畜或非人类哺乳动物或灵长类动物。在一些实施方案中,可将用于修饰人类种系遗传同一性的过程和/或用于修饰可能导致动物遭受痛苦而对人类或动物没有任何实质性医学益处的动物遗传同一性的过程以及由这些过程产生的动物排除在外。一般来讲,密码子优化是指通过在保持天然氨基酸序列的同时用在目标宿主细胞的基因中更常用或最常用的密码子来替换天然序列的至少一个密码子(例如,约或大于约1、2、3、4、5、10、15、20、25、50个或更多个密码子)来修饰核酸序列以在该宿主细胞中增强表达的过程。各种物种对特定氨基酸的某些密码子表现出特定的偏倚。密码子偏倚(生物之间密码子使用的差异)通常与信使RNA(mRNA)的翻译效率相关,而信使RNA(mRNA)的翻译效率又被认为尤其取决于被翻译的密码子的性质和特定转移RNA(tRNA)分子的可用性。所选tRNA在细胞中具有优势通常反映了在肽合成中最常使用的密码子。因此,可以基于密码子优化来定制基因以在给定生物中进行最佳基因表达。密码子使用表可容易获得,例如可在www.kazusa.orjp/codon/的“密码子使用数据库”中获得,并且可以通过多种方式对这些表进行调整。参见Nakamura,Y.等人“Codonusage tabulated from the international DNA sequence databases:status for theyear 2000”Nucl.Acids Res.28:292(2000)。也可获得针对在特定宿主细胞中表达而对特定序列进行密码子优化的计算机算法,诸如也可获得Gene Forge(Aptagen;Jacobus,PA)。在一些实施方案中,编码Cas的序列中的一个或多个密码子(例如,1、2、3、4、5、10、15、20、25、50个或更多个或所有密码子)对应于特定氨基酸的最常用的密码子。
在某些实施方案中,本文所述的方法可包括提供Cas转基因细胞,在该Cas转基因细胞中提供或引入了编码一种或多种向导RNA的一种或多种核酸,所述一种或多种向导RNA利用包含一个或多个目标基因的启动子的调控元件在细胞中可操作地连接。如本文所用,术语“Cas转基因细胞”是指已将Cas基因基因组整合在其中的细胞,诸如真核细胞。根据本发明,细胞的性质、类型或来源没有特别限制。同样,将Cas转基因引入细胞的方式也可不同,并且可以是本领域已知的任何方法。在某些实施方案中,通过将Cas转基因引入分离的细胞中来获得Cas转基因细胞。在某些其他实施方案中,通过从Cas转基因生物中分离细胞来获得Cas转基因细胞。举例来说但不限制,本文所指的Cas转基因细胞可来源于Cas转基因真核生物,诸如Cas敲入真核生物。参考通过引用并入本文的WO 2014/093622(PCT/US13/74667)。可以对转让给Sangamo BioSciences,Inc.的针对靶向Rosa基因座的美国专利公开号20120017290和20110265198的方法进行修改,以利用本发明的CRISPR Cas系统。也可以对转让给Cellectis的针对靶向Rosa基因座的美国专利公开号20130236946的方法进行修改,以利用本发明的CRISPR Cas系统。进一步举例来说,参考Platt等人(Cell;159(2):440-455(2014)),该文献描述了Cas9敲入小鼠并通过引用并入本文。Cas转基因还可以包含Lox-Stop-polyA-Lox(LSL)盒,使得Cas表达可被Cre重组酶诱导。另选地,可通过将Cas转基因引入分离的细胞中来获得Cas转基因细胞。转基因的递送系统是本领域众所周知的。举例来说,可借助于如本文其他地方所述的载体(例如,AAV、腺病毒、慢病毒)和/或颗粒和/或纳米颗粒递送在例如真核细胞中递送Cas转基因。
本领域技术人员将理解,本文所指的细胞诸如Cas转基因细胞除了具有整合的Cas基因或突变外,还可包含另外的基因组改变,所述突变是当与能够将Cas指导至靶基因座的RNA复合时由Cas的序列特异性作用引起的,诸如一个或多个致癌突变,例如但不限于在Platt等人(2014)、Chen等人(2014)或Kumar等人(2009)中描述的。
在一些实施方案中,将Cas序列与一个或多个核定位序列(NLS)或核输出信号(NES)融合,诸如约或大于约1、2、3、4、5、6、7、8、9、10个或更多个NLS或NES。在一些实施方案中,Cas在氨基末端处或附近包含约或大于约1、2、3、4、5、6、7、8、9、10个或更多个NLS或NES,在羧基末端处或附近包含约或大于约1、2、3、4、5、6、7、8、9、10个或更多个NLS或NES,或这些情况的组合(例如,在氨基末端处包含零个或至少一个或多个NLS或NES,并且在羧基末端处包含零个或至少一个或多个NLS或NES)。当存在一个以上的NLS或NES时,可彼此独立地选择每个的NLS或NES,使得单个NLS或NES可以一个以上的拷贝存在和/或与以一个或多个拷贝存在的一个或多个其他NLS或NES组合存在。在本发明的优选实施方案中,Cas包含至多6个NLS。在一些实施方案中,当NLS或NE S的最近氨基酸沿着多肽链在距N端或C端约1、2、3、4、5、10、15、20、25、30、40、50个或更多个氨基酸内时,该NLS或NES被认为在N端或C端附近。NLS的非限制性实例包括来源于以下各项的NLS序列:SV40病毒大T抗原的NLS,氨基酸序列为PKKKRKV(SEQ ID NO:X);来自核质蛋白的NLS(例如,序列为KRPAATKKAGQAKKKK的核质蛋白二分NLS)(SEQ ID NO:X);氨基酸序列为PAAKRVKLD(SEQ ID NO:X)或RQRRNELKRSP(SEQ IDNO:X)的c-myc NLS;序列为NQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGY(SEQ ID NO:X)的hRNPA1 M9 NLS;来自输入蛋白-α的IBB结构域的序列RMRIZFKNKGKDTAELRRRRVEVSVELRKAKKDEQILKRRNV(SEQ ID NO:X);肌瘤T蛋白的序列VSRKRPRP(SEQ ID NO:X)和PPKKARED(SEQID NO:X);人p 53的序列POPKKKPL(SEQ ID NO:X);小鼠c-abl IV的序列SALIKKKKKMAP(SEQID NO:X);流感病毒NS1的序列DRLRR(SEQ ID NO:X)和PKQKKRK(SEQ ID NO:X);肝炎病毒δ抗原的序列RKLKKKIKKL(SEQ ID NO:X);小鼠Mx1蛋白的序列REKKKFLKRR(SEQ ID NO:X);人聚(ADP-核糖)聚合酶的序列KRKGDEVDGVDEVAKKKSKK(SEQ ID NO:X);类固醇激素受体(人)糖皮质激素的序列RKCLQAGMNLEARKTKK(SEQ ID NO:X)。NES的非限制性实例包括NES序列LYPERLRRILT(ctgtaccctgagcggctgcggcggatcctgacc)。一般来讲,一个或多个NLS或NES具有足够的强度来驱动Cas以可检测的量分别在真核细胞的细胞核或细胞质中积累。一般来讲,核定位/输出活动的强度可源自Cas中的NLS/NES数量、所使用的一个或多个特定NLS或NES或者这些因素的组合。检测细胞核/细胞质中的积累物可通过任何合适的技术进行。例如,可将可检测的标记与Cas融合,使得诸如结合用于检测细胞核或细胞质的位置的手段(例如,对细胞核特异的染色剂,诸如DAPI)使细胞内的位置可视化。也可从细胞中分离细胞核,然后可通过用于检测蛋白质的任何合适的方法诸如免疫组织化学、蛋白质印迹或酶活性测定来分析其内容物。也可间接确定细胞核中的积累物,诸如通过与未暴露于Cas或复合物或者暴露于缺少一个或多个NLS或NES的Cas的对照相比,测定CRISPR复合物形成的影响(例如,测定靶序列处的DNA裂解或突变,或测定受CRISPR复合物形成影响的改变基因表达活性和/或Cas酶活性)。在某些实施方案中,可将其他定位标签与Cas蛋白融合,诸如但不限于将Cas定位到细胞中的特定位点,诸如细胞器,诸如线粒体、质体、叶绿体、囊泡、高尔基体(核或细胞)膜、核糖体、核仁、内质网、细胞骨架、液泡、中心体、核小体、颗粒、中心粒等。
在某些方面,本发明涉及载体,例如用于在细胞中递送或引入Cas和/或能够将Cas指导至靶基因座的RNA(即,向导RNA),还用于繁殖这些组分(例如,在原核细胞中)。如本文所用,“载体”是允许或促进实体从一种环境转移到另一种环境的工具。载体是复制子,诸如质粒、噬菌体或粘粒,可在其中插入另一个DNA片段,以实现所插入片段的复制。一般来讲,载体在与适当的控制元件结合时能够复制。一般来讲,术语“载体”是指能够转运已与其连接的另一核酸的核酸分子。载体包括但不限于单链、双链或部分双链的核酸分子;包含一个或多个自由端、不包含自由端(例如,呈环状)的核酸分子;包含DNA、RNA或两者的核酸分子;以及本领域已知的其他多核苷酸变体。载体的一种类型是“质粒”,是指环状双链DNA环,可以诸如通过标准分子克隆技术在其中插入其他DNA片段。载体的另一种类型是病毒载体,其中病毒来源的DNA或RNA序列存在于该载体中以包装到病毒(例如,逆转录病毒、复制缺陷型逆转录病毒、腺病毒、复制缺陷型腺病毒和腺相关病毒(AAV))中。病毒载体还包括病毒携带的用于转染到宿主细胞中的多核苷酸。某些载体能够在引入它们的宿主细胞中自主复制(例如,具有细菌复制起点的细菌载体和游离型哺乳动物载体)。其他载体(例如,非游离型哺乳动物载体)在引入宿主细胞后整合到宿主细胞的基因组中,从而与宿主基因组一起复制。此外,某些载体能够指导与其可操作地连接的基因表达。这类载体在本文中称为“表达载体”。在重组DNA技术中实用的通用表达载体通常是质粒的形式。
重组表达载体可以以适合在宿主细胞中表达本发明的核酸的形式包含该核酸,这意味着重组表达载体包括与要表达的核酸序列可操作地连接的一个或多个调控元件,可根据要用于表达的宿主细胞来选择这些调控元件。在重组表达载体内,“可操作地连接”是指目标核苷酸序列以允许核苷酸序列表达的方式(例如,在体外转录/翻译系统中,或当将载体引入宿主细胞时,在宿主细胞中)与一个或多个调控元件连接。关于重组和克隆方法,提到了2004年9月2日公开为US2004-0171156A1的美国专利申请10/815,730,其内容全文通过引用并入本文。
一个或多个载体可以包括一个或多个调控元件,例如一个或多个启动子。一个或多个载体可以包含Cas编码序列,和/或单个但也可以包含至少3或8或16或32或48或50个向导RNA(例如,sgRNA)编码序列,诸如1-2、1-3、1-4、1-5、3-6、3-7、3-8、3-9、3-10、3-8、3-16、3-30、3-32、3-48、3-50个RNA(例如,sgRNA)。在单个载体中,有利的是当存在多达约16个RNA时,每个RNA(例如,sgRNA)可以有一个启动子;并且当单个载体提供16个以上的RNA时,一个或多个启动子可以驱动一个以上的RNA表达,例如当存在32个RNA时,每个启动子可以驱动两个RNA表达,并且当存在48个RNA时,每个启动子可以驱动三个RNA表达。通过简单的算术和成熟的克隆方案以及本公开中的教导,本领域技术人员可以容易地在一种或多种RNA方面针对合适的示例性载体诸如AAV和合适的启动子诸如U6启动子实践本发明。例如,AAV的包装限制为约4.7kb。单个U6-gRNA(加上克隆限制位点)的长度为361bp。因此,技术人员可以容易地在单个载体中装配约12-16个例如13个U6-gRNA盒。可以通过任何合适的方式进行组装,诸如用于TALE组装的金门策略(golden gate strategy)(http://www.genome-engineering.org/taleffectors/)。技术人员还可以使用串联指导策略将U6-gRNA的数量增加大约1.5倍,例如从12-16个例如13个增加到大约18-24个例如约19个U6-gRNA。因此,本领域技术人员可以在单个载体例如AAV载体中容易地达到大约18-24个例如约19个启动子-RNA,例如U6-gRNA。增加载体中启动子和RNA数量的另一种手段是使用单个启动子(例如,U6)来表达被可裂解序列隔开的RNA阵列。增加载体中启动子-RNA数量的另一种手段是在编码序列或基因的内含子中表达被可裂解序列隔开的启动子-RNA阵列;并且在这种情况下,有利的是使用聚合酶II启动子,这种启动子可以增加表达并能够以组织特异性方式转录长RNA。(参见例如http://nar.oxfordjournals.org/content/34/7/e53.short,http://www.nature.com/mt/journal/v16/n9/abs/mt2008144a.html)。在一个有利的实施方案中,AAV可包装靶向多达约50个基因的U6串联gRNA。因此,根据本领域的知识和本公开的教导,技术人员尤其是在本文所讨论的RNA或指导物数量方面可以容易地制备和使用一个或多个载体,例如在控制下表达多个RNA或指导物或者与一个或多个启动子可操作地或功能地连接的单个载体,而无需任何过度实验。
一个或多个向导RNA编码序列和/或Cas编码序列可以功能地或可操作地与一个或多个调控元件连接,因此所述一个或多个调控元件可以驱动表达。一个或多个启动子可以是一个或多个组成型启动子和/或条件启动子和/或诱导型启动子和/或组织特异性启动子。启动子可以选自:RNA聚合酶pol I、pol II、pol III、T7、U6、H1型逆转录病毒劳斯肉瘤病毒(RSV)LTR启动子、巨细胞病毒(CMV)启动子、SV40启动子、二氢叶酸还原酶启动子、β-肌动蛋白启动子、磷酸甘油激酶(PGK)启动子和EF1α启动子。有利的启动子是启动子是U6。
本发明的各方面涉及与2类CRISPR-Cas系统缔合的新型效应蛋白的鉴定和工程化。在一个优选的实施方案中,效应蛋白包含单亚基效应物模块。在一个另外的实施方案中,效应蛋白在原核或真核细胞中可用于体外、体内或离体应用。
术语“核酸靶向系统”(其中核酸是DNA或RNA,并且在一些方面还可指DNA-RNA杂交体或其衍生物)统称为涉及与DNA或RNA靶向CRISPR相关的(“Cas”)基因的表达或指导该基因的活性的转录物和其他元件,其可包括编码DNA或RNA靶向Cas蛋白的序列以及包含CRISPR RNA(crRNA)序列和(在一些但并非所有系统中)反式激活CRISPR/Cas系统RNA(tracrRNA)序列的DNA或RNA靶向向导RNA,或者来自DNA或RNA靶向CRISPR基因座的其他序列和转录物。一般来讲,RNA靶向系统的特征在于具有促进在靶DNA或RNA序列的位点处形成DNA或RNA靶向复合物的元件。在形成DNA或RNA靶向复合物的情况下,“靶序列”是指DNA或RNA靶向向导RNA被设计成与其具有互补性的DNA或RNA序列,其中靶序列和RNA靶向向导RNA之间的杂交促进了RNA靶向复合物的形成。在一些实施方案中,靶序列位于细胞的细胞核或细胞质中。
在本发明的一个方面,新型RNA靶向系统也称为RNA或RNA靶向CRISPR/Cas或CRISPR-Cas系统,本申请的RNA靶向系统基于已鉴定的VI-B型Cas蛋白,不需要产生定制的蛋白来靶向特定RNA序列,而是可通过RNA分子对单个酶进行编程来识别特定RNA靶向,换句话说,可以使用所述RNA分子将酶募集到特定RNA靶标。
在本发明的一个方面,新型DNA靶向系统也称为DNA或DNA靶向CRISPR/Cas或CRISPR-Cas系统,本申请的RNA靶向系统基于已鉴定的VI-B型Cas蛋白,不需要产生定制的蛋白来靶向特定RNA序列,而是可通过RNA分子对单个酶进行编程来识别特定DNA靶向,换句话说,可以使用所述RNA分子将酶募集到特定DNA靶标。
本文所述的核酸靶向系统、载体系统、载体和组合物可用于多种核酸靶向应用,包括改变或修饰基因产物诸如蛋白质的合成、核酸裂解、核酸编辑、核酸剪接;靶核酸的转运、靶核酸的追踪、靶核酸的分离、靶核酸的可视化等。
如本文所用,Cas蛋白或CRISPR酶是指在CRISPR-Cas系统的新分类中呈现的任何蛋白质。
Cas13b核酸酶
本发明的Cas13b效应蛋白是来自图1或如图1所阐述的蛋白,或包含该蛋白,或基本上由该蛋白组成,或由该蛋白组成,或包含该蛋白。图1的优选蛋白选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属COT-052 OH4946 Cas13b(登录号WP_039428968)、化脓拟杆菌Cas13b(登录号WP_034542281)、鸭疫里默氏杆菌Cas13b(登录号WP_004919755)。图1的最优选蛋白选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属COT-052OH4946 Cas13b(登录号WP_039428968);并且最特别优选的是口腔卟啉单胞菌Cas13b(登录号WP_039434803)或普雷沃菌属P5-125 Cas13b(登录号WP_044065294)。本发明旨在提供或涉及或包含来自本文或本文所阐述的蛋白,或基本上由该蛋白组成,或由该蛋白组成,包括本文所阐述的突变或改变。
因此,在一些实施方案中,效应蛋白可以是RNA结合蛋白,诸如死亡Cas型效应蛋白,其可如本文所述任选地被功能化,例如具有转录激活子或阻遏子结构域、NLS或其他功能结构域。在一些实施方案中,效应蛋白可以是裂解RNA的单链的RNA结合蛋白。如果结合的RNA是ssRNA,则ssRNA被完全裂解。在一些实施方案中,例如,如果效应蛋白包含两个RNase结构域,则其可以是裂解RNA的双链的RNA结合蛋白。如果结合的RNA是dsRNA,则dsRNA被完全裂解。
CRISPR系统中的RNase功能是已知的,例如已报道了某些III型CRISPR-Cas系统的mRNA靶向(Hale等人,2014,Genes Dev,第28卷,2432-2443;Hale等人,2009,Cell,第139卷,945-956;Peng等人,2015,Nucleic acids research,第43卷,406-417),并且所报道的mRNA靶向提供了明显的优势。因此,提供了经由本发明的效应蛋白靶向RNA的CRISPR-Cas系统、组合物或方法。
靶RNA即目标RNA是本发明要靶向的RNA,从而导致募集到靶RNA上的目标靶位点并且效应蛋白在该目标靶位点处结合。靶RNA可以是任何合适形式的RNA。在一些实施方案中,这可包括mRNA。在其他实施方案中,靶RNA可包括tRNA或rRNA。
Cas13b指导物
如本文所用,VI型CRISPR-Cas基因座效应蛋白的术语“crRNA”或“向导RNA”或“单个向导RNA”或“sgRNA”或“一种或多种核酸组分”包含与靶核酸序列具有足够互补性以与靶核酸序列杂交并且向导RNA靶向复合物与靶RNA序列进行序列特异性结合的任何多核苷酸序列。
在某些实施方案中,本文所提供的CRISPR系统可以利用包含指导序列的crRNA或类似多核苷酸,其中多核苷酸是RNA、DNA或者RNA和DNA的混合物,并且/或者其中多核苷酸包含一种或多种核苷酸类似物。该序列可以包含任何结构,包括但不限于天然crRNA的结构,诸如凸起、发夹或茎环结构。在某些实施方案中,包含指导序列的多核苷酸与第二多核苷酸序列形成双链体,第二多核苷酸序列可以是RNA或DNA序列。
在某些实施方案中,本发明的指导物包含非天然存在的核酸和/或非天然存在的核苷酸和/或核苷酸类似物和/或化学修饰。非天然存在的核酸可以包括例如天然和非天然存在的核苷酸的混合物。非天然存在的核苷酸和/或核苷酸类似物可在核糖、磷酸和/或碱基部分处被修饰。在本发明的一个实施方案中,指导核酸包含核糖核苷酸和非核糖核苷酸。在一个这种实施方案中,指导物包含一种或多种核糖核苷酸和一种或多种脱氧核糖核苷酸。在本发明的一个实施方案中,指导物包含一个或多个非天然存在的核苷酸或核苷酸类似物,诸如具有硫代磷酸酯键、硼酸磷酸酯键的核苷酸、在核糖环的2'和4'碳之间包含亚甲基桥的锁核酸(LNA)核苷酸,或桥接核酸(BNA)。经修饰的核苷酸的其他实例包括2'-O-甲基类似物、2'-脱氧类似物、2-硫尿核苷类似物、N6-甲基腺苷类似物或2'-氟类似物。经修饰的碱基的其他实例包括但不限于2-氨基嘌呤、5-溴尿苷、假尿苷(Ψ)、N1-甲基假尿苷(me1Ψ)、5-甲氧基尿苷(5moU)、肌苷、7-甲基鸟苷。向导RNA化学修饰的实例包括但不限于在一个或多个末端核苷酸处并入2'-O-甲基(M)、2'-O-甲基3'硫代磷酸酯(MS)、S-约束乙基(cEt)或2'-O-甲基3'硫代膦酰基乙酸酯(MSP)。与未修饰的向导RNA相比,此类经化学修饰的向导RNA的稳定性和活性可能有所增加,但是无法预测在靶和脱靶特异性。(参见Hendel,2015,Nat Biotechnol.33(9):985-9,doi:10.1038/nbt.3290,2015年6月29日在线发布;Allerson等人,J.Med.Chem.2005,48:901-904;Bramsen等人,Front.Genet.,2012,3:154;Deng等人,PNAS,2015,112:11870-11875;Sharma等人,MedChemComm.,2014,5:1454-1471;Li等人,Nature Biomedical Engineering,2017,1,0066DOI:10.1038/s41551-017-0066)。
在一些实施方案中,向导RNA的5'和/或3'端被包括荧光染料、聚乙二醇、胆固醇、蛋白质或检测标签在内的多种功能部分修饰。(参见Kelly等人,2016,J.Biotech.233:74-83)。在某些实施方案中,指导物在与靶RNA结合的区中包含核糖核苷酸,并且在与Cas13b结合的区中包含一种或多种脱氧核糖核苷酸和/或核苷酸类似物。在本发明的一个实施方案中,将脱氧核糖核苷酸和/或核苷酸类似物并入工程化的指导结构中,诸如但不限于5'和/或3'端、茎环区和种子区。在某些实施方案中,修饰不在茎环区的3'-柄中。指导物的茎环区的3'-柄中的化学修饰可能消除其功能。在某些实施方案中,对指导物的至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50或75个核苷酸进行化学修饰。在一些实施方案中,对指导物的3'端或5'端处的3-5个核苷酸进行化学修饰。在一些实施方案中,仅在种子区中引入微小修饰,诸如2'-F修饰。在某些实施方案中,在指导物的5’端和/或3'端引入2'-F修饰。在某些实施方案中,用2'-O-甲基(M)、2'-O-甲基-3'-硫代磷酸酯(MS)、S-约束乙基(cEt)或2'-O-甲基-3'-硫代膦酰基乙酸酯(MSP)化学修饰指导物的5'端和/或3'端处的3至5个核苷酸。这种修饰可以提高基因组编辑效率(参见Hendel等人,Nat.Biotechnol.(2015)33(9):985-989)。在某些实施方案中,用硫代磷酸酯(PS)取代指导物的所有磷酸二酯键,以增强基因破坏水平。在某些实施方案中,用2'-O-Me、2'-F或S-约束乙基(cEt)化学修饰指导物的5'端和/或3'端处的五个以上核苷酸。这种经化学修饰的指导物可以介导增强基因破坏水平(参见Ragdarm等人,0215,PNAS,E7110-E7111)。在本发明的一个实施方案中,将指导物修饰成在其3'端和/或5'端包含化学部分。这种部分包括但不限于胺、叠氮化物、炔、硫代物、二苯并环辛炔(DBCO)或若丹明。在某些实施方案中,通过接头诸如烷基链将化学部分与指导物缀合。在某些实施方案中,可以使用经修饰的指导物的化学部分将指导物附接到另一分子,诸如DNA、RNA、蛋白质或纳米颗粒。可以使用这种经化学修饰的指导物来识别或富集通常由CRISPR系统编辑的细胞(参见Lee等人,eLife,2017,6:e25312,DOI:10.7554)。
在一些实施方案中,对指导物的修饰是化学修饰、插入、缺失或断裂。在一些实施方案中,化学修饰包括但不限于并入2'-O-甲基(M)类似物、2'-脱氧类似物、2-硫尿核苷类似物、N6-甲基腺苷类似物、2'-氟类似物、2-氨基嘌呤、5-溴尿苷、假尿苷(Ψ)、N1-甲基假尿苷(me1Ψ)、5-甲氧基尿苷(5moU)、肌苷、7-甲基鸟苷、2'-O-甲基-3'-硫代磷酸酯(MS)、S-约束乙基(cEt)、硫代磷酸酯(PS)或2'-O-甲基-3'-硫代膦酰基乙酸酯(MSP)。在一些实施方案中,指导物包含一种或多种硫代磷酸酯修饰。在某些实施方案中,对指导物的至少1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或25个核苷酸进行化学修饰。在某些实施方案中,对种子区中的一个或多个核苷酸进行化学修饰。在某些实施方案中,对5'端中的一个或多个核苷酸进行化学修饰。在某些实施方案中,不对3'-柄中的任何核苷酸进行化学修饰。在一些实施方案中,种子区中的化学修饰是微小修饰,诸如并入2'-氟类似物。在一个特定的实施方案中,用2'-氟类似物替换种子区的一个核苷酸。在一些实施方案中,对5'端中的5或10个核苷酸进行化学修饰。在Cas13b CrRNA的5'端进行此类化学修饰可提高基因切割效率。在一个特定的实施方案中,用2'-氟类似物替换5'端中的5个核苷酸。在一个特定的实施方案中,用2'-氟类似物替换5'端中的10个核苷酸。在一个特定的实施方案中,用2'-O-甲基(M)类似物替换5'端中的5个核苷酸。
在一些实施方案中,对指导物的3'-柄的环进行修饰。在一些实施方案中,将指导物的3'-柄的环修饰成具有缺失、插入、断裂或化学修饰。在某些实施方案中,环包含3、4或5个核苷酸。在某些实施方案中,环包含序列UCUU、UUUU、UAUU或UGUU。
在一方面,指导物包含经由非磷酸二酯键化学连接或缀合的部分。在一方面,在非限制性实例中,指导物包含经由非核苷酸环化学连接或缀合的正向重复序列和靶向序列部分。在一些实施方案中,这些部分经由非磷酸二酯共价接头连接。共价接头的实例包括但不限于选自以下的化学部分:氨基甲酸酯、醚、酯、酰胺、亚胺、脒、氨基三嗪、腙、二硫化物、硫醚、硫酯、硫代磷酸酯、二硫代磷酸酯、磺酰胺、磺酸酯、砜(fulfone)、亚砜、脲、硫脲、酰肼、肟、三唑、光不稳定键、C-C键形成基团(诸如,Diels-Alder环化加成对或闭环复分解对以及Michael反应对)。
在一些实施方案中,首先使用标准亚磷酰胺合成方案(Herdewijn,P.编辑,Methods in Molecular Biology Col 288,Oligonucleotide Synthesis:Methods andApplications,Humana Press,New Jersey(2012))来合成指导物的多个部分。在一些实施方案中,可以使用本领域已知的标准方案(Hermanson,G.T.,Bioconjugate Techniques,Academic Press(2013))将非靶向指导物部分官能化成包含用于连接的合适官能团。官能团的实例包括但不限于羟基、胺、羧酸、羧酸卤化物、羧酸活性酯、醛、羰基、氯羰基、咪唑基羰基、酰肼(hydrozide)、氨基脲、硫代氨基脲、硫醇、马来酰亚胺、卤代烷基、磺酰基、烯丙基、炔丙基、二烯、炔和叠氮化物。一旦将指导物的非靶向部分官能化,就可以在两个寡核苷酸之间形成共价化学键。化学键的实例包括但不限于基于以下各项的化学键:氨基甲酸酯、醚、酯、酰胺、亚胺、脒、氨基三嗪、腙、二硫化物、硫醚、硫酯、硫代磷酸酯、二硫代磷酸酯、磺酰胺、磺酸酯、砜、亚砜、脲、硫脲、酰肼、肟、三唑、光不稳定键、C-C键形成基团(诸如,Diels-Alder环加成对或闭环复分解对以及Michael反应对)。
在一些实施方案中,可以化学合成指导物的一个或多个部分。在一些实施方案中,化学合成使用自动化固相寡核苷酸合成机并利用2'-乙酰氧基乙基原酸酯(2'-ACE)(Scaringe等人,J.Am.Chem.Soc.(1998)120:11820-11821;Scaringe,Methods Enzymol.(2000)317:3-18)或2'-硫羰氨基甲酸酯(2'-TC)化学(Dellinger等人,J.Am.Chem.Soc.(2011)133:11540-11546;Hendel等人,Nat.Biotechnol.(2015)33:985-989)。
在一些实施方案中,可以经由糖、核苷酸间磷酸二酯键、嘌呤和嘧啶残基的修饰,使用各种生物缀合反应、环、桥和非核苷酸键来共价连接指导部分。Sletten等人,Angew.Chem.Int.Ed.(2009)48:6974-6998;Manoharan,M.,Curr.Opin.Chem.Biol.(2004)8:570-9;Behlke等人,Oligonucleotides(2008)18:305-19;Watts等人,Drug.Discov.Today(2008)13:842-55;Shukla等人,ChemMedChem(2010)5:328-49。
在一些实施方案中,可以使用点击化学来共价连接指导物部分。在一些实施方案中,可以使用三唑接头来共价连接指导物部分。在一些实施方案中,可以使用涉及炔和叠氮化物的Huisgen 1,3-偶极环加成反应以产生高度稳定的三唑接头来共价连接指导物部分(He等人,ChemBioChem(2015)17:1809-1812;WO 2016/186745)。在一些实施方案中,通过连接5'-己炔部分和3'-叠氮化物部分来共价连接指导物部分。在一些实施方案中,可以用2'-乙酰氧基乙基原酸酯(2'-ACE)基团来保护5'-己炔指导物部分和3'-叠氮化物指导物部分中的一者或两者,随后可以使用Dharmacon方案将该基团去除(Scaringe等人,J.Am.Chem.Soc.(1998)120:11820-11821;Scaringe,Methods Enzymol.(2000)317:3-18)。
在一些实施方案中,可以经由接头(例如,非核苷酸环)共价连接指导物部分,所述接头包含诸如间隔物、附接物、生物缀合物、发色团、报告基团、染料标记的RNA和非天然存在的核苷酸类似物的部分。更具体地,用于本发明目的的合适间隔物包括但不限于聚醚(例如,聚乙二醇、多元醇、聚丙二醇或者乙烯和丙二醇的混合物)、多胺基团(例如,精胺、亚精胺及其聚合衍生物)、聚酯(例如,聚(丙烯酸乙酯))、聚磷酸二酯、亚烷基及其组合。合适的附接物包括可以被添加到接头以向接头添加附加性质的任何部分,诸如但不限于荧光标记。合适的生物缀合物包括但不限于肽、糖苷、脂质、胆固醇、磷脂、二酰基甘油和二烷基甘油、脂肪酸、烃、酶底物、类固醇、生物素、洋地黄毒苷、碳水化合物、多糖。合适的发色团、报告基团和染料标记的RNA包括但不限于荧光染料(诸如荧光素和若丹明)、化学发光、电化学发光和生物发光标记化合物。还在WO 2004/015075中描述了缀合两个RNA组分的示例接头的设计。
接头(例如,非核苷酸环)可以具有任何长度。在一些实施方案中,接头具有等于约0-16个核苷酸的长度。在一些实施方案中,接头具有等于约0-8个核苷酸的长度。在一些实施方案中,接头具有等于约0-4个核苷酸的长度。在一些实施方案中,接头具有等于约2个核苷酸的长度。还在WO2011/008730中描述了示例接头设计。
在一些实施方案中,当使用合适的比对算法进行最佳比对时,互补程度为约或大于约50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更高。可使用用于比对序列的任何合适的算法来确定最佳比对,这些算法的非限制性实例包括Smith-Waterman算法、Needleman-Wunsch算法、基于Burrows-Wheeler变换的算法(例如,Burrows WheelerAligner)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies;可从www.novocraft.com获取)、ELAND(Illumina,San Diego,CA)、SOAP(可从soap.genomics.org.cn获取)和Maq(可从maq.sourceforge.net获取)。可通过任何合适的测定来评估指导序列(在RNA靶向向导RNA或crRNA内)指导核酸靶向复合物与靶核酸序列进行序列特异性结合的能力。例如,可诸如通过用编码核酸靶向复合物的组分的载体进行转染,然后诸如通过本文所述的Surveyor测定对靶核酸序列内的优先靶向(例如,裂解)进行评估,将足以形成核酸靶向复合物的RNA靶向CRISPR Cas13b系统组分(包括待测试的指导序列)提供给具有对应靶核酸序列的宿主细胞。类似地,可通过提供靶核酸序列、核酸靶向复合物的组分(包括待测试的指导序列和不同于该测试指导序列的对照指导序列),并比较测试指导序列和对照指导序列反应之间在靶序列处的结合或裂解速率,在试管中对靶核酸序列的裂解进行评估。其他测定也是可能的,并且是本领域技术人员可以想到的。可选择指导序列并因此可选择RNA靶向向导RNA或crRNA,以靶向任何靶核酸序列。靶序列可以是DNA。靶序列可以是任何RNA序列。在一些实施方案中,靶序列可以是选自信使RNA(mRNA)、前mRNA、核糖体RNA(rRNA)、转移RNA(tRNA)、微RNA(miRNA)、小干扰RNA(siRNA)、小核RNA(snRNA)、小核仁RNA(snoRNA)、双链RNA(dsRNA)、非编码RNA(ncRNA)、长非编码RNA(lncRNA)和小胞质RNA(scRNA)的RNA分子内的序列。在一些优选的实施方案中,靶序列可以是选自mRNA、前mRNA和rRNA的RNA分子内的序列。在一些优选的实施方案中,靶序列可以是选自ncRNA和lncRNA的RNA分子内的序列。在一些更优选的实施方案中,靶序列可以是mRNA分子或前mRNA分子内的序列。
在一些实施方案中,选择RNA靶向向导RNA或crRNA以降低RNA靶向向导RNA或crRNA内的二级结构程度。在一些实施方案中,当进行最佳折叠时,RNA靶向向导RNA的约或小于约75%、50%、40%、30%、25%、20%、15%、10%、5%、1%或更少的核苷酸参与自身互补碱基配对。最佳折叠可通过任何合适的多核苷酸折叠算法来确定。一些程序基于计算最小吉布斯自由能(Gibbs free energy)。这种算法的一个实例是mFold,如Zuker和Stiegler(Nucleic Acids Res.9(1981),133-148)所述。折叠算法的另一个实例是在线网络服务器RNAfold,由维也纳大学(University of Vienna)理论化学研究所开发,使用质心结构预测算法(参见例如A.R.Gruber等人,2008,Cell 106(1):23-24;以及PA Carr和GM Church,2009,Nature Biotechnology 27(12):1151-62)。
在某些实施方案中,向导RNA或crRNA可包含正向重复(DR)序列以及指导序列或间隔序列、基本上由所述序列组成或由所述序列组成。在某些实施方案中,向导RNA或crRNA可包含与指导序列或间隔序列融合或连接的正向重复序列、基本上由所述序列组成或由所述序列组成。在某些实施方案中,正向重复序列可位于指导序列或间隔序列的上游(即5')。在其他实施方案中,正向重复序列可位于指导序列或间隔序列的下游(即3')。在其他实施方案中,可存在多个DR(诸如双DR)。
在某些实施方案中,crRNA包含茎环、优选单个茎环。在某些实施方案中,正向重复序列形成茎环、优选单个茎环。
在某些实施方案中,向导RNA的间隔序列长度为15至35nt。在某些实施方案中,向导RNA的间隔序列长度为至少15个核苷酸。在某些实施方案中,间隔序列长度为15至17nt(例如,15、16或17nt)、17至20nt(例如,17、18、19或20nt)、20至24nt(例如,20、21、22、23或24nt)、23至25nt(例如,23、24或25nt)、24至27nt(例如,24、25、26或27nt)、27至30nt(例如,27、28、29或30nt)、30至35nt(例如,30、31、32、33、34或35nt)或35nt或更长。
干扰RNA(RNAi)和微RNA(miRNA)
在其他实施方案中,靶RNA可包括干扰RNA,即在真核生物和原核生物中参与RNA干扰途径的RNA,诸如shRNA、siRNA等。在其他实施方案中,靶RNA可包括微RNA(miRNA)。对干扰RNA或miRNA进行控制可通过减少体内或体外干扰RNA或miRNA的寿命来帮助减少那些方法所产生的脱靶效应(OTE)。
在某些实施方案中,靶标不是miRNA本身,而是miRNA靶标的miRNA结合位点。
在某些实施方案中,可隔离miRNA(诸如包括亚细胞重定位)。在某些实施方案中,可诸如但不限于在发夹处切割miRNA。
在某些实施方案中,增加或减少miRNA加工(诸如包括转换)。
如果选择性表达(例如,在合适的启动子例如组织或细胞周期特异性启动子和/或增强子的控制下,在空间上或在时间上表达)效应蛋白和合适的指导物,那么这可以用于“保护”细胞或系统(体内或体外)免受这些细胞中的RNAi的影响。这在不需要RNAi的邻近组织或细胞中或者在比较表达和不表达效应蛋白和合适的指导物(即,分别不控制和控制RNAi)的细胞或组织时可能是有用的。效应蛋白可用于控制或结合包含RNA或由RNA组成的分子,诸如核酶、核糖体或核糖开关。在本发明的实施方案中,RNA指导物可以将效应蛋白募集到这些分子,使得效应蛋白能够与它们结合。
根据本公开内容,本发明的蛋质系统无需过度实验即可应用于RNAi技术领域,包括治疗、测定和其他应用(参见例如Guidi等人,PLoS Negl Trop Dis 9(5):e0003801.doi:10.1371/journal.pntd;Crotty等人,In vivo RNAi screens:concepts andapplications.Shane Crotty...2015,Elsevier Ltd.,由Elsevier Inc.出版,PesticideBiochemistry and Physiology(影响因子:2.01).01/2015;120.DOI:10.1016/j.pestbp.2015.01.002以及Makkonen等人,Viruses 2015,7(4),2099-2125;doi:10.3390/v7042099),因为本申请为有根据地对系统进行工程化提供了基础。
核糖体RNA(rRNA)
例如,氮杂内酯抗生素诸如阿奇霉素是众所周知的。它们靶向并破坏50S核糖体亚基。在一些实施方案中,可将本发明的效应蛋白与靶向50S核糖体亚基的合适向导RNA一起募集并结合到50S核糖体亚基。因此,提供了本发明的效应蛋白以及针对核糖体(尤其是50s核糖体亚基)靶标的合适指导物。这样使用效应蛋白以及针对核糖体(尤其是50s核糖体亚基)靶标的合适指导物的用途可包括抗生素用途。具体地,抗生素用途类似于氮杂内酯抗生素诸如阿奇霉素的作用。在一些实施方案中,可靶向原核生物核糖体亚基诸如原核生物中的70S亚基、上述50S亚基、30S亚基以及16S和5S亚基。在其他实施方案中,可靶向真核生物核糖体亚基诸如真核生物中的80S亚基、60S亚基、40S亚基以及28S、18S、5.8S和5S亚基。
在一些实施方案中,效应蛋白可以是如本文所述任选地被功能化的RNA结合蛋白。在一些实施方案中,效应蛋白可以是裂解RNA的单链的RNA结合蛋白。在任一种情况下,但是特别是在RNA结合蛋白裂解RNA的单链的情况下,可调节、特别是减少或破坏核糖体功能。这可应用于任何核糖体RNA和任何核糖体亚基,并且rRNA的序列是众所周知的。
因此,设想了通过使用本发明的效应蛋白连同核糖体靶标的合适指导物来控制核糖体活性。这可通过裂解或结合核糖体来实现。具体地,设想了降低核糖体活性。这对于体内或体外测定核糖体功能可能有用,但也可作为体内或体外基于核糖体活性来控制疗法的手段。此外,设想了在体内或体外系统中控制(即减少)蛋白合成,这种控制包括抗生素用途以及研究和诊断用途。
核糖开关
核糖开关(也称为适体酶(aptozyme))是信使RNA分子的结合小分子的调控片段。这通常会导致mRNA所编码的蛋白的产生发生变化。因此,设想了通过使用本发明的效应蛋白以及核糖开关靶标的合适指导物来控制核糖开关活性。这可通过裂解或结合核糖开关来实现。具体地,设想了降低核糖开关活性。这对于体内或体外测定核糖开关功能可能有用,但也可作为体内或体外基于核糖开关活性来控制疗法的手段。此外,设想了在体内或体外系统中控制(即减少)蛋白合成。对于rRNA,这种控制可包括抗生素用途以及研究和诊断用途。
核酶
核酶是具有催化性质的RNA分子,类似于酶(当然是蛋白质)。由于天然存在的和工程化的核酶均包含RNA或由RNA组成,因此它们也可被本发明的RNA结合效应蛋白靶向。在一些实施方案中,效应蛋白可以是裂解核酶从而使其失活的RNA结合蛋白。因此,设想了通过使用本发明的效应蛋白以及核酶靶标的合适指导物来控制核酶活性。这可通过裂解或结合核酶来实现。具体地,设想了降低核酶活性。这对于体内或体外测定核酶功能可能有用,但也可作为体内或体外基于核酶活性来控制疗法的手段。
基因表达,包括RNA加工
还可将效应蛋白与合适的指导物一起用于靶向基因表达,包括经由控制RNA加工。控制RNA加工可包括RNA加工反应诸如RNA剪接,包括经由靶向RNApol进行可变剪接;病毒复制(特别是卫星病毒、噬菌体和逆转录病毒,诸如HBV、HBC和HIV以及本文所列的其他病毒),包括植物中的类病毒;以及tRNA生物合成。效应蛋白和合适的指导物也可用于控制RNA激活(RNAa)。RNAa将促进基因表达,因此可通过破坏或降低RNAa从而减少促进基因表达来实现对基因表达的控制。这将在下面更详细地讨论。
RNAi筛选
通过鉴定基因的敲低与表型改变相关的该基因产物,可以经由RNAi筛选来探询生物学途径并鉴定组成部分。还可通过使用效应蛋白和合适的指导物对这些筛选或在这些筛选过程中施加控制,来去除或降低筛选中RNAi的活性,从而恢复(先前受干扰的)基因产物的活性(通过去除或减少干扰/阻遏)。
也可处理卫星RNA(satRNA)和卫星病毒。
本文中关于RNase活性的控制一般是指降低、阴性破坏或者敲低或敲除。
体内RNA应用
抑制基因表达
本文提供的靶特异性RNAse允许非常特异性地切割靶RNA。由于基因组未经修饰,因此RNA水平上的干扰可在空间和时间上并且以非侵入性方式进行调节。
已经证明通过mRNA靶向可以治疗许多疾病。尽管这些研究大多数都与施用siRNA有关,但应明确可以类似的方式施加本文提供的RNA靶向效应蛋白。
mRNA靶标(以及对应的疾病治疗)的实例是VEGF、VEGF-R1和RTP801(在AMD和/或DME的治疗中)、Caspase 2(在Naion的治疗中)、ADRB2(在眼内压的治疗中)、TRPVI(在干眼综合征的治疗中)、Syk激酶(在哮喘的治疗中)、Apo B(在高胆固醇血症或低β脂蛋白血症的治疗中)、PLK1、KSP和VEGF(在实体瘤的治疗中)、Ber-Abl(在CML的治疗中)(Burnett和Rossi,Chem Biol.2012,19(1):60–71))。同样,已经证明RNA靶向可有效治疗RNA病毒介导的疾病,诸如HIV(靶向HIV Tet和Rev)、RSV(靶向RSV核衣壳)和HCV(靶向miR-122)(Burnett和Rossi,Chem Biol.2012,19(1):60–71)。
进一步设想本发明的RNA靶向效应蛋白可以用于突变特异性或等位基因特异性敲低。可以设计向导RNA,使其特异性靶向转录的mRNA中包含突变或等位基因特异性序列的序列。这种特异性敲低特别适合与突变或等位基因特异性基因产物有关的疾病的治疗应用。例如,家族性低β脂蛋白血症(FHBL)的大多数情况是由ApoB基因突变引起的。该基因编码载脂蛋白B蛋白的两种型式:短型式(ApoB-48)和长型式(ApoB-100)。引起FHBL的几个ApoB基因突变导致两种型式的ApoB异常得短。用本发明的RNA靶向效应蛋白特异性地靶向和敲低突变的ApoB mRNA转录物可能对治疗FHBL有益。作为另一个实例,Huntington病(HD)是由编码Huntingtin蛋白的基因中的CAG三联体重复序列的扩增从而导致蛋白异常引起的。用本发明的RNA靶向效应蛋白特异性地靶向和敲低编码Huntingtin蛋白的突变或等位基因特异性mRNA转录物可能对治疗HD有益。
应当注意,在这种情况下,并且更一般地,对于本文所述的各种应用中,可以设想使用RNA靶向效应蛋白的断裂型式。实际上,这不仅可增加特异性,而且对递送也可能有利。从Cas13b酶的两个部分基本上包含功能性Cas13b的意义上说,Cas13b是断裂的。理想情况下,断裂应始终使一个或多个催化结构域不受影响。Cas13b可充当核酸酶,或者可以是死亡Cas13b,其基本上是由于其催化结构域中通常存在一个或多个突变而具有很少催化活性或没有催化活性的RNA结合蛋白。
断裂Cas13b的每一半可与二聚化伴侣融合。举例来说但不限制,使用雷帕霉素敏感的二聚化结构域可以产生可化学诱导的断裂Cas13b,以暂时控制Cas13b活性。因此,可以通过将Cas13b分成两个片段来使其可化学诱导,并且雷帕霉素敏感的二聚化结构域可用于Cas13b的受控重组。可以将断裂Cas13b的两个部分视为断裂Cas13b的N'端部分和C'端部分。融合通常在Cas13b的断裂点。换句话说,断裂Cas13b的N'端部分的C'端与两半二聚体中的一半融合,而C'端部分的N'端与另一半二聚体融合。
从新形成断裂的意义上说,Cas13b不必是断裂的。通常在计算机上设计断裂点,并将其克隆到构建体中。断裂Cas13b的两个部分即N'端和C'端部分一起形成完整的Cas13b,其包含优选至少70%或更多的野生型氨基酸(或编码它们的核苷酸),优选至少80%或更多、优选至少90%或更多、优选至少95%或更多、最优选至少99%或更多的野生型氨基酸(或编码它们的核苷酸)。可以进行一些修整,并且设想了突变体。可完全去除非功能性结构域。重要的是可将两个部分放在一起,并恢复或重构所需的Cas13b功能。二聚体可以是同二聚体或异二聚体。
在某些实施方案中,本文所述的Cas13b效应物可用于突变特异性或等位基因特异性靶向,诸如用于突变特异性或等位基因特异性敲低。
此外,RNA靶向效应蛋白可以与另一功能性RNAse结构域诸如非特异性RNase或Argonaute 2融合,它们协同作用以增加RNAse活性或确保消息的进一步降解。
通过调节RNA功能来调节基因表达
除了通过裂解mRNA对基因表达产生直接影响外,RNA靶向还可以用于影响细胞内RNA加工的特定方面,从而可对基因表达进行更细微的调节。一般来讲,可以例如通过干扰蛋白质与RNA的结合例如阻断蛋白质的结合或募集RNA结合蛋白来介导调节。实际上,可以在不同水平(诸如mRNA的剪接、转运、定位、翻译和转换)上确保调节。类似地,在治疗的情况下,可以设想通过使用RNA特异性靶向分子来在这些水平中的每个水平上解决(致病性)功能失常。在这些实施方案中,在许多情况下,优选的是RNA靶向蛋白是失去切割RNA靶标的能力但保持其结合RNA靶标的能力的“死亡”Cas13b,诸如本文所述的Cas13b的突变形式。
A)可变剪接
许多人类基因由于可变剪接而表达多种mRNA。已经表明不同的疾病与异常剪接有关,这些异常剪接导致所表达基因的功能丧失或功能获得。尽管其中一些疾病是由引起剪接缺陷的突变引起的,但许多疾病都不是。一种治疗选择是直接靶向剪接机制。本文所述的RNA靶向效应蛋白可以例如用于阻断或促进剪接、包括或排除外显子并影响特定同种型的表达和/或刺激替代蛋白产物的表达。下文更详细地描述了此类应用。
RNA靶向效应蛋白与靶RNA结合可以在空间上阻断剪接因子接近RNA序列。RNA靶向效应蛋白靶向剪接位点可阻断在该位点进行剪接,任选地将剪接重定向到邻近位点。例如,RNA靶向效应蛋白与5'剪接位点结合可以阻断剪接体的U1组分的募集,从而有利于该外显子的跳跃。另选地,RNA靶向效应蛋白靶向剪接增强子或沉默子可以防止反式调控剪接因子在靶位点处结合并有效地阻断或促进剪接。通过由本文所述的RNA靶向效应蛋白将ILF2/3募集到外显子附近的前mRNA可以进一步实现外显子排除。作为又一个实例,可以附接富含甘氨酸的结构域,用于募集hnRNP A1和外显子排除(Del Gatto-Konczak等人Mol CellBiol.1999年1月;19(1):251-60)。
在某些实施方案中,通过适当选择gRNA,可靶向特定的剪接变体,而不会靶向其他剪接变体。
在一些情况下,RNA靶向效应蛋白可以用于促进剪接(例如,在剪接有缺陷的情况下)。例如,RNA靶向效应蛋白可以与能够稳定剪接调控茎环的效应物缔合,以便进一步剪接。RNA靶向效应蛋白可以与特定剪接因子的共有结合位点序列连接,以便将蛋白质募集到靶DNA或RNA。
与异常剪接相关的疾病的实例包括但不限于由于Nova蛋白(调节在突触中起作用的蛋白质的剪接)的缺失引起的副肿瘤性斜视眼阵挛-肌阵挛共济失调(或POMA),以及由于囊性纤维化跨膜传导调节因子的缺陷型剪接(从而导致产生非功能性氯通道)引起的囊性纤维化。在其他疾病中,异常RNA剪接会导致功能获得。例如强直性肌营养不良就是这种情况,这是由mRNA的3'UTR中的CUG三联体重复序列扩增(50至1500个以上重复序列),从而导致剪接缺陷引起的。
RNA靶向效应蛋白可以用于通过将剪接因子(诸如U1)募集到5'剪接位点以促进切除所需外显子周围的内含子来包括外显子。可以通过与富含精氨酸/丝氨酸的结构域融合来介导这种募集,该结构域起剪接激活子的作用(Gravely BR和Maniatis T,MolCell.1998(5):765-71)。
设想了RNA靶向效应蛋白可以用于在所需位点阻断剪接装置,从而防止外显子识别和不同蛋白产物的表达。可治疗的疾病的一个实例是Duchenne肌营养不良(DMD),其是由编码肌营养不良蛋白的基因突变引起的。几乎所有DMD突变都会引起移码,从而导致肌营养不良蛋白翻译受损。RNA靶向效应蛋白可以与剪接结点或外显子剪接增强子(ESE)配对,从而防止外显子识别,进而导致部分功能蛋白翻译。这将致命的Duchenne表型转化为不太严重的Becker表型。
B)RNA修饰
RNA编辑是一个自然过程,借助于该自然过程、通过在RNA中进行微小修饰来增加给定序列的基因产物的多样性。通常,修饰涉及腺苷(A)向肌苷(I)的转化,从而产生与基因组所编码的RNA序列不同的序列。一般通过ADAR酶来确保RNA修饰,由此使前体RNA靶标通过在包含要编辑的腺苷的外显子与内含子非编码元件之间进行碱基配对来形成不完善的双链体RNA。A-I编辑的一个经典实例是谷氨酸受体GluR-B mRNA,由此这种改变导致通道的电导特性被修改(Higuchi M等人Cell.1993;75:1361-70)。
根据本发明,使用酶促方法在给定转录物的RNA碱基中诱导转换(A<->G或C<->U变化)或颠换(任何嘌呤到任何嘧啶,反之亦然)。可以通过使用分别将A转化为I或将C转化为U的腺苷脱氨酶(ADAR1/2)或胞嘧啶脱氨酶(APOBEC、AID)来直接诱导转换。可以通过定位活性氧分子簇以损坏目标碱基来间接诱导转换,这会导致将化学修饰添加到受影响的碱基上,诸如将鸟嘌呤转化为氧代鸟嘌呤。氧代鸟嘌呤被认为是T,因此将与腺嘌呤碱基配对,从而导致翻译受到影响。可以被募集用于ROS介导的碱基损坏的蛋白质包括APEX和mini-SOG。两种方法都可以将这些效应物与无催化活性的Cas13b融合,并将其募集到需要这些类型的突变的转录物上的位点。
在人类中,ADAR1基因中发生杂合无功能突变会导致皮肤疾病,即人类色素性皮肤病(Miyamura Y等人Am J Hum Genet.2003;73:693-9)。设想了本发明的RNA靶向效应蛋白可以用于纠正功能失常的RNA修饰。
进一步设想了可以将RNA腺苷甲基化酶(N(6)-甲基腺苷)与本发明的RNA靶向效应蛋白融合并靶向目标转录物。这种甲基化酶引起可逆的甲基化,具有调节作用,并且可通过调节多个RNA相关的细胞途径来影响基因表达和细胞命运的决定(Fu等人,Nat RevGenet.2014;15(5):293-306)。
C)聚腺苷酸化
mRNA的聚腺苷酸化对于核转运、mRNA的翻译效率和稳定性很重要,所有这些以及聚腺苷酸化过程都依赖于特定的RBP。大多数真核mRNA在转录后收到约200个核苷酸的3'poly(A)尾部。聚腺苷酸化涉及不同的RNA结合蛋白复合物,这些复合物刺激poly(A)聚合酶的活性(Minvielle-Sebastia L等人Curr Opin Cell Biol.1999;11:352–7)。设想了本文提供的RNA靶向效应蛋白可以用于干扰或促进RNA结合蛋白与RNA之间的相互作用。
与参与聚腺苷酸化的缺陷蛋白有关的疾病的实例是眼咽肌营养不良(OPMD)(Brais B等人Nat Genet.1998;18:164–7)。
D)RNA输出
在前mRNA加工之后,mRNA从细胞核输出到细胞质。这一过程通过涉及产生载体复合物的细胞机制来确保,该载体复合物随后被转运通过核孔并在细胞质中释放mRNA,随后回收载体。
已经发现在RNA的输出中起作用的蛋白质(诸如TAP)的过量表达会增加在非洲爪蟾中无效输出的转录物的输出(Katahira J等人EMBO J.1999;18:2593–609)。
E)mRNA定位
mRNA定位可确保在空间上调控蛋白的产生。转录物定位到细胞的特定区可以通过定位元件来确保。在特定的实施方案中,设想了本文所述的效应蛋白可以用于将定位元件靶向目标RNA。效应蛋白可以被设计成结合靶转录物,并将这些效应蛋白穿梭到细胞中由该靶转录物的肽信号标签决定的位置。更具体地,例如,与一个或多个核定位信号(NLS)和/或一个或多个核输出信号(NES)融合的RNA靶向效应蛋白可以用于改变RNA定位。
定位信号的其他实例包括zipcode结合蛋白(ZBP1)(确保β-肌动蛋白定位到几种不对称细胞类型中的细胞质)、KDEL保留序列(定位到内质网)、核输出信号(定位到细胞质)、线粒体靶向信号(定位到线粒体)、过氧化物酶体靶向信号(定位到过氧化物酶体)和m6A标记/Y THDF2(定位到p小体)。设想的其他方法是将RNA靶向效应蛋白与定位已知的蛋白(例如膜、突触)融合。
另选地,根据本发明的效应蛋白可例如用于定位依赖性敲低。通过将该效应蛋白与合适的定位信号融合,可以将该效应物靶向特定的细胞区室。只有位于该区室中的靶RNA才能被有效靶向,而其他相同的靶标(但位于不同的细胞区室中)则不会被靶向,从而可以建立定位依赖性敲低。
F)翻译
本文所述的RNA靶向效应蛋白可以用于增强或阻遏翻译。设想了上调翻译是控制细胞电路的一种非常可靠的方式。此外,对于功能研究,蛋白质翻译筛选可能优于转录上调筛选,后者的缺点是转录物的上调不会转化为蛋白质产量的增加。
设想了本文所述的RNA靶向效应蛋白可以用于将翻译起始因子诸如EIF4G带到目标信使RNA的5'非翻译重复序列(5'UTR)附近,从而驱动翻译(如De Gregorio等人EMBOJ.1999;18(17):4865-74,针对不可重编程的RNA结合蛋白)。作为另一个实例,可以通过RNA靶向效应蛋白将细胞质聚(A)聚合酶GLD2募集到靶mRNA。这将允许靶mRNA发生定向聚腺苷酸化,从而刺激翻译。
类似地,本文设想的RNA靶向效应蛋白可以用于阻断mRNA的翻译阻遏子,诸如ZBP1(Huttelmaier S等人Nature.2005;438:512–5)。通过与靶RNA的翻译起始位点结合,可以直接影响翻译。
另外,将RNA靶向效应蛋白与稳定mRNA的蛋白融合,例如通过防止诸如RNase抑制剂对其进行降解,可以增加目标转录物的蛋白质产量。
设想了本文所述的RNA靶向效应蛋白可以用于通过在RNA转录物的5'UTR区中结合并阻止核糖体形成和开始翻译来阻遏翻译。
此外,RNA靶向效应蛋白可以用于将CCR4-NOT脱腺苷酶复合物的组分Caf1募集到靶mRNA,从而导致脱腺苷化或靶转录物并抑制蛋白质翻译。
例如,本发明的RNA靶向效应蛋白可以用于增加或减少治疗相关蛋白的翻译。RNA靶向效应蛋白可以用于下调或上调翻译的治疗应用的实例是肌萎缩性脊髓侧索硬化症(ALS)和心血管疾病。据报道,ALS运动皮层和脊髓中神经胶质谷氨酸转运体EAAT2的水平降低,以及ALS脑组织中存在多个异常EAAT2 mRNA转录物。丧失EAAT2蛋白和功能被认为是ALS中兴奋性毒性的主要原因。恢复EAAT2蛋白水平和功能可提供治疗益处。因此,RNA靶向效应蛋白可以有益地用于上调EAAT2蛋白的表达,例如通过如上所述阻断翻译阻遏子或稳定mRNA。载脂蛋白A1是高密度脂蛋白(HDL)的主要蛋白组分,通常认为ApoA1和HDL具有抗动脉粥样硬化作用。设想了RNA靶向效应蛋白可以有益地用于上调ApoA1的表达,例如通过如上所述阻断翻译阻遏子或稳定mRNA。
G)mRNA转换
翻译与mRNA转换和所调节的mRNA稳定性紧密相关。已经描述了特定的蛋白与转录物的稳定性有关,诸如神经元中的ELAV/Hu蛋白(Keene JD,1999,Proc Natl Acad SciUSA.96:5–7)和tristetraprolin(TTP)。这些蛋白质通过保护信息免于在细胞质中降解来稳定靶mRNA(Peng SS等人,1988,EMBO J.17:3461-70)。
可以设想本发明的RNA靶向效应蛋白可以用于干扰或促进起稳定mRNA转录物作用的蛋白的活性,从而影响mRNA转换。例如,使用RNA靶向效应蛋白将人TTP募集到靶RNA将允许富含腺苷酸-尿苷酸的元件(富含AU的元件)介导的翻译阻遏和靶标降解。在许多编码原癌基因、核转录因子和细胞因子的mRNA的3'UTR中发现了富含AU的元件,它们促进RNA稳定性。作为另一个实例,RNA靶向效应蛋白可以与另一种mRNA稳定蛋白HuR融合(Hinman MN和Lou H,Cell Mol Life Sci 2008;65:3168-81),并将其募集到靶转录物以延长其寿命或稳定短寿的mRNA。
进一步设想了本文所述的RNA靶向效应蛋白可以用于促进靶转录物降解。例如,可以将m6A甲基转移酶募集到靶转录物以将该转录物定位到P小体,从而导致靶标降解。
作为又一个实例,本文所述的RNA靶向效应蛋白可以与非特异性核酸内切酶结构域PilT N-端(PIN)融合,以将其募集到靶转录物并使其降解。
患有副肿瘤性神经障碍(PND)相关脑脊髓炎和神经病的患者是在中枢神经系统以外的肿瘤中针对Hu蛋白产生自身抗体的患者(SzaboA等人1991,Cell.;67:325–33),产生的自身抗体随后穿过血脑屏障。可以设想本发明的RNA靶向效应蛋白可以用于干扰自身抗体与mRNA转录物结合。
患有由肌营养不良性肌强直症蛋白激酶(DMPK)基因3'UTR中的(CUG)n扩增引起的1型营养不良(DM1)的患者的特征在于此类转录物在细胞核中积累。设想了与靶向(CUG)n重复序列的核酸内切酶融合的本发明的RNA靶向效应蛋白可以抑制异常转录物的这种积累。
H)与多功能蛋白的相互作用
一些RNA结合蛋白与许多RNA上的多个位点结合,以在多种过程中发挥作用。例如,已经发现hnRNP A1蛋白结合外显子剪接沉默子序列(从而拮抗剪接因子),与端粒末端相连(从而刺激端粒活性)并结合miRNA以促进Drosha介导的加工,从而影响成熟。设想了本发明的RNA结合效应蛋白可以干扰RNA结合蛋白在一个或多个位置结合。
I)RNA折叠
RNA采用定义的结构以执行其生物学活性。构象在替代三级结构之间进行转变对于大多数RNA介导的过程至关重要。然而,RNA折叠可能存在几个问题。例如,RNA可能具有折叠成不适当的替代构象并保持在该构象的趋势,并且/或者与替代结构相比,正确的三级结构可能没有足够的热力学优势。本发明的RNA靶向效应蛋白、特别是裂解缺陷或死亡RNA靶向蛋白可用于指导(m)RNA折叠和/或捕获其正确的三级结构。
RNA靶向效应蛋白在调节细胞状态中的用途
在某些实施方案中,具有crRNA的复合物中的Cas13b在与靶RNA结合后被激活,随后裂解任何附近的ssRNA靶标(即“附带”或“旁观者”效应)。Cas13b一旦被同源靶标引发,就可以裂解其他(非互补)RNA分子。这种混杂的RNA裂解可能会引起细胞毒性,或以其他方式影响细胞生理或细胞状态。
因此,在某些实施方案中,本文所描述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导细胞休眠。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导细胞周期停滞。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来减少细胞生长和/或细胞增殖。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导细胞失能。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导细胞凋亡。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导细胞坏死。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导细胞死亡。在某些实施方案中,本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于或用来诱导程序性细胞死亡。
在某些实施方案中,本发明涉及一种用于诱导细胞休眠的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于诱导细胞周期停滞的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于减少细胞生长和/或细胞增殖的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于诱导细胞失能的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于诱导细胞凋亡的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于诱导细胞坏死的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于诱导细胞死亡的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及一种用于诱导程序性细胞死亡的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。
本文所述的方法和用途可以是治疗性或预防性的,并且可靶向特定的细胞、细胞(亚)群体或细胞/组织类型。具体地,本文所述的方法和用途可以是治疗性或预防性的,并且可以靶向表达一种或多种靶序列诸如一种或多种特定靶RNA(例如,ssRNA)的特定细胞、细胞(亚)群体或细胞/组织类型。非限制性地,靶细胞可以例如是表达特定转录物的癌细胞,例如给定类别的神经元、引起例如自身免疫的(免疫)细胞,或被特定(例如,病毒)病原体感染的细胞等。
因此,在某些实施方案中,本发明涉及一种用于治疗以存在不希望的细胞(宿主细胞)为特征的病理状况的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗以存在不希望的细胞(宿主细胞)为特征的病理状况的用途。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗以存在不希望的细胞(宿主细胞)为特征的病理状况。应当理解,优选地CRISPR-Cas系统靶向对不希望的细胞具有特异性的靶标。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗、防治或减轻癌症的用途。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗、防治或减轻癌症。在某些实施方案中,本发明涉及一种用于治疗、防治或减轻癌症的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。应当理解,优选地CRISPR-Cas系统靶向对癌细胞具有特异性的靶标。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗、防治或减轻病原体引起的细胞感染的用途。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗、防治或减轻病原体引起的细胞感染。在某些实施方案中,本发明涉及一种用于治疗、防治或减轻病原体引起的细胞感染的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。应当理解,优选地CRISPR-Cas系统靶向对被病原体感染的细胞具有特异性的靶标(例如,病原体衍生的靶标)。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗、防治或减轻自体免疫疾病的用途。在某些实施方案中,本发明涉及本文所述的非天然存在的或工程化的组合物、载体系统或递送系统用于治疗、防治或减轻自体免疫疾病。在某些实施方案中,本发明涉及一种用于治疗、防治或减轻自体免疫疾病的方法,其包括引入或诱导本文所述的非天然存在的或工程化的组合物、载体系统或递送系统。应当理解,优选地CRISPR-Cas系统靶向对导致自身免疫疾病的细胞(例如,特异性免疫细胞)具有特异性的靶标。
RNA靶向效应蛋白在RNA检测或蛋白质检测中的用途
进一步设想RNA靶向效应蛋白可以用于检测生物样品中的核酸或蛋白质。样品可以由细胞组成或不含细胞。
进一步设想了RNA靶向效应蛋白可以用于Northern印迹分析中。Northern印迹涉及使用电泳按大小分离RNA样品。RNA靶向效应蛋白可以用于特异性结合和检测靶RNA序列。
RNA靶向效应蛋白还可以与荧光蛋白(诸如GFP)融合,并用于追踪活细胞中的RNA定位。更具体地,可以使RNA靶向效应蛋白失活,因为它不再裂解RNA。在特定的实施方案中,设想了可以使用断裂RNA靶向效应蛋白,由此信号取决于两种亚蛋白的结合,以确保更精确的可视化。另选地,可以使用断裂荧光蛋白,当多个RNA靶向效应蛋白复合物与靶转录物结合时,该荧光蛋白被重构。进一步设想了在沿着mRNA的多个结合位点处靶向转录物,因此荧光信号可以放大真实信号并允许进行聚焦鉴定。作为又一替代方案,可以将荧光蛋白重构形成断裂内含肽。
RNA靶向效应蛋白例如适合用于确定RNA或特定剪接变体的定位、mRNA转录物的水平、转录物的上调或下调以及疾病特异性诊断。RNA靶向效应蛋白可以用于使用例如荧光显微镜检查术或流式细胞术(诸如荧光激活细胞分选术(FACS),可对细胞进行高通量筛选并在细胞分选后回收活细胞)来可视化例如(活)细胞中的RNA。此外,不同转录物的表达水平可以在胁迫(例如,使用分子抑制剂或低氧条件抑制癌细胞生长)下同时评估。另一个应用是使用双光子显微镜在神经刺激过程中追踪转录物到突触联系的定位。
在某些实施方案中,本文所述的根据本发明的组分或复合物可以与诸如(荧光)标记的Cas13b效应物一起用于多重抗误差矫正荧光原位杂交技术(MERFISH;Chen等人Science;2015;348(6233))。
体外顶点标记
细胞过程取决于蛋白质、RNA和DNA之间的分子相互作用网络。精确检测蛋白质-DNA和蛋白质-RNA相互作用是理解此类过程的关键。体外邻近标记技术采用结合有例如可光活化探针的亲和标签,在体外标记目标蛋白质或RNA附近的多肽和RNA。紫外光照射后,可光活化基团与蛋白质和靠近标记分子的其他分子发生反应,从而对它们进行标记。随后可以回收和鉴定所标记的相互作用分子。本发明的RNA靶向效应蛋白可以例如用于将探针靶向所选择的RNA序列。
这些应用还可以应用于动物模型中,以对疾病相关应用或难培养细胞类型进行体内成像。
本发明提供了通过对不含细胞的RNA进行非侵入性采样来诊断和监测健康状况(包括测试风险和指导靶向RNA的疗法)的试剂和方法,并且可用于快速施用疗法对治疗结果很重要的场合。在一个实施方案中,本发明提供了用于循环肿瘤RNA(包括用于监测常见药物抗性突变的复发和/或发展)的癌症检测方法和试剂。在另一个实施方案中,本发明提供了用于直接从血液或血清中检测和/或鉴定细菌种类以监测例如疾病进展和败血症的检测方法和试剂。在本发明的一个实施方案中,Cas13b蛋白和衍生物用于区分和诊断常见疾病诸如鼻病毒或上呼吸道感染与更严重的感染诸如支气管炎。
本发明提供了用于对紧急药物基因组学(包括基于例如VKORC1、CYP2C9和CYP2C19基因分型在心肌梗塞或中风治疗过程中施用抗凝剂的指导)进行快速基因分型的方法和试剂。
本发明提供了用于在食品生产和配送链的所有点上监测细菌造成的食品污染的试剂和方法。在另一个实施方案中,本发明提供了例如通过鉴定食品来源和确定纯度来进行质量控制和监测。在一个非限制性实例中,本发明可用于鉴定或确认食品来源,诸如动物肉和海鲜的种类。
在另一个实施方案中,本发明用于法医鉴定,例如含有血液或其他体液的犯罪现场样品。在本发明的一个实施方案中,本发明用于从指纹中鉴定核酸样品。
RNA靶向效应蛋白在RNA折纸(origami)/体外组装线中的用途-组合式
RNA折纸是指使用RNA作为整合模板来形成二维或三维结构的纳米级折叠结构。折叠的结构在RNA中被编码,因此所得RNA的形状由合成的RNA序列确定(Geary等人2014.Science,345(6198).第799-804页)。RNA折纸可充当用于将其他组分诸如蛋白质排列成复合物的支架。本发明的RNA靶向效应蛋白可以例如用于使用合适的向导RNA将目标蛋白质靶向RNA折纸。
RNA靶向效应蛋白在RNA分离或纯化、富集或耗竭中的用途
进一步设想了RNA靶向效应蛋白在与RNA复合可以用于分离和/或纯化RNA。RNA靶向效应蛋白可以例如与亲和标签融合,该亲和标签可以用于分离和/或纯化RNA-RNA靶向效应蛋白复合物。此类应用例如可用于分析细胞中的基因表达谱。在特定的实施方案中,可以设想RNA靶向效应蛋白可以用于靶向特定的非编码RNA(ncRNA),从而阻断其活性,进而提供有用的功能探针。在某些实施方案中,本文所述的效应蛋白可用于特异性富集特定RNA(包括但不限于增加稳定性等),或者另选地特异性耗竭特定RNA(诸如但不限于例如特定剪接变体、同种型等)。
lincRNA功能和其他核RNA的探询
目前的RNA敲低策略诸如siRNA的缺点是,它们主要限于靶向胞质转录物,因为蛋白质装置是胞质型的。本发明的RNA靶向效应蛋白是一种对于细胞功能不是必需的外源系统,优点是它可以在细胞的任何区室中使用。通过将NLS信号与RNA靶向效应蛋白融合,可以将其指导至细胞核,从而靶向核RNA。例如,设想了探测lincRNA的功能。长基因间非编码RNA(lincRNA)是一个尚未充分研究的领域。迄今为止,大多数lincRNA具有未知功能,可以使用本发明的RNA靶向效应蛋白进行研究。
RNA结合蛋白的鉴定
鉴定与特定RNA结合的蛋白可能有助于理解许多RNA的作用。例如,许多lincRNA与转录和表观遗传调节因子相关,以控制转录。了解什么蛋白与给定lincRNA结合可以帮助阐明给定调控途径中的组分。本发明的RNA靶向效应蛋白可以被设计成将生物素连接酶募集到特定的转录物,以便用生物素标记局部结合的蛋白。然后可以将蛋白下拉并通过质谱分析来对其进行鉴定。
复合物在RNA上的组装以及底物穿梭
本发明的RNA靶向效应蛋白还可以用于在RNA上组装复合物。这可以通过用多种相关蛋白(例如,特定合成途径的组分)功能化RNA靶向效应蛋白来实现。另选地,可以用此类不同的相关蛋白功能化多种RNA靶向效应蛋白,并将其靶向相同或相邻的靶RNA。在RNA上组装复合物的有用应用是例如促进蛋白之间的底物穿梭。
合成生物学
生物系统的开发具有广泛的用途,包括用于临床应用中。设想了本发明的可编程RNA靶向效应蛋白可以与所靶向的细胞死亡的毒性结构域的断裂蛋白融合使用,例如使用癌症连接的RNA作为靶转录物。此外,涉及蛋白-蛋白相互作用的途径可能在具有例如融合复合物(具有合适的效应物,诸如激酶或其他酶)的合成生物系统中受到影响。
蛋白剪接:内含肽
蛋白剪接是一种翻译后的过程,在该过程中,介入多肽(称为内含肽)催化从与其侧接的多肽(称为外显肽)自切除,以及随后的外显肽连接。本文所述的两个或更多个RNA靶向效应蛋白在靶转录物上组装可以用于指导断裂内含肽的释放(Topilina和Mills,MobDNA.2014年2月4日;5(1):5),从而可以直接计算mRNA转录物的存在以及随后的蛋白产物释放,诸如代谢酶或转录因子(用于转录途径的下游激活)。该应用程序在合成生物学(参见上文)或大规模生物生产(仅在特定条件下生产产品)中可能具有重大意义。
可诱导的、定量的且自失活的系统
在一个实施方案中,包含本发明的RNA靶向效应蛋白以及效应物组分的融合复合物被设计成诱导型的,例如光诱导型的或化学诱导型的。这种诱导性允许在所需的时刻激活效应物组分。
例如,通过设计融合复合物(其中使用CRY2PHR/CIBN配对进行融合)来实现光诱导性。该系统对于光诱导活细胞中的蛋白相互作用特别有用(Konermann S等人Nature.2013;500:472–476)。
例如,通过设计融合复合物(其中使用FKBP/FRB(FK506结合蛋白/FKBP雷帕霉素结合)配对进行融合)来提供化学诱导性。使用该系统,雷帕霉素是蛋白结合所必需的(Zetsche等人Nat Biotechnol.2015;33(2):139-42描述了该系统在Cas9中的使用)。
此外,本发明的RNA靶向效应蛋白在作为DNA引入细胞中时,可以通过诱导型启动子诸如四环素或强力霉素控制的转录激活(Tet-On和Tet-Off表达系统)、激素诱导型基因表达系统(诸如蜕皮激素诱导型基因表达系统)和阿拉伯糖诱导型基因表达系统来进行调节。当RNA靶向效应蛋白作为RNA递送时,可以经由核糖开关来调节其表达,该核糖开关可以感应小分子,如四环素(如Goldfless等人Nucleic Acids Res.2012;40(9):e64中所述)。
在一个实施方案中,可以调节本发明的RNA靶向效应蛋白的递送,以改变细胞中蛋白或crRNA的量,从而改变希望的效应或任何不希望的脱靶效应的大小。
在一个实施方案中,本文所述的RNA靶向效应蛋白可以被设计成自失活的。它们在作为RNA、mRNA或作为复制RNA治疗剂递送到细胞时(Wrobleska等人,Nat Biotechnol.2015年8月;33(8):839-841),可以通过破坏自身RNA来使表达和随后的效应自失活,从而减少驻留和潜在的不希望的效应。
对于本文所述的RNA靶向效应蛋白的其他体内应用,参考Mackay JP等人(NatStruct Mol Biol.2011年3月;18(3):256-61)、Nelles等人(Bioessays.2015年7月;37(7):732-9)以及Abil Z和Zhao H(Mol Biosyst.2015年10月;11(10):2658-65),这些文献通过引用并入本文。具体地,在本发明的某些实施方案中、优选地在使用无催化活性的Cas13b的某些实施方案中设想了以下应用:增强翻译(例如,Cas13b—翻译促进因子融合(例如,eIF4融合));阻遏翻译(例如,靶向核糖体结合位点的gRNA);外显子跳跃(例如,靶向剪接供体和/或受体位点的gRNA);外显子包含(例如,靶向要包括的特定外显子剪接供体和/或受体位点或者与剪接体组分(例如,U1 snRNA)融合或募集该剪接体组分的Cas13b的gRNA);访问RNA定位(例如,Cas13b—标记融合(例如,EGFP融合));改变RNA定位(例如,Cas13b—定位信号融合(例如,NLS或NES融合));RNA降解(在这种情况下,如果依赖于Cas13b的活性,则不使用无催化活性的Cas13b,另选地为了提高特异性,可使用断裂Cas13b);抑制非编码RNA功能(例如,miRNA),诸如通过降解gRNA或使其与功能位点结合(可能通过Cas13b-信号序列融合进行重新定位来在特定位点去除(titrating out))。
Cas13b功能对于crRNA的5'或3'延伸以及crRNA环的延伸是稳健的。因此,设想了可以将MS2环和其他募集结构域添加到crRNA,而不影响复合物形成和与靶转录物结合。对crRNA进行这种修饰以募集各种效应结构域可适用于上述RNA靶向效应蛋白的用途。
Cas13b能够介导对RNA噬菌体的抗性。因此,设想了Cas13b可以用于使例如动物、人类和植物对仅有RNA的病原体(包括但不限于逆转录病毒(例如慢病毒,诸如HIV)、HCV、埃博拉病毒和寨卡病毒)免疫。
在某些实施方案中,Cas13b可以加工(裂解)其自身的阵列。这适用于野生型Cas13b蛋白以及本文所讨论的含有一个或多个突变氨基酸残基的突变Cas13b蛋白。因此,设想了针对不同的靶转录物和/或应用设计的多个crRNA可以作为单个前crRNA或作为由一个启动子驱动的单个转录物递送。这种递送方法的优点是,其在病毒系统中明显更紧凑,更容易合成并且更容易递送。应当理解,对于本文Cas13b的直系同源物,确切的氨基酸位置可变化,这可以通过蛋白比对来适当地确定,如本领域已知的以及如本文其他地方所述。本发明的各方面还涵盖本文所述的组合物和系统在基因组工程中例如用于在原核或真核细胞中体外、体内或离体改变或操纵一种或多种基因或者一种或多种基因产物的表达的方法和用途。
本发明的各方面还涵盖本文所述的组合物和系统在基因组或转录组工程中的方法和用途,例如基因组或转录组工程。用于在原核或真核细胞中例如用于在原核或真核细胞中体外、体内或离体改变或操纵一种或多种基因或者一种或多种基因产物的(蛋白)表达的方法和用途。
在一方面,本发明提供了用于调节例如减少细胞中靶RNA的(蛋白)表达的方法和组合物。在主题方法中,提供了本发明的Cas13b系统,该系统干扰RNA的转录、稳定性和/或翻译。
在某些实施方案中,使用有效量的Cas13b系统来裂解RNA或以其他方式抑制RNA表达。就这一点而言,该系统具有类似于siRNA和shRNA的用途,因此也可以替代此类方法。该方法包括但不限于使用Cas13b系统作为例如干扰核糖核酸(诸如siRNA或shRNA)或其转录模板(例如编码shRNA的DNA)的替代物。例如通过将Cas13b系统施用到包括靶细胞的哺乳动物中将该系统引入靶细胞中。
有利地,本发明的Cas13b系统具有特异性。例如,虽然干扰核糖核酸(诸如siRNA或shRNA)多核苷酸系统受设计和稳定性问题以及脱靶结合的困扰,但是本发明的Cas13b系统可以被设计成具有高特异性。
去稳定的Cas13b
在某些实施方案中,本文所述的根据本发明的效应蛋白(CRISPR酶;Cas13b)与去稳定结构域(DD)缔合或融合。在一些实施方案中,DD是ER50。在一些实施方案中,该DD的对应稳定配体是4HT。因此,在一些实施方案中,至少一个DD中的一个是ER50,并且其稳定配体是4HT或CMP8。在一些实施方案中,DD是DHFR50。在一些实施方案中,该DD的对应稳定配体是TMP。因此,在一些实施方案中,至少一个DD中的一个是DHFR50,并且其稳定配体是TMP。在一些实施方案中,DD是ER50。在一些实施方案中,该DD的对应稳定配体是CMP8。因此,CMP8在ER50系统中可以是4HT的替代稳定配体。虽然有可能的是CMP8和4HT可以/应当用于竞争事件,但是一些细胞类型可能更易受这两种配体中的一种或另一种的影响,并且根据本公开和本领域的知识,技术人员可以使用CMP8和/或4HT。
在一些实施方案中,可将一个或两个DD与CRISPR酶的N末端融合,并且将一个或两个DD与CRISPR酶的C末端融合。在一些实施方案中,该至少两个DD与CRISPR酶缔合,并且这些DD是相同的DD,即所述DD是同源的。因此,这两个(或者两个或更多个)DD都可以是ER50DD。这在一些实施方案中是优选的。另选地,这两个(或者两个或更多个)DD可以是DHFR50DD。这在一些实施方案中也是优选的。在一些实施方案中,该至少两个DD与CRISPR酶缔合,并且这些DD是不同的DD,即DD是异源的。因此,一个DD可以是ER50,而一个或多个DD或者任何其他DD可以是DHFR50。具有两个或更多个异源DD可能是有利的,因为这将提供更高水平的降解控制。在N端或C端串联融合一个以上DD可增强降解;并且这种串联融合可以是例如ER50-ER50-Cas13b或DHFR-DHFR-Cas13b。设想了高水平的降解将在不存在任何稳定配体的情况下发生,中等水平的降解将在不存在一个稳定配体并且存在其他(或另一个)稳定配体的情况下发生,而低水平的降解将在存在两个(或者两个或更多个)稳定配体的情况下发生。也可以通过具有N端ER50 DD和C端DHFR50DD来给予控制。
在一些实施方案中,CRISPR酶与DD融合包含DD和CRISPR酶之间的接头。在一些实施方案中,接头是GlySer接头。在一些实施方案中,DD-CRISPR酶还包含至少一个核输出信号(NES)。在一些实施方案中,DD-CRISPR酶包含两个或更多个NES。在一些实施方案中,DD-CRISPR酶包含至少一个核定位信号(NLS)。这可能是对NES的补充。在一些实施方案中,CRISPR酶包含定位(核输入或输出)信号,或基本上由该信号组成,或由该信号组成,作为CRISPR酶和DD之间的接头或作为该接头的一部分。HA或Flag标签也作为接头在本发明的范围内。申请人使用NLS和/或NES作为接头,并且还使用短至GS到高达(GGGGS)3的甘氨酸丝氨酸接头。
去稳定结构域的一般用途是赋予各种蛋白不稳定性;参见例如Miyazaki,J AmChem Soc.2012年3月7日;134(9):3942-3945,该文献通过引用并入本文。CMP8或4-羟基他莫昔芬可以是去稳定结构域。更一般地,发现哺乳动物DHFR的温度敏感突变体(DHFRt)(按照N端规则的去稳定残基)在许可温度下是稳定的,但在37℃下不稳定。将甲氨蝶呤(一种哺乳动物DHFR的高亲和力配体)添加到表达DHFRt的细胞中部分地抑制了该蛋白的降解。这是小分子配体可以稳定以其他方式被靶向以在细胞中降解的蛋白的一个重要证明。使用雷帕霉素衍生物来稳定mTOR(FRB*)的FRB结构域的不稳定突变体并恢复融合激酶GSK-3β的功能。6,7该系统证明配体依赖性稳定性代表了一种在复杂生物环境中调节特定蛋白的功能的有吸引力的策略。当由于雷帕霉素诱导FK506结合蛋白和FKBP12二聚化而发生泛素互补时,控制蛋白活性的系统可以涉及DD发挥功能。可以将人类FKBP12或ecDHFR蛋白的突变体工程化为分别在不存在它们的高亲和力配体Shield-1或甲氧苄啶(TMP)的情况下在代谢上不稳定。这些突变体是可用于实践本发明的一些可能的去稳定结构域(DD),并且DD与CRISPR酶融合时的不稳定性使得整个融合蛋白被蛋白酶体CRISPR蛋白降解。Shield-1和TMP以剂量依赖性方式与DD结合并稳定DD。也可以将雌激素受体配体结合结构域(ERLBD,ERS1的残基305-549)工程化为去稳定结构域。由于雌激素受体信号转导途径与多种疾病诸如乳腺癌有关,因此对该途径进行了广泛研究,并且开发出雌激素受体的许多激动剂和拮抗剂。因此,ERLBD和药物的相容对是已知的。有一些配体与ERLBD的突变体结合但不与其野生型形式结合。通过使用这些编码三个突变(L384M、M421G、G521R)的突变结构域中的一个,可以使用不干扰内源雌激素敏感的网络的配体来调节ERLBD衍生的DD的稳定性。可以引入其他突变(Y537S),以进一步使ERLBD去稳定并将其构造成潜在的DD候选物。这种四突变体是有利的DD开发物。可以将突变ERLBD与CRISPR酶融合,并且可以使用配体来调节或干扰其稳定性,由此CRISPR酶具有DD。另一种DD可以是基于突变FKBP蛋白的12-kDa(107个氨基酸)标签,由Shield1配体稳定。参见例如,Nature Methods 5,(2008)。例如,DD可以是经修饰的FK506结合蛋白12(FKBP12),该蛋白与合成的具有生物学惰性的小分子Shield-1结合并由其可逆地稳定。参见例如Banaszynski LA,Chen LC,Maynard-Smith LA,Ooi AG,WandlessTJ.A rapid,reversible,and tunable method to regulate protein function inliving cells using synthetic small molecules.Cell.2006;126:995–1004;Banaszynski LA,Sellmyer MA,Contag CH,Wandless TJ,Thorne SH.Chemical controlof protein stability and function in living mice.Nat Med.2008;14:1123–1127;Maynard-Smith LA,Chen LC,Banaszynski LA,Ooi AG,Wandless TJ.A directedapproach for engineering conditional protein stability using biologicallysilent small molecules.The Journal of biological chemistry.2007;282:24866–24872;以及Rodriguez,Chem Biol.2012年3月23日;19(3):391-398,所有这些文献均通过引用并入本文,并且可在本发明的实践中用于要在本发明的实践中与CRISPR酶缔合的所选DD中。可以看出,本领域的知识包括许多DD,并且DD可以与CRISPR酶缔合,例如有利地利用接头与其融合,由此在存在配体的情况下DD可以被稳定,并且当不存在配体时DD可以被去稳定,由此CRISPR酶被完全去稳定,或者在不存在配体的情况下DD可以被稳定,并且当存在配体时DD可以被去稳定;DD使CRISPR酶并且因此使CRISPR-Cas复合物或系统得以调节或控制(可以说打开或关闭),从而提供了用于例如在体内或体外环境中调节或控制系统的手段。例如,当将目标蛋白表达为与DD标签的融合物时,它被去稳定并在细胞中例如被蛋白酶体迅速降解。因此,缺乏稳定配体会导致D相关的Cas被降解。当新的DD与目标蛋白融合时,其不稳定性被赋予目标蛋白,从而导致整个融合蛋白迅速降解。Cas的峰值活性对于减少脱靶效应有时是有益的。因此,短突发的高活性是优选的。本发明能够提供这类峰值。从某些意义上说,该系统是诱导型的。在某些其他意义上说,该系统在不存在稳定配体的情况下被阻遏,而在存在稳定配体的情况下被去阻遏。
RNA靶向CRISPR系统在植物和酵母中的应用
定义:
一般来讲,术语“植物”涉及植物界的任何不同的光合、真核、单细胞或多细胞生物,其特征在于通过细胞分裂进行生长,含有叶绿体,并且具有由纤维素组成的细胞壁。术语“植物”涵盖单子叶植物和双子叶植物。具体地讲,这些植物旨在包括但不限于被子植物和裸子植物,诸如阿拉伯树胶、苜蓿、苋菜、苹果、杏、朝鲜蓟、白蜡树、芦笋、鳄梨、香蕉、大麦、豆类、甜菜、桦树、山毛榉、黑莓、蓝莓、西兰花、抱子甘蓝、卷心菜、油菜、哈密瓜、胡萝卜、木薯、花椰菜、雪松、谷类、芹菜、栗子、樱桃、大白菜、柑橘、克莱门氏小柑橘、三叶草、咖啡、玉米、棉花、豇豆、黄瓜、柏树、茄子、榆树、菊苣、桉树、茴香、无花果、冷杉、天竺葵、葡萄、葡萄柚、落花生、地樱桃、树胶铁杉、山核桃木、羽衣甘蓝、奇异果、甘蓝、落叶松、莴苣、韭、柠檬、青柠、洋槐、松树、孔雀草、玉米、芒果、枫树、甜瓜、粟、蘑菇、芥菜、坚果、橡树、燕麦、油棕、秋葵、洋葱、橙、观赏植物或花或树木、木瓜、棕榈、荷兰芹、欧洲防风草、豌豆、桃、花生、梨、泥炭、胡椒、柿子、木豆、松树、菠萝、大蕉、李子、石榴、马铃薯、南瓜、菊苣、萝卜、油菜籽、覆盆子、水稻、黑麦、高粱、红花、黄华柳、大豆、菠菜、云杉、南瓜属植物果实、草莓、糖甜菜、甘蔗、向日葵、甘薯、甜玉米、橘子、茶、烟草、番茄、树类、黑小麦、草坪草、芜菁、藤本植物、胡桃、豆瓣菜、西瓜、小麦、山药、紫杉和西葫芦。术语“植物”还涵盖藻类,藻类主要是光合自养生物,它们的共同特点主要是缺少根、叶以及其他表征高等植物的器官。
使用本文所述的RNA靶向系统调节基因表达的方法可以用于赋予基本上任何植物所需的性状。使用本公开的核酸构建体和上述各种转化方法,可针对本文所述的所需生理学和农艺学特征对各种各样的植物和植物细胞系统进行工程化。在优选的实施方案中,用于工程化的靶植物和植物细胞包括但不限于那些单子叶植物和双子叶植物,诸如作物,包括谷类作物(例如,小麦、玉米、水稻、小米、大麦)、水果作物(例如,番茄、苹果、梨、草莓、橙子)、饲料作物(例如,苜蓿)、根用蔬菜作物(例如,胡萝卜、马铃薯、甜菜、山药)、叶类蔬菜作物(例如,生菜、菠菜);开花植物(例如,矮牵牛、玫瑰、菊花)、针叶树和松树(例如,松木、云杉);用于植物修复的植物(例如,重金属积累植物);油料作物(例如,向日葵、油菜籽)以及用于实验目的的植物(例如,拟南芥(Arabidopsis))。因此,这些方法和CRISPR-Cas系统可以用于广泛的植物,诸如与属于以下目的双子叶植物一起使用:木兰目(Magniolales)、八角目(Illiciales)、樟目(Laurales)、胡椒目(Piperales)、马览铃目(Aristochiales)、睡莲目(Nymphaeales)、毛茛目(Ranunculales)、罂粟目(Papeverales)、瓶子草科(Sarraceniaceae)、昆栏树目(Trochodendrales)、金缕梅目(Hamamelidales)、杜仲目(Eucomiales)、莱脱纳目(Leitneriales)、杨梅目(Myricales)、壳斗目(Fagales)、木麻黄目(Casuarinales)、石竹目(Caryophyllales)、肉穗果目(Batales)、蓼目(Polygonales)、蓝雪目(Plumbaginales)、五桠果目(Dilleniales)、山茶目(Theales)、锦葵目(Malvales)、荨麻目(Urticales)、玉蕊目(Lecythidales)、紫堇目(Violales)、杨柳目(Salicales)、白花菜目(Capparales)、欧石楠目(Ericales)、岩梅目(Diapensales)、柿树目(Ebenales)、报春花目(Primulales)、蔷薇目(Rosales)、豆目(Fabales)、川苔草目(Podostemales)、小二仙草目(Haloragales)、桃金娘目(Myrtales)、山茱萸目(Cornales)、睡莲目(Proteales)、檀香目(San tales)、大花草目(Rafflesiales)、卫矛目(Celastrales)、大戟目(Euphorbiales)、鼠李目(Rhamnales)、无患子目(Sapindales)、胡桃目(Juglandales)、牻牛儿苗目(Geraniales)、远志目(Polygalales)、伞形目(Umbellales)、龙胆目(Gentianales)、花葱目(Polemoniales)、唇形目(Lamiales)、车前草目(Plantaginales)、玄参目(Scrophulariales)、桔梗目(Campanulales)、茜草目(Rubiales)、川绿断目(Dipsacales)和菊目(Asterales);这些方法和CRISPR-Cas系统可以与诸如属于以下目的单子叶植物一起使用:泽泻目(Alismatales)、水鳖目(Hydrocharitales)、茨藻目(Najadales)、霉草目(Triuridales)、鸭跖草目(Commelinales)、谷精草目(Eriocaulales)、帚灯草目(Restionales)、禾本目(Poales)、灯芯草目(Juncales)、莎草目(Cyperales)、香蒲目(Typhales)、凤梨目(Bromeliales)、姜目(Zingiberales)、槟榔目(Arecales)、环花目(Cyclanthales)、露兜树目(Pandanales)、天南星目(Arales)、百合目(Lilliales)和兰目(Orchid ales),或者与属于裸子植物的植物一起使用,例如属于以下目的植物:松目(Pinales)、银杏目(Ginkgoales)、苏铁目(Cycadales)、南洋杉目(Araucariales)、柏目(Cupressales)和麻黄目(Gnetales)。
本文所述的RNA靶向CRISPR系统和使用方法可以用于广泛的植物物种,这些植物物种包括在以下双子叶植物、单子叶植物或裸子植物属的非限制性列表中:颠茄属(Atropa)、油丹属(Alseodaphne)、槚如树属(Anacardium)、落花生属(Arachis)、琼楠属(Beilschmiedia)、芸苔属(Brassica)、红花属(Carthamus)、木防己属(Cocculus)、巴豆属(Croton)、黄瓜属(Cucumis)、柑橘属(Citrus)、西瓜属(Citrullus)、辣椒属(Capsicum)、长春花属(Catharanthus)、椰子属(Cocos)、咖啡属(Coffea)、南瓜属(Cucurbita)、胡萝卜属(Daucus)、杜氏木属(Duguetia)、花菱草属(Eschscholzia)、无花果属(Ficus)、草莓属(Fragaria)、海罂粟属(Glaucium)、大豆属(Glycine)、棉属(Gossypium)、向日葵属(Helianthus)、橡胶树属(Hevea)、天仙子属(Hyoscyamus)、莴苣属(Lactuca)、卷枝藤属(Landolphia)、亚麻属(Linum)、木姜子属(Litsea)、番茄属(Lycopersicon)、羽扇豆属(Lupinus)、木薯属(Manihot)、马郁兰属(Majorana)、苹果属(Malus)、苜蓿属(Medicago)、烟草属(Nicotiana)、木犀榄(Olea)、银胶菊属(Parthenium)、罂粟属(Papaver)、鳄梨属(Persea)、菜豆属(Phaseolus)、黄连木属(Pistacia)、豌豆属(Pisum)、梨属(Pyrus)、李属(Prunus)、萝卜属(Raphanus)、蓖麻属(Ricinus)、千里光属(Senecio)、风龙属(Sinomenium)、千金藤属(Stephania)、欧白芥属(Sinapis)、茄属(Solanum)、可可属(Theobroma)、三叶草属(Trifolium)、胡芦巴属(Trigonella)、蚕豆属(Vicia)、长春花属(Vinca)、葡萄属(Vilis)和豇豆属(Vigna);以及以下属:葱属(Allium)、须芒草属(Andropogon)、画眉草属(Aragrostis)、天门冬属(Asparagus)、燕麦属(Avena)、狗牙根属(Cynodon)、油棕属(Elaeis)、羊茅属(Festuca)、羊茅黑麦草属(Festulolium)、萱草属(Heterocallis)、大麦属(Hordeum)、浮萍属(Lemna)、黑麦草属(Lolium)、芭蕉属(Musa)、稻属(Oryza)、黍属(Panicum)、皇竹草属(Pannesetum)、梯牧草属(Phleum)、早熟禾属(Poa)、黑麦属(Secale)、蜀黍(Sorghum)、小麦属(Triticum)、玉蜀黍属(Zea)、冷杉属(Abies)、杉木属(Cunninghamia)、麻黄属(Ephedra)、云杉属(Picea)、松属(Pinus)和黄杉属(Pseudotsuga)。
这些RNA靶向CRISPR系统和使用方法还可以用于广泛的“藻类”或“藻类细胞”,包括例如选自多种真核门(包括红藻门(Rhodophyta)(红藻)、绿藻门(Chlorophyta)(绿藻)、褐藻门(Phaeophyta)(褐藻)、硅藻门(Bacillariophyta)(硅藻)、真眼点藻门(Eustigmatophyta)和鞭毛藻类)的藻类,以及原核门蓝藻门(Cyanobacteria)(蓝绿藻)。术语“藻类”包括例如选自以下属的藻类:双眉藻属(Amphora)、鱼腥藻属(Anabaena)、纤维藻属(Anikstrodesmis)、葡萄藻属(Botryococcus)、角毛藻属(Chaetoceros)、衣藻属(Chlamydomonas)、小球藻属(Chlorella)、绿球藻属(Chlorococcum)、小环藻属(Cyclotella)、细柱藻属(Cylindrotheca)、杜氏藻属(Dunaliella)、球石藻属(Emiliana)、眼虫属(Euglena)、球藻属(Hematococcus)、等鞭金藻属(Isochrysis)、单鞭金藻属(Monochrysis)、单针藻属(Monoraphidium)、微绿球藻属(Nannochloris)、拟微球藻属(Nannnochloropsis)、舟形藻属(Navicula)、肾鞭藻属(Nephrochloris)、肾爿藻属(Nephroselmis)、菱形藻属(Nitzschia)、节球藻属(Nodularia)、念珠藻属(Nostoc)、鞭毛藻属(Oochromonas)、卵囊藻属(Oocystis)、颤藻属(Oscillartoria)、巴夫藻属(Pavlova)、褐指藻属(Phaeodactylum)、扁藻属(Playtmonas)、颗石藻属(Pleurochrysis)、紫菜属(Porhyra)、假鱼腥藻属(Pseudoanabaena)、塔胞藻属(Pyramimonas)、裂丝藻属(Stichococcus)、聚球藻属(Synechococcus)、集胞藻属(Synechocystis)、四爿藻属(Tetraselmis)、海链藻属(Thalassiosira)和束毛藻属(Trichodesmium)。
可以根据本发明的方法处理植物的一部分,即“植物组织”,以产生改良的植物。植物组织还涵盖植物细胞。本文所用的术语“植物细胞”是指活植物的个体单位,不论在完整的全植物中还是呈在体外组织培养物中、培养基或琼脂上、生长培养基或缓冲液中的悬浮液中生长的分离形式,或作为更高组织化合体(诸如植物组织、植物器官或全植物)的一部分。
“原生质体”是指通过使用例如机械或酶促手段完全或部分去除保护性细胞壁从而形成活植物的具有生化功能的完整单位的植物细胞,可以改造植物细胞的细胞壁,使其增殖并且在适当的生长条件下使其再生生长成全植物。
术语“转化”广义上是指借助农杆菌(Agrobacteria)或者多种化学或物理方法中的一种通过引入DNA对植物宿主进行遗传修饰的过程。如本文所用,术语“植物宿主”是指植物,包括植物的任何细胞、组织、器官或子代。可以转化许多合适的植物组织或植物细胞,包括但不限于原生质体、体细胞胚、花粉、叶、籽苗、茎、愈伤组织、匍匐茎、试管块茎和芽。植物组织还指这种植物、种子、子代、繁殖体(无论有性还是无性生殖)以及这些中任一项的后代(诸如插条或种子)的任何克隆。
本文所用的术语“转化”是指其中已经引入外源DNA分子诸如构建体的细胞、组织、器官或生物。引入的DNA分子可被整合到受体细胞、组织、器官或生物的基因组DNA中,使得引入的DNA分子被传递给后续子代。在这些实施方案中,“转化”或“转基因”细胞或植物还可包括细胞或植物的子代,以及由利用这种转化植物作为杂交亲本并且由于存在引入的DNA分子而表现出表型改变的育种程序产生的子代。优选地,转基因植物是可育的并且能够通过有性繁殖将引入的DNA传递给子代。
术语“子代”诸如转基因植物的子代是出生于、产生于或来源于植物或转基因植物的子代。引入的DNA分子还可被瞬时引入受体细胞中,使得引入的DNA分子不会被后续子代遗传,因此不被认为是“转基因的”。因此,如本文所用,“非转基因”植物或植物细胞是不包含稳定整合到其基因组中的外源DNA的植物。
本文所用的术语“植物启动子”是能够启动植物细胞中的转录的启动子,无论其起源是否是植物细胞。示例性合适的植物启动子包括但不限于从植物、植物病毒以及包含在植物细胞中表达的基因的细菌(诸如农杆菌(Agrobacterium)或根瘤菌(Rhizobium))获得的启动子。
如本文所用,“真菌细胞”是指真菌界内的任何类型的真核细胞。真菌界内的门包括菌门子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、芽枝霉门(Blastocladiomycota)、壶菌门(Chytridiomycota)、球囊菌门(Glomeromycota)、微孢子虫目(Microsporidia)和新丽鞭毛菌门(Neocallimastigomycota)。真菌细胞可包括酵母、霉菌和丝状真菌。在一些实施方案中,真菌细胞是酵母细胞。
如本文所用,术语“酵母细胞”是指子囊菌门和担子菌门内的任何真菌细胞。酵母细胞可包括芽殖酵母细胞、裂殖酵母细胞和霉菌细胞。不限于这些生物,在实验室和工业环境中使用的许多类型的酵母是子囊菌门的一部分。在一些实施方案中,酵母细胞是酿酒酵母(S.cerervisiae)、马克斯克鲁维酵母(Kluyveromyces marxianus)或东方伊萨酵母(Issatchenkia orientalis)细胞。其他酵母细胞可包括但不限于假丝酵母属(Candidaspp.)(例如,白色念珠菌(Candida albicans))、亚罗酵母属(Yarrowia spp.)(例如,解脂亚罗酵母(Yarrowia lipolytica))、毕赤酵母属(Pichia spp.)(例如,巴斯德毕赤酵母(Pichia pastoris))、克鲁维酵母属(Kluyveromyces spp.)(例如,乳酸克鲁维酵母(Kluyveromyces lactis)和马克斯克鲁维酵母)、脉孢菌属(Neurospora spp.)(例如,粗糙脉孢菌(Neurospora crassa))、镰刀菌属(Fusarium spp.)(例如,尖孢镰刀菌(Fusariumoxysporum))和伊萨酵母属(Issatchenkia spp.)(例如,东方伊萨酵母,又名库德里阿兹氏毕赤酵母(Pichia kudriavzevii)和嗜热假丝酵母(Candida acidothermophilum))。在一些实施方案中,真菌细胞是丝状真菌细胞。如本文所用,术语“丝状真菌细胞”是指在丝状体即菌丝或菌丝体中生长的任何类型的真菌细胞。丝状真菌细胞的实例可包括但不限于曲霉属(Aspergillus spp.)(例如,黑曲霉(Aspergillus niger))、木霉属(Trichoderma spp.)(例如,里氏木霉(Trichoderma reesei))、根霉(Rhizopus spp.)(例如,米根霉(Rhizopusoryzae))和被孢霉属(Mortierella spp.)(例如,深黄被孢霉(Mortierellaisabellina))。
在一些实施方案中,真菌细胞是工业菌株。如本文所用,“工业菌株”是指在工业过程(例如以商业或工业规模生产产品)中使用或从工业过程中分离的任何真菌细胞菌株。工业菌株可指通常在工业过程中使用的真菌物种,或者可指也可用于非工业目的(例如,实验室研究)的真菌物种的分离菌。工业过程的实例可包括发酵(例如,在食品或饮料产品的生产中)、蒸馏、生物燃料生产、化合物生产和多肽生产。工业菌株的实例可包括但不限于JAY270和ATCC4124。
在一些实施方案中,真菌细胞是多倍体细胞。如本文所用,“多倍体”细胞可指其基因组以一个以上拷贝存在的任何细胞。多倍体细胞可指天然发现处于多倍体状态的细胞类型,或者可指已被诱导成以多倍体状态存在的细胞(例如,通过对减数分裂、胞质分裂或DNA复制进行特定调控、改变、失活、激活或修饰)。多倍体细胞可指其整个基因组是多倍体的细胞,或者可指在特定的目标基因组基因座中是多倍体的细胞。不希望受理论的束缚,据认为向导RNA的丰度在多倍体细胞的基因组工程化中可能比在单倍体细胞中更经常地是限速组分,并且因此使用本文所述的Cas13b CRISPR系统的方法可利用使用某种真菌细胞类型。
在一些实施方案中,真菌细胞是二倍体细胞。如本文所用,“二倍体”细胞可指其基因组以两个拷贝存在的任何细胞。二倍体细胞可指天然发现处于二倍体状态的细胞类型,或者可指已被诱导成以二倍体状态存在的细胞(例如,通过对减数分裂、胞质分裂或DNA复制进行特定调控、改变、失活、激活或修饰)。例如,可将酿酒酵母菌株S228C维持在单倍体或二倍体状态。二倍体细胞可指其整个基因组是二倍体的细胞,或者可指在特定的目标基因组基因座中是二倍体的细胞。在一些实施方案中,真菌细胞是单倍体细胞。如本文所用,“单倍体”细胞可指其基因组以一个拷贝存在的任何细胞。单倍体细胞可指天然发现处于单倍体状态的细胞类型,或者可指已被诱导成以单倍体状态存在的细胞(例如,通过对减数分裂、胞质分裂或DNA复制进行特定调控、改变、失活、激活或修饰)。例如,可将酿酒酵母菌株S228C维持在单倍体或二倍体状态。单倍体细胞可指其整个基因组是单倍体的细胞,或者可指在特定的目标基因组基因座中是单倍体的细胞。
如本文所用,“酵母表达载体”是指包含编码RNA和/或多肽的一个或多个序列的核酸,并且还可包含控制一种或多种核酸表达的任何所需元件,以及能够在酵母细胞内部复制和维持表达载体的任何元件。许多合适的酵母表达载体及其特征在本领域中是已知的;例如,在Yeast Protocols,第2版,Xiao,W.编辑(Humana Press,New York,2007)以及Buckholz,R.G.和Gleeson,M.A.(1991)Biotechnology(NY)9(11):1067-72中示出了不同载体和技术。酵母载体可包含但不限于着丝粒(CEN)序列、自主复制序列(ARS)、可操作地连接到目标序列或基因的启动子(诸如RNA聚合酶III启动子)、终止子(诸如RNA聚合酶III终止子)、复制起点和标记基因(例如,营养缺陷标记、抗生素标记或其他选择性标记)。用于酵母的表达载体的实例可包括质粒、酵母人工染色体、2μ质粒、酵母整合质粒、酵母复制质粒、穿梭载体和游离质粒。
RNA靶向CRISP系统组分在植物和植物细胞基因组中的稳定整合
在特定的实施方案中,设想了引入编码靶向RNACRISPR系统的组分的多核苷酸以稳定整合到植物细胞的基因组中。在这些实施方案中,可以根据一种或多种向导RNA和/或RNA靶向基因何时、何处以及在什么条件下表达来对转化载体或表达系统的设计进行调节。
在特定的实施方案中,设想了将RNA靶向CRISPR系统的组分稳定地引入植物细胞的基因组DNA中。另外或另选地,设想了引入RNA靶向CRISPR系统的组分以稳定整合到植物细胞器(诸如但不限于质体、线粒体或叶绿体)的DNA中。
用于稳定整合到植物细胞的基因组中的表达系统可包含以下元件中的一种或多种:启动子元件,其可以用于在植物细胞中表达向导RNA和/或RNA靶向酶;5'非翻译区,用以增强表达;内含子元件,用以进一步增强某些细胞诸如单子叶植物细胞中的表达;多克隆位点,用以为插入一种或多种向导RNA和/或RNA靶向基因序列和其他所需元件提供方便的限制性位点;以及3'非翻译区,用以有效终止表达的转录物。
表达系统的这些元件可在一个或多个环状表达构建体(诸如质粒或转化载体)或非环状构建体(诸如线性双链DNA)上。
在一个特定实施方案中,RNA靶向CRISPR表达系统至少包含:
(a)编码与植物中的靶序列杂交的向导RNA(gRNA)的核苷酸序列,其中向导RNA包含指导序列和正向重复序列,以及
(b)编码RNA靶向蛋白的核苷酸序列,
其中组分(a)或(b)位于相同或不同的构建体上,并且由此不同的核苷酸序列可以受在植物细胞中可操作的相同或不同调控元件的控制。
可通过多种常规技术将包含RNA靶向CRISPR系统的组分以及模板序列(在适用的情况下)的一个或多个DNA构建体引入植物、植物部分或植物细胞的基因组中。该过程一般包括以下步骤:选择合适的宿主细胞或宿主组织,将一个或多个构建体引入宿主细胞或宿主组织中,并从中再生植物细胞或植物。在特定的实施方案中,可使用诸如但不限于植物细胞原生质体的电穿孔、显微注射、气溶胶束注射等技术将DNA构建体引入植物细胞中,或者可以使用生物弹射法诸如DNA粒子轰击将DNA构建体直接引入植物组织(还可参见Fu等人,Transgenic Res,2000年2月;9(1):11-9)。粒子轰击的基础是使包覆有目标基因的粒子朝向细胞加速,从而使得粒子穿透原生质并且通常稳定整合到基因组中。(参见例如Klein等人,Nature(1987);Klein等人,Bio/Technology(1992);Casas等人,Proc.Natl.Acad.Sci.USA(1993))。
在特定的实施方案中,可通过农杆菌介导的转化将含有RNA靶向CRISPR系统的组分的DNA构建体引入植物中。可将DNA构建体与合适的T-DNA侧接区组合,并引入常规的根癌农杆菌(Agrobacterium tumefaciens)宿主载体中。可以通过侵染植物或通过用含有一种或多种Ti(肿瘤诱导)质粒的农杆菌属细菌孵育植物原生质体将外源DNA掺入植物基因组中。(例如参见Fraley等人,(1985);Rogers等人,(1987);以及美国专利号5,563,055)。
植物启动子
为了确保在植物细胞中适当表达,通常将本文所述的Cas13b CRISPR系统的组分置于植物启动子即在植物细胞中可操作的启动子的控制下。设想了使用不同类型的启动子。
组成型植物启动子是能够在植物的所有或几乎所有发育阶段在所有或几乎所有植物组织中表达其控制(称为“组成型表达”)的开放阅读框(ORF)的启动子。组成型启动子的一个非限制性实例是花椰菜花叶病毒35S启动子。本发明设想了用于修饰RNA序列的方法,因此还设想了调控植物生物分子的表达。因此,在本发明的特定实施方案中,将RNA靶向CRISPR系统的一个或多个元件置于可以被调控的启动子的控制下是有利的。“调控型启动子”是指非组成性地但以时间和/或空间调控型方式指导基因表达的启动子,并且包括组织特异性、组织优选型和诱导型启动子。不同启动子可指导基因在不同组织或细胞类型中或者在不同发育阶段或者响应于不同环境条件而表达。在特定的实施方案中,一种或多种RNA靶向CRISPR组分在组成型启动子诸如花椰菜花叶病毒35S启动子的控制下表达。可以利用组织优选型启动子来靶向特定植物组织内的某些细胞类型(例如叶或根的维管细胞)或种子的特定细胞的增强表达。用于RNA靶向CRISPR系统的特定启动子的实例可见于Kawamata等人,(1997)Plant Cell Physiol 38:792-803;Yamamoto等人,(1997)Plant J 12:255-65;Hire等人,(1992)Plant Mol Biol 20:207-18;Kuster等人,(1995)Plant Mol Biol29:759-72;以及Capana等人,(1994)Plant Mol Biol 25:681-91。
可诱导并且允许对基因编辑或基因表达进行时空控制的启动子的实例可使用能量形式。能量形式可包括但不限于声能、电磁辐射、化学能和/或热能。诱导型系统的实例包括四环素诱导型启动子(Tet-On或Tet-Off)、小分子双杂交转录激活系统(FKBP、ABA等)或光诱导型系统(光敏素、LOV结构域或隐花色素),诸如以序列特异性方式指导转录活性的变化的光诱导型转录效应因子(LITE)。光诱导型系统的组分可包括RNA靶向CRISPR酶、光响应性细胞色素异二聚体(例如,来自拟南芥)和转录激活/阻遏结构域。诱导型DNA结合蛋白的其他实例及其使用方法在US 61/736465和US 61/721,283中提供,这些文献全文据此通过引用并入。
在特定的实施方案中,可以通过使用例如化学调控型启动子(即由此应用外源化学物质来诱导基因表达)来实现瞬时或诱导型表达。还可以通过化学阻遏型启动子(其中应用化学物质来阻遏基因表达)来获得对基因表达的调节。化学诱导型启动子包括但不限于由苯磺酰胺类除草安全剂激活的玉米ln2-2启动子(De Veylder等人,(1997)Plant CellPhysiol 38:568-77)、由用作萌前除草剂的疏水性亲电子化合物激活的玉米GST启动子(GST-ll-27,WO93/01294),以及由水杨酸激活的烟草PR-1a启动子(Ono等人,(2004)BiosciBiotechnol Biochem68:803-7)。由抗生素调控的启动子诸如四环素诱导型和四环素阻遏型启动子(Gatz等人,(1991)Mol Gen Genet 227:229-37;以及美国专利号5,814,618和5,789,156)也可以在本文中使用。
易位到特定植物细胞器和/或在特定植物细胞器中表达
表达系统可包含用于易位到特定植物细胞器和/或在特定植物细胞器中表达的元件。
叶绿体靶向
在特定的实施方案中,设想了使用RNA靶向CRISPR系统对叶绿体基因的表达和/或翻译进行特异性修饰或者确保在叶绿体中的表达。为此,使用叶绿体转化方法或将RNA靶向CRISPR组分区室化使其进入叶绿体。例如,在质体基因组中引入遗传修饰可以减少生物安全问题,诸如通过花粉产生的基因流动。
叶绿体转化方法是本领域已知的,包括粒子轰击、PEG处理和显微注射。另外,可以使用如WO2010061186中所述的涉及使转化盒从核基因组易位到质体的方法。
另选地,设想了将一种或多种RNA靶向CRISPR组分靶向到植物叶绿体。这是通过在表达构建物中掺入编码叶绿体转运肽(CTP)或质体转运肽的序列(其与编码RNA靶向蛋白的序列的5'区可操作连接)来实现的。在易位到叶绿体期间的加工步骤中去除CTP。对所表达的蛋白进行叶绿体靶向是本领域技术人员熟知的(参见例如Protein Transport intoChloroplasts,2010,Annual Review of Plant Biology,第61卷:157-180)。在此类实施方案中,还希望将一种或多种向导RNA靶向到植物叶绿体。可以借助于叶绿体定位序列使向导RNA易位到叶绿体中的方法和构建体描在例如US 20040142476中描述,该文献通过引用并入本文。可以将构建体的此类变体掺入本发明的表达系统中,以有效地易位一种或多种RNA靶向向导RNA。
将编码CRISPR-RNA靶向系统的多核苷酸引入藻类细胞中。
转基因藻类(或其他植物,诸如油菜)在生产植物油或生物燃料诸如醇(尤其是甲醇和乙醇)或其他产品中可能特别有用。可以将它们工程化为表达或过量表达用于油或生物燃料行业的高含量油或醇。
US 8945839描述了一种使用Cas9来工程化微藻类(莱茵衣藻(Chlamydomonasreinhardtii)细胞)的方法。使用类似的工具,可以将本文所述的RNA靶向CRISPR系统的方法应用于衣藻(Chlamydomonas)物种和其他藻类。在特定的实施方案中,将一种或多种RNA靶向蛋白和向导RNA引入使用在组成型启动子诸如Hsp70A-Rbc S2或Beta2-微管蛋白的控制下表达RNA靶向蛋白的载体表达的藻类中。任选地,使用含有T7启动子的载体来递送向导RNA。另选地,可以将RNA靶向mRNA和体外转录的向导RNA递送到藻类细胞。电穿孔方案对于技术人员是可用的,诸如来源于GeneArt Chlamydomonas Engineering试剂盒的标准推荐方案。
将编码RNA靶向组分的多核苷酸引入酵母细胞中
在特定的实施方案中,本发明涉及RNA靶向CRISPR系统用于在酵母细胞中进行RNA编辑的用途。可以用于引入编码RNA靶向CRISPR系统组分的多核苷酸的用于转化酵母细胞的方法是本领域技术人员熟知的,并且在Kawai等人,2010,Bioeng Bugs.2010年11月至12月;1(6):395-403中对其进行了综述。非限制性实例包括通过乙酸锂处理(其还可包括载体DNA和PEG处理)、轰击或电穿孔转化酵母细胞。
RNA靶向CRISPR系统组分在植物和植物细胞中瞬时表达
在特定的实施方案中,设想了向导RNA和/或RNA靶向基因在植物细胞中瞬时表达。在这些实施方案中,仅当向导RNA和RNA靶向蛋白都存在于细胞中时,RNA靶向CRISPR系统才能确保修饰RNA靶分子,从而可以进一步控制基因表达。由于RNA靶向酶的表达是瞬时的,因此从此类植物细胞再生的植物通常不包含外源DNA。在特定的实施方案中,RNA靶向酶由植物细胞稳定表达,并且指导序列瞬时表达。
在特别优选的实施方案中,可以使用植物病毒载体将RNA靶向CRISPR系统组分引入植物细胞(Scholthof等人,1996,Annu Rev Phytopathol.1996;34:299-323)。在另外的特定实施方案中,所述病毒载体是来自DNA病毒的载体。例如,双生病毒(例如,卷心菜曲叶病毒、豆黄矮病毒、小麦矮小病毒、番茄曲叶病毒、玉米条纹病毒、烟草曲叶病毒或番茄金色花叶病毒)或矮缩病毒(例如,蚕豆坏死黄化病毒)。在其他特定的实施方案中,所述病毒载体是来自RNA病毒的载体。例如,烟草脆裂病毒属(例如,烟草脆裂病毒、烟草花叶病毒)、马铃薯X病毒属(例如,马铃薯X病毒)或大麦病毒属(例如,大麦条纹花叶病毒)。植物病毒的复制基因组是非整合型载体,这在避免产生转基因植物方面是有意义的。
在特定的实施方案中,用于瞬时表达RNA靶向CRISPR构建体的载体是例如pEAQ载体,该载体是针对在原生质体中进行农杆菌介导的瞬时表达而定制的(Sainsbury F.等人,Plant Biotechnol J.,2009年9月;7(7):682-93)。使用经修饰的卷心菜曲叶病毒(CaLCuV)载体在表达CRISPR酶的稳定转基因植物中表达gRNA证明了基因组位置的精确靶向(Scientific Reports 5,文章编号:14926(2015),doi:10.1038/srep14926)。
在特定的实施方案中,可以将编码向导RNA和/或RNA靶向基因的双链DNA片段瞬时引入植物细胞中。在此类实施方案中,提供引入的双链DNA片段的量足以修饰细胞中的一种或多种RNA分子,但在经过预期的时间段之后或在一次或多次细胞分裂之后不会持续存在。用于直接将DNA转移到植物中的方法是技术人员已知的(参见例如Davey等人,Plant MolBiol.1989年9月;13(3):273-85。)
在其他实施方案中,将编码RNA靶向蛋白的RNA多核苷酸引入植物细胞中,然后由宿主细胞翻译和加工,从而产生足以修饰细胞中的RNA分子的量的蛋白(在存在至少一种向导RNA的情况下),但所产生的蛋白在经过预期的时间段之后或在一次或多次细胞分裂之后不会持续存在。用于将mRNA引入植物原生质体进行瞬时表达的方法是技术人员已知的(参见例如Gallie,Plant Cell Reports(1993),13;119-122)。还设想了上述不同方法的组合。
RNA靶向CRISPR组分向植物细胞的递送
在特定的实施方案中,将RNA靶向CRISPR系统的一种或多种组分直接递送到植物细胞是有意义的。这尤其对于产生非转基因植物是有意义的(参见下文)。在特定的实施方案中,在植物或植物细胞外部制备一种或多种RNA靶向组分并将其递送到细胞。例如,在特定的实施方案中,在引入植物细胞之前在体外制备RNA靶向蛋白。可以通过本领域技术人员已知的多种方法来制备RNA靶向蛋白,包括重组生产。在表达之后,将RNA靶向蛋白分离,如果需要的话进行再折叠,进行纯化并且任选地进行处理,以去除任何纯化标签,诸如His标签。一旦获得未加工、部分纯化或更完全纯化的RNA靶向蛋白,就可将该蛋白引入植物细胞中。
在特定的实施方案中,将RNA靶向蛋白与靶向目标RNA的向导RNA混合,以形成预组装的核糖核蛋白。
可以经由电穿孔、通过用RNA靶向相关的基因产物包被的粒子轰击、通过化学转染或通过某种其他跨细胞膜转运的手段将各个组分或预组装的核糖核蛋白引入植物细胞。例如,已证明用预组装的CRISPR核糖核蛋白转染植物原生质体可以确保对植物基因组的靶向修饰(如Woo等人Nature Biotechnology,2015;DOI:10.1038/nbt.3389所述)。可以改进这些方法,以实现对植物中的RNA分子的靶向修饰。
在特定的实施方案中,使用纳米颗粒将RNA靶向CRISPR系统引入植物细胞中。可以将这些组分作为蛋白或核酸或者以其组合上载到纳米颗粒上或包装在纳米颗粒中并施加到植物上(诸如,在WO2008042156和US 20130185823中所述)。具体地,本发明的实施方案包括与编码RNA靶向蛋白的一种或多种DNA分子、编码向导RNA的DNA分子和/或分离的向导RNA一起上载或包装的纳米颗粒,如WO2015089419中所述。
将RNA靶向CRISPR系统的一种或多种组分引入植物细胞的其他手段是通过使用细胞穿透肽(CPP)。因此,具体地,本发明的实施方案包括包含与RNA靶向蛋白连接的细胞穿透肽的组合物。在本发明的特定实施方案中,将RNA靶向蛋白和/或一种或多种向导RNA与一种或多种CPP联接,以将它们有效地转运到植物原生质体内部(Ramakrishna(2014,GenomeRes.2014年6月;24(6):1020-7(针对人类细胞中的Cas9))。在其他实施方案中,RNA靶向基因和/或一种或多种向导RNA由一种或多种环状或非环状DNA分子编码,这些DNA分子与一种或多种CPP联接以用于植物原生质体递送。然后将植物原生质体再生为植物细胞并进一步再生为植物。一般将CPP描述为来源于蛋白或嵌合序列的少于35个氨基酸的短肽,其能够以受体非依赖性方式跨细胞膜转运生物分子。CPP可以是阳离子肽、具有疏水序列的肽、两亲性肽、具有富含脯氨酸和抗微生物序列的肽以及嵌合或二分肽(Pooga和Langel 2005)。CPP能够穿透生物膜,并因此触发各种生物分子跨细胞膜移动到细胞质中并改进其细胞内路线,从而促进生物分子与靶标相互作用。CPP的实例尤其包括:Tat(HIV 1型进行病毒复制所需的核转录激活蛋白)、穿透素、Kaposi成纤维细胞生长因子(FGF)信号肽序列、整合素β3信号肽序列;聚精氨酸肽Args序列、富含鸟嘌呤的分子转运体、甜箭肽等。
设想用于植物、藻类或真菌应用的靶RNA
靶RNA即目标RNA是本发明要靶向的RNA,从而导致募集到靶RNA上的目标靶位点并且RNA靶向蛋白在该目标靶位点处结合。靶RNA可以是任何合适形式的RNA。在一些实施方案中,这可包括mRNA。在其他实施方案中,靶RNA可包括转移RNA(tRNA)或核糖体RNA(rRNA)。在其他实施方案中,靶RNA可包括干扰RNA(RNAi)、微RNA(miRNA)、微开关、微酶、卫星RNA和RNA病毒。靶RNA可位于植物细胞的细胞质中,或者位于细胞核或植物细胞细胞器(诸如线粒体、叶绿体或质体)中。
在特定的实施方案中,RNA靶向CRISPR系统用于裂解RNA或以其他方式抑制RNA表达。
RNA靶向CRISPR系统经由RNA调节来调节植物基因表达的用途
还可经由控制RNA加工来将RNA靶向蛋白与合适的向导RNA一起用于靶向基因表达。控制RNA加工可包括RNA加工反应(诸如RNA剪接,包括可变剪接)或特异性靶向某些剪接变体或同种型;病毒复制(尤其是植物病毒,包括植物中的类病毒和tRNA生物合成)。还可将RNA靶向蛋白与合适的向导RNA组合用于控制RNA激活(RNAa)。RNAa将促进基因表达,因此可通过破坏或降低RNAa从而减少促进基因表达来实现对基因表达的控制。
本发明的RNA靶向效应蛋白还可以用于植物中的抗病毒活性,特别是抗RNA病毒。可以使用对所选的病毒RNA序列具有选择性的合适向导RNA来将效应蛋白靶向病毒RNA。具体地,效应蛋白可以是裂解RNA诸如单链RNA的活性核酸酶。因此,提供了本发明的RNA靶向效应蛋白作为抗病毒剂的用途。可以以这种方式抵抗的病毒的实例包括但不限于烟草花叶病毒(TMV)、番茄斑萎病毒(TSWV)、黄瓜花叶病毒(CMV)、马铃薯Y病毒(PVY)、花椰菜花叶病毒(CaMV)(RT病毒)、李痘病毒(PPV)、雀麦草花叶病毒(BMV)和马铃薯X病毒(PVX)。
本文还描述了调节植物、藻类或真菌中的RNA表达的实例,作为靶向基因修饰的替代方案。
特别有意义的是通过调控mRNA的裂解对基因表达进行调控控制。这可以通过将RNA靶向的元件置于本文所述的调控型启动子的控制下来实现。
RNA靶向CRISPR系统恢复tRNA分子的功能的用途。
Pring等人描述了植物线粒体和叶绿体中的RNA编辑,这种编辑可以改变mRNA序列以编码不同于DNA的蛋白质。(Plant Mol.Biol.(1993)21(6):1163-1170.doi:10.1007/BF00023611)。在本发明的特定实施方案中,可以将特异性靶向线粒体和叶绿体mRNA的RNA靶向CRISPR系统的元件引入植物或植物细胞中,以模拟体内发生的过程在这种植物细胞细胞器中表达不同的蛋白。
RNA靶向CRISPR系统作为RNA干扰的替代方案抑制RNA表达的用途。
RNA靶向CRISPR系统具有类似于RNA抑制或RNA干扰的用途,因此也可以替代此类方法。在特定的实施方案中,本发明的方法包括使用RNA靶向CRISPR作为例如干扰核糖核酸(诸如siRNA或shRNA或dsRNA)的替代物。本文还描述了抑制植物、藻类或真菌中的RNA表达的实例,作为靶向基因修饰的替代方案。
RNA靶向CRISPR系统控制RNA干扰的用途。
对干扰RNA或miRNA进行控制可通过减少体内或体外干扰RNA或miRNA的寿命来帮助减少那些方法所产生的脱靶效应(OTE)。在特定的实施方案中,靶RNA可包括干扰RNA,即参与RNA干扰途径的RNA,诸如shRNA、siRNA等。在其他实施方案中,靶RNA可包括微RNA(miRNA)或双链RNA(dsRNA)。
在其他特定的实施方案中,如果选择性表达(例如,在调控型启动子例如组织或细胞周期特异性启动子和/或增强子的控制下,在空间上或在时间上表达)RNA靶向蛋白和一种或多种合适的向导RNA,则这可以用于“保护”细胞或系统(体内或体外)免受这些细胞中的RNAi的影响。这在不需要RNAi的邻近组织或细胞中或者在比较表达和不表达效应蛋白和合适的指导物(即,分别不控制和控制RNAi)的细胞或组织时可能是有用的。RNA靶向蛋白可用于控制或结合包含RNA或由RNA组成的分子,诸如核酶、核糖体或核糖开关。在本发明的实施方案中,向导RNA可以将RNA靶向蛋白募集到这些分子,使得RNA靶向蛋白能够与它们结合。
根据本公开,本发明的RNA靶向CRISPR系统无需过度实验即可应用于植物RNAi技术领域,包括虫害管理、植物病害管理和除草剂抗性管理以及植物测定和其他应用(参见例如Kim等人,Pesticide Biochemistry and Physiology(影响因子:2.01),01/2015;120.DOI:10.1016/j.pestbp.2015.01.002;Sharma等人,Academic Journals(2015),第12(18)卷,第2303-2312页);Green J.M,Pest Management Science,第70(9)卷,第1351-1357页),因为本申请为有根据地对系统进行工程化提供了基础。
RNA靶向CRISPR系统在植物、藻类和真菌中修饰核糖开关和控制代谢调控的用途
核糖开关(也称为适体酶)是信使RNA的结合小分子进而调控基因表达的调控片段。这种机制使细胞能够感知这些小分子的细胞内浓度。特定的核糖开关通常通过改变其邻近基因的转录、翻译或剪接来调控该基因。因此,在本发明的特定实施方案中,设想了通过使用RNA靶向蛋白与合适的向导RNA结合以靶向核糖开关来控制核糖开关活性。这可通过裂解或结合核糖开关来实现。在特定的实施方案中,设想了降低核糖开关活性。最近,对结合焦磷酸硫胺(TPP)的核糖开关进行了表征,并发现其在植物和藻类中调控硫胺生物合成。此外,该元件似乎是植物初级代谢的重要调控子(Bocobza和Aharoni,Plant J,2014年8月;79(4):693-703.doi:10.1111/tpj.12540.2014年6月17日的电子版)。TPP核糖开关还存在于某些真菌诸如粗糙脉孢菌中,其控制可变剪接以条件性产生上游开放阅读框(uORF),从而影响下游基因的表达(Cheah MT等人,(2007)Nature 447(7143):497-500,doi:10.1038/nature05769)。本文所述的RNA靶向CRISPR系统可用于操纵植物、藻类或真菌中的内源核糖开关活性,并因此改变其控制的下游基因的表达。在特定的实施方案中,RNA靶向CRISPR系统可用于体内或体外测定核糖开关功能,并用于研究其与代谢网络的相关性。在特定的实施方案中,RNA靶向CRISPR系统可潜在地用于将核糖开关工程化为植物中的代谢物传感器和用于基因控制的平台。
RNA靶向CRISPR系统在植物、藻类或真菌的RNAi筛选中的用途
通过鉴定基因的敲低与表型改变相关的该基因产物,可以经由RNAi筛选来探询生物学途径并鉴定组成部分。在本发明的特定实施方案中,还可通过使用本文所述的Cas13b蛋白和合适的向导RNA对这些筛选或在这些筛选过程中施加控制,来去除或降低筛选中RNAi的活性,从而恢复(先前受干扰的)基因产物的活性(通过去除或减少干扰/阻遏)。
RNA靶向蛋白用于在体内和体外可视化RNA分子的用途
在特定的实施方案中,本发明提供了一种核酸结合系统。RNA与互补探针进行原位杂交是一项强大的技术。通常,使用荧光DNA寡核苷酸通过杂交来检测核酸。已经通过某些修饰诸如锁核酸(LNA)提高了效率,但是仍然需要有效且通用的替代方案。因此,可以将RNA靶向系统的标记元素用作用于原位杂交的有效且适合的系统的替代方案。
RNA靶向CRISPR系统在植物和酵母中的其他应用
RNA靶向CRISPR系统在生物燃料生产中的应用
如本文所用的术语“生物燃料”是由植物和植物源的来源制成的替代燃料。可以从通过固碳过程获得其能量的有机质中提取可再生生物燃料,或者通过使用或转化生物质制成可再生生物燃料。可以将该生物质直接用于生物燃料,或者可以通过热转化、化学转化和生化转化将其转化为方便的含能量物质。这种生物质转化可以产生固体、液体或气体形式的燃料。有两种类型的生物燃料:生物乙醇和生物柴油。生物乙醇主要通过纤维素(淀粉)的糖发酵过程产生,纤维素(淀粉)主要来源于玉米和甘蔗。在另一方面,生物柴油主要由油料作物诸如油菜籽、棕榈和大豆产生。生物燃料主要用于运输。
增强植物特性用于生产生物燃料
在特定的实施方案中,使用本文所述的使用RNA靶向CRISPR系统的方法来改变细胞壁的特性,以便关键水解剂进入,从而更有效地释放糖进行发酵。在特定的实施方案中,对纤维素和/或木质素的生物合成进行了修饰。纤维素是细胞壁的主要成分。纤维素和木质素的生物合成是共同调控的。通过减少植物中木质素的比例,可以增加纤维素的比例。在特定的实施方案中,使用本文所述的方法来下调植物中木质素的生物合成,从而增加可发酵的碳水化合物。更具体地,使用本文所述的方法来下调至少第一木质素生物合成基因,该第一木质素生物合成基因选自4-香豆酸3-羟化酶(C3H)、苯丙氨酸氨裂解酶(PAL)、肉桂酸4-羟化酶(C4H)、羟基肉桂酰转移酶(HCT)、咖啡酸O-甲基转移酶(COMT)、咖啡酰CoA 3-O-甲基转移酶(CCoAOMT)、阿魏酸5-羟化酶(F5H)、肉桂醇脱氢酶(CAD)、肉桂酰CoA-还原酶(CCR)、4-香豆酸-CoA连接酶(4CL)、单木质醇-木质素-特异性糖基转移酶和醛脱氢酶(ALDH),如WO2008064289 A2中所公开。
在特定的实施方案中,使用本文所述的方法来产生植物质,该植物质在发酵过程中产生较低水平的乙酸(还可参见WO 2010096488)。
修饰酵母用于生产生物燃料
在特定的实施方案中,使用本文提供的RNA靶向酶通过重组微生物来生产生物乙醇。例如,可以使用RNA靶向酶来工程化微生物诸如酵母,以由可发酵糖产生生物燃料或生物聚合物,并且任选地能够降解来源于农业废物的植物源木质纤维素作为可发酵糖的来源。更具体地,本发明提供了使用RNA靶向CRISPR复合物来修饰生物燃料生产所需的内源基因的表达和/或修饰可干扰生物燃料合成的内源基因的方法。更具体地,这些方法涉及刺激编码参与丙酮酸转化为乙醇或另一目标产物的酶的一种或多种核苷酸序列在微生物诸如酵母中表达。在特定的实施方案中,这些方法确保刺激允许微生物降解纤维素的一种或多种酶诸如纤维素酶的表达。在另外的实施方案中,使用RNA靶向CRISPR复合物来抑制与生物燃料产生途径竞争的内源代谢途径。
修饰藻类和植物用于生产植物油或生物燃料
例如,转基因藻类或其他植物诸如油菜在生产植物油或生物燃料诸如醇(尤其是甲醇和乙醇)中可能特别有用。可以将它们工程化为表达或过量表达用于油或生物燃料行业的高含量油或醇。
US 8945839描述了一种使用Cas9来工程化微藻类(莱茵衣藻细胞)的方法。使用类似的工具,可以将本文所述的RNA靶向CRISPR系统的方法应用于衣藻物种和其他藻类。在特定的实施方案中,将RNA靶向效应蛋白和向导RNA引入使用在组成型启动子诸如Hsp70A-RbcS2或Beta2-微管蛋白的控制下表达RNA靶向效应蛋白的载体表达的藻类中。将使用含有T7启动子的载体来递送向导RNA。另选地,可以将体外转录的向导RNA递送到藻类细胞。电穿孔方案遵循来源于GeneArt Chlamydomonas Engineering试剂盒的标准推荐方案。
RNA靶向酶在植物中的具体应用
在特定的实施方案中,本发明由于能够裂解病毒RNA而可以用作植物系统中去除病毒的疗法。先前在人体系统中的研究表明,利用CRISPR成功靶向了单链RNA病毒丙型肝炎(A.Price等人,Proc.Natl.Acad.Sci,2015)。也可对这些方法进行调整以在植物中使用该RNA靶向CRISPR系统。
改良的植物
本发明还提供了通过本文提供的方法可获得并获得的植物和酵母细胞。通过本文所述的方法获得的改良植物可通过修饰例如确保对植物虫害、除草剂、干旱、低温或高温、过量水分等产生耐受性的基因的表达而用于食品或饲料生产中。
通过本文所述的方法获得的改良植物、尤其是作物和藻类可通过表达例如比在野生型中通常所见的更高的蛋白、碳水化合物、营养物或维生素水平而用于食品或饲料生产中。就这一点而言,改良植物、尤其是豆类和块茎是优选的。
例如,改良的藻类或其他植物诸如油菜在生产植物油或生物燃料诸如醇(尤其是甲醇和乙醇)中可能特别有用。可以将它们工程化为表达或过量表达用于油或生物燃料行业的高含量油或醇。
本发明还提供了植物的改良部分。植物部分包括但不限于叶、茎、根、块茎、种子、胚乳、胚珠和花粉。本文设想的植物部分可以是可存活的、不可存活的、可再生的和/或不可再生的。
本文还涵盖了提供根据本发明的方法产生的植物细胞和植物。通过传统育种方法产生的包含遗传修饰的植物的配子、种子、胚胎(合子或体细胞)、子代或杂种也包括在本发明的范围内。此类植物可包含插入或代替靶序列的异源或外源DNA序列。另选地,此类植物可在一个或多个核苷酸中仅包含改变(突变、缺失、插入、取代)。因此,此类植物与它们的祖先植物的不同之处将仅在于存在特定修饰。
在本发明的一个实施方案中,使用Cas13b系统例如通过对细菌、真菌或病毒引起的病害产生抗性来工程化病原体抗性植物。在某些实施方案中,可以通过工程化作物以产生将被害虫摄入从而导致其死亡的Cas13b系统来实现病原体抗性。在本发明的一个实施方案中,使用Cas13b系统来工程化非生物胁迫耐受性。在另一个实施方案中,使用Cas13b系统来工程化干旱胁迫耐受性或盐胁迫耐受性或者冷胁迫耐受性或热胁迫耐受性。Younis等人2014,Int.J.Biol.Sci.10;1150综述了植物育种方法的潜在靶标,所有这些方法都可以通过使用本文所述的Cas13b系统进行修正或改进。一些非限制性靶作物包括水稻(Oryzasativa L)、欧洲李(Prunus domestica L)、陆地棉(Gossypium hirsutum)、黄花烟草(Nicotiana rustica)、玉米(Zea mays)、紫花苜蓿(Medicago sativa)、本氏烟草(Nicotiana benthamiana)和拟南芥。
在本发明的一个实施方案中,使用Cas13b系统来管理作物虫害。例如,可以例如使用病毒载体将在作物虫害中可操作的Cas13b系统从植物宿主表达出来或直接转移到靶标。
在一个实施方案中,本发明提供了一种从杂合非人类起始生物有效产生纯合生物的方法。在一个实施方案中,本发明用于植物育种。在另一个实施方案中,本发明用于动物育种。在此类实施方案中,通过干扰参与双链断裂、染色体配对和/或链交换的至少一种靶基因来阻止或抑制重组,从而制备纯合生物,诸如植物或动物。
Cas13b蛋白在优化的功能性RNA靶向系统中的应用
在一方面,本发明提供了一种用于将功能性组分特异性递送到RNA环境的系统。这可以使用包含本发明的允许将不同组分特异性靶向RNA的RNA靶向效应蛋白的CRISPR系统来确保。更具体地,此类组分包括激活子或阻遏子,诸如RNA翻译、降解等的激活子或阻遏子。该系统的应用在本文其他地方描述。
根据一个方面,本发明提供了一种非天然存在的或工程化的组合物,其包含向导RNA,所述向导RNA包含能够与细胞中目标基因组基因座中的靶序列杂交的指导序列,其中通过插入与衔接蛋白结合的一个或多个不同的RNA序列来对所述向导RNA进行修饰。在特定的实施方案中,RNA序列可与两个或更多个衔接蛋白(例如,适配体)结合,并且其中每个衔接蛋白与一个或多个功能结构域缔合。表明本文所述的Cas13b酶的向导RNA可以对指导序列进行修饰。在特定的实施方案中,通过在正向重复序列的5'、正向重复序列内或正向重复序列的3'插入一个或多个不同的RNA序列来对向导RNA进行修饰。当存在一个以上的功能结构域时,这些功能结构域可以相同或不同,例如两个功能结构域相同,或两个功能结构域的激活子或阻遏子不同。在一方面,本发明提供了本文讨论的组合物,其中一个或多个功能结构域附接到RNA靶向酶,使得在与靶RNA结合时,该功能结构域处于允许该功能结构域以其属性功能起作用的空间取向;在一方面,本发明提供了本文讨论的组合物,其中该组合物包含具有至少三个功能结构域的CRISPR-Cas复合物,至少一个功能结构域与RNA靶向酶缔合,并且至少两个功能结构域与gRNA缔合。
因此,在一方面,本发明提供了一种非天然存在的或工程化的CRISPR-Cas13b复合组合物,其包含本文讨论的向导RNA和作为RNA靶向酶的Cas13b,其中任选地RNA靶向酶包含至少一个突变,使得RNA靶向酶的核酸酶活性不超过不具有该至少一个突变的酶的5%,并且任选地一个或多个包含至少一个或多个核定位序列。在特定的实施方案中,另外或另选地对向导RNA进行修饰,以便仍然确保RNA靶向酶的结合,但是防止被RNA靶向酶裂解(如本文其他地方详述)。
在特定的实施方案中,RNA靶向酶是与不具有至少一个突变的Cas13b酶相比,其核酸酶活性降低至少97%或100%的Cas13b酶。在一方面,本发明提供了本文讨论的组合物,其中Cas13b酶包含两个或更多个突变,如本文另外讨论。
在特定的实施方案中,提供了一种上文所述的包含两个或更多个功能结构域的RNA靶向系统。在特定的实施方案中,两个或更多个功能结构域是异源功能结构域。在特定的实施方案中,该系统包含衔接蛋白,其是包含功能结构域的融合蛋白,该融合蛋白任选地包含衔接蛋白和功能结构域之间的接头。在特定的实施方案中,接头包括GlySer接头。另外或另选地,一个或多个功能结构域通过接头、任选地是GlySer接头附接到RNA效应蛋白。在特定的实施方案中,一个或多个功能结构域通过一个或两个HEPN结构域附接到RNA靶向酶。
在一方面,本发明提供了本文讨论的组合物,其中与衔接蛋白或RNA靶向酶缔合的一个或多个功能结构域是能够激活或阻遏RNA翻译的结构域。在一方面,本发明提供了本文讨论的组合物,其中与衔接蛋白缔合的一个或多个功能结构域中的至少一个具有一种或多种活性,包括甲基化酶活性、脱甲基酶活性、转录激活活性、转录阻遏活性、转录释放因子活性、组蛋白修饰活性、DNA整合活性、RNA裂解活性、DNA裂解活性或核酸结合活性,或者分子开关活性或化学诱导性或光诱导性。
在一方面,本发明提供了本文讨论的组合物,其包含适配体序列。在特定的实施方案中,适配体序列是对同一衔接蛋白具有特异性的两个或更多个适配体序列。在一方面,本发明提供了本文讨论的组合物,其中适体序列是对不同衔接蛋白具有特异性的两个或更多个适配体序列。在一方面,本发明提供了本文讨论的组合物,其中衔接蛋白包括MS2、PP7、Qβ、F2、GA、fr、JP501、M12、R17、BZ13、JP34、JP500、KU1、M11、MX1、TW18、VK、SP、FI、ID2、NL95、TW19、AP205、φCb5、φCb8r、φCb12r、φCb23r、7s、PRR1。因此,在特定的实施方案中,适配体选自与上述任何衔接蛋白特异性结合的结合蛋白。在一方面,本发明提供了本文讨论的组合物,其中细胞是真核细胞。在一方面,本发明提供了本文讨论的组合物,其中真核细胞是哺乳动物细胞、植物细胞或酵母细胞,由此哺乳动物细胞任选地是小鼠细胞。在一方面,本发明提供了本文讨论的组合物,其中哺乳动物细胞是人类细胞。
在一方面,本发明提供了本文上面讨论的组合物,其中存在一种以上的gRNA,并且这些gRNA靶向不同的序列,由此当使用组合物时,存在多重化。在在一方面,本发明提供了一种组合物,其中存在一种以上的gRNA,通过插入与一个或多个衔接蛋白结合的一个或多个不同的RNA序列来对这些gRNA进行修饰。
在一方面,本发明提供了本文讨论的组合物,其中存在与一个或多个功能结构域缔合的一个或多个衔接蛋白,并且这些衔接蛋白与插入向导RNA中的不同RNA序列结合。
在一方面,本发明提供了本文讨论的组合物,其中将向导RNA修饰为具有至少一个非编码功能环;例如,其中至少一个非编码功能环是阻遏性的;例如,其中至少一个非编码功能环包含Alu。
在一方面,本发明提供了一种用于修饰基因表达的方法,其包括向宿主施用本文讨论的一种或多种组合物或者在宿主中体内表达本文讨论的一种或多种组合物。
在一方面,本发明提供了本文讨论的方法,其包括递送所述组合物或编码其的一种或多种核酸分子,其中所述一种或多种核酸分子可操作地连接到一个或多个调控序列并在体内表达。在一方面,本发明提供了本文讨论的方法,其中体内表达是经由慢病毒、腺病毒或AAV进行的。
在一方面,本发明提供了本文所讨论的细胞的哺乳动物细胞系,其中所述细胞系任选地是人类细胞系或小鼠细胞系。在一方面,本发明提供了一种转基因哺乳动物模型、任选地是小鼠,其中用本文讨论的组合物对该模型进行了转化,或者该模型是所述转化体的子代。
在一方面,本发明提供了编码向导RNA或RNA靶向CRISPR-Cas复合物或本文讨论的组合物的核酸分子。在一方面,本发明提供了一种载体,其包含:编码向导RNA(gRNA)的核酸分子,所述向导RNA包含能够与细胞中目标基因组基因座中的靶序列杂交的指导序列,其中通过插入与两个或更多个衔接蛋白结合的一个或多个不同的RNA序列来对所述gRNA的正向重复序列进行修饰,并且其中每个衔接蛋白与一个或多个功能结构域缔合;或者,其中将所述gRNA修饰为具有至少一个非编码功能环。在一方面,本发明提供了包含编码以下物质的一种或多种核酸分子的一个或多个载体:包含本文讨论的gRNA的非天然存在的或工程化的CRISPR-Cas复合组合物,以及RNA靶向酶,其中任选地RNA靶向酶包括至少一个突变,使得RNA靶向酶的核酸酶活性不超过不具有该至少一个突变的RNA靶向酶的5%,并且任选地一个或多个包含至少一个或多个核定位序列。在一方面,载体还可以包含在真核细胞中可操作的一个或多个调控元件,这些调控元件可操作地连接到编码向导RNA(gRNA)的核酸分子和/或编码RNA靶向酶的核酸分子和/或一个或多个任选的核定位序列。
在一方面,本发明提供了一种试剂盒,其包含本文上面所述的一种或多种组分。在一些实施方案中,该试剂盒包含如上所述的载体系统和使用该试剂盒的说明书。
在一方面,本发明提供了一种筛选功能获得(GOF)或功能丧失(LOF)或者用于筛选非编码RNA或潜在调控区(例如,增强子、阻遏子)的方法,其包括含有或表达RNA靶向酶的本文讨论的或细胞系本文讨论的模型的细胞并将本文讨论的组合物引入细胞系或模型的细胞中,由此gRNA包括激活子或阻遏子,以及分别关于所引入的gRNA包括激活子的那些细胞或关于所引入的gRNA包括阻遏子的那些细胞监测GOF或LOF。
在一方面,本发明提供了一种非天然存在的或工程化的组合物的文库,每种组合物包含:RNA靶向CRISPR向导RNA(gRNA),所述向导RNA包含能够与细胞中的目标靶RNA序列杂交;RNA靶向酶,其中RNA靶向酶包含至少一个突变,使得RNA靶向酶的核酸酶活性不超过不具有该至少一个突变的RNA靶向酶的5%,其中通过插入与一个或多个衔接蛋白结合的一个或多个不同的RNA序列来对gRNA进行修饰,并且其中衔接蛋白与一个或多个功能结构域缔合,其中组合物包含一个或多个或者两个或更多个衔接蛋白,其中每个蛋白与一个或多个功能结构域缔合,其中gRNA包含全基因组文库,该文库包含多个RNA靶向向导RNA(gRNA)。在一方面,本发明提供了本文讨论的文库,其中与不具有至少一个突变的RNA靶向酶相比,靶向RNA的RNA靶向酶的核酸酶活性降低了至少97%或100%。在一方面,本发明提供了本文讨论的文库,其中衔接蛋白是包含功能结构域的融合蛋白。在一方面,本发明提供了本文讨论的文库,其中没有通过插入与一个或两个或更多个衔接蛋白结合的一个或多个不同的RNA序列来对gRNA进行修饰。在一方面,本发明提供了本文讨论的文库,其中一个或两个或更多个功能结构域与RNA靶向酶缔合。在一方面,本发明提供了本文讨论的文库,其中细胞的细胞群是真核细胞群。在一方面,本发明提供了本文讨论的文库,其中真核细胞是哺乳动物细胞、植物细胞或酵母细胞。在一方面,本发明提供了本文讨论的文库,其中哺乳动物细胞是人类细胞。在一方面,本发明提供了本文讨论的文库,其中细胞群是胚胎干(ES)细胞群。
在一方面,本发明提供了本文讨论的文库,其中靶向的是约100个或更多个RNA序列。在一方面,本发明提供了本文讨论的文库,其中靶向的是约1000个或更多个RNA序列。在一方面,本发明提供了本文讨论的文库,其中靶向的是约20,000个或更多个序列。在一方面,本发明提供了本文讨论的文库,其中靶向的是整个转录组。在一方面,本发明提供了本文讨论的文库,其中靶向的是针对相关或期望途径的一组靶序列。在一方面,本发明提供了本文讨论的文库,其中途径是免疫途径。在一方面,本发明提供了本文讨论的文库,其中途径是细胞分裂途径。
在一方面,本发明提供了产生包含具有经修饰的表达的基因的模型真核细胞的方法。在一些实施方案中,疾病基因是与罹患或发展疾病的风险增加相关的任何基因。在一些实施方案中,所述方法包括(a)将编码上文所述的系统的组分的一个或多个载体引入真核细胞中,以及(b)使CRISPR复合物与靶多核苷酸结合,以便修饰基因的表达,从而产生包含经修饰的基因表达的模型真核细胞。
本文提供的结构信息允许探询向导RNA与靶RNA和RNA靶向酶的相互作用,从而允许对向导RNA结构进行工程化或改变以优化整个RNA靶向CRISPR-Cas系统的功能。例如,可通过插入可以与RNA结合的衔接蛋白来延伸向导RNA,而不会与RNA靶向蛋白发生冲突。这些衔接蛋白还可以募集包含一个或多个功能结构域的效应蛋白或融合物。
本发明的一个方面是将上述元件包含在单一组合物中或包含在单独的组合物中。可将这些组合物有利地施加给宿主以在基因组水平上引发功能作用。
技术人员将理解,对向导RNA进行允许衔接体+功能结构域结合但不能正确定位衔接体+功能结构域(例如,由于CRISPR复合物的三维结构内的位阻现象)的修饰是不希望的修饰。可通过在正向重复序列的5'、正向重复序列内或正向重复序列的3'插入一个或多个不同的RNA序列来对一个或多个经修饰的向导RNA进行修饰。
可将经修饰的向导RNA、失活的RNA靶向酶(具有或不具有功能结构域)以及具有一个或多个功能结构域的结合蛋白各自单独地包含在组合物中并且单独地或共同地施用给宿主。另选地,可以单一组合物的形式提供这些组分以便施用给宿主。可经由技术人员已知的或本文所述的用于递送到宿主的病毒载体(例如,慢病毒载体、腺病毒载体、AAV载体)进行对宿主的施用。如本文所述,使用不同的选择性标记(例如,用于慢病毒gRNA选择)和gRNA浓度(例如,取决于是否使用多个gRNA)对引发改善的作用可能有利。
使用所提供的组合物,本领域技术人员可以有利地且特异性地靶向具有相同或不同功能结构域的单个或多个基因座,从而引发一个或多个基因组事件。这些组合物可用于各种方法中,用于在细胞中的文库中进行筛选和在体内进行功能建模(例如,lincRNA的基因激活和功能的鉴定;功能获得建模;功能丧失建模;使用本发明的组合物建立细胞系和转基因动物以用于优化和筛选目的)。
本发明包括使用本发明的组合物来建立和利用条件型或诱导型CRISPR RNA靶向事件。(参见例如Platt等人,Cell(2014),http://dx.doi.org/10.1016/j.cell.2014.09.014;或本文引用的PCT专利出版物,诸如WO 2014/093622(PCT/US2013/074667),不认为这些文献先于本发明或本申请)。例如,靶细胞条件性地或诱导性地包含RNA靶向CRISPR酶(例如,以Cre依赖性构建体的形式)和/或条件性地或诱导性地包含衔接蛋白,并且在表达引入靶细胞中的载体时,该载体在靶细胞中表达的是诱导或产生s RNA靶向酶表达和/或衔接体表达的条件。通过与形成CRISPR复合物的已知方法一起应用本发明的教导和组合物,受功能结构域影响的诱导型基因表达也是本发明的一个方面。另选地,衔接蛋白可作为条件型或诱导型元件与条件型或诱导型s RNA靶向酶一起提供,以便提供有效模型用于筛选目的,这对于大量应用有利地仅需要最小限度的设计和施用特异性gRNA。
根据本发明的包含死亡指导序列的向导RNA
在一方面,本发明提供了以下述方式进行修饰的指导序列:允许形成CRISPR复合物并成功与靶标结合,而同时不允许具有成功的核酸酶活性(即,没有核酸酶活性/没有插入缺失活性)。出于解释目的,这类经修饰的指导序列被称为“死亡指导物”或“死亡指导序”。就核酸酶活性而言,可以认为这些死亡指导物或死亡指导序列无催化活性或无构象活性。实际上,就促进催化活性或区分在靶和脱靶结合活性的能力而言,死亡指导序列可能不足以参与生产性碱基配对。简要地说,该测定涉及合成CRISPR靶RNA以及包含与靶RNA错配的向导RNA,将这些物质与RNA靶向酶结合并基于由裂解产物产生的条带的存在基于凝胶分析裂解,并且基于相对条带强度定量裂解。
因此,在相关方面,本发明提供了一种非天然存在的或工程化的组合物RNA靶向CRISPR-Cas系统,其包含本文所述的功能RNA靶向系统以及向导RNA(gRNA),其中gRNA包含死亡指导序列,由此gRNA能够与靶序列杂交,使得RNA靶向CRISPR-Cas系统指向细胞中的目标基因组基因座,而没有系统的非突变RNA靶向酶的可检测RNA裂解活性。应当理解,根据本发明的本文其他地方所述的任何gRNA均可用作下文所述的包含死亡指导序列的死亡gRNA/gRNA。本文其他地方所述的任何方法、产品、组合物和用途均同样适用于下文进一步详述的包含死亡指导序列的死亡gRNA/gRNA。通过进一步指导,提供了以下特定方面和实施方案。
可通过任何合适的测定来评估死亡指导序列指导CRISPR复合物与RNA靶序列进行序列特异性结合的能力。例如,可诸如通过用编码CRISPR序列的组分的载体进行转染,然后对靶序列内的优先裂解进行评估,将足以形成CRISPR复合物的CRISPR系统组分(包括待测试的死亡指导序列)提供给具有对应靶序列的宿主细胞。例如,可通过提供靶序列、CRISPR复合物的组分(包括待测试的死亡指导序列和不同于该测试死亡指导序列的对照指导序列),并比较测试指导序列和对照指导序列反应之间在靶序列处的结合或裂解速率,在试管中对靶RNA多核苷酸序列的裂解进行评估。其他测定也是可能的,并且是本领域技术人员可以想到的。可选择死亡指导序列以靶向任何靶序列。在一些实施方案中,靶序列是细胞基因组内的序列。
如本文进一步解释,多种结构参数允许适当的框架到达这类死亡指导物处。死亡指导序列通常比引起活性RNA裂解的相应指导序列短。在特定的实施方案中,死亡指导物比指向该死亡指导序列的相应指导物短5%、10%、20%、30%、40%、50%。
如下文解释且在本领域已知,gRNA-RNA靶向特异性的一个方面是将适当地与这类指导物连接的正向重复序列。具体地,这意味着正向重复序列的设计取决于RNA靶向酶的来源。因此,可用于经验证的死亡指导序列的结构数据可用于设计Cas13b特异性等效物。例如,两个或更多个Cas13b效应蛋白的直系同源核酸酶结构域HEPN之间的结构相似性可用于转移设计等效的死亡指导物。因此,可在长度和序列上对本文的死亡指导序列进行适当地修饰以反映此类Cas13b特异性等效物,从而允许形成CRISPR复合物并成功与靶RNA结合,而同时不允许具有成功的核酸酶活性。
在本文以及现有技术背景中使用死亡指导物为体外、离体和体内应用中的网络生物学和/或系统生物学提供了令人惊讶且出乎意料的平台,从而允许多重基因靶向,特别是双向多重基因靶向。在使用死亡指导物之前,处理多个靶标一直具有挑战性并且在一些情况下是不可能的。通过使用死亡指导物,可例如在同一细胞中、在同一动物体内或在同一患者体内处理多个靶标,因此处理多种活性。这种多重化可同时发生或交错发生,持续希望的时间段。
例如,死亡指导物允许使用gRNA作为基因靶向的手段,而最终不具有核酸酶活性,并且同时提供激活或阻遏的指导手段。可按一定方式将包含死亡指导物的向导RNA修饰为还包括允许激活或阻遏基因活性的元件,特别是本文其他地方所述的允许功能性放置基因效应物(例如,基因活性的激活子或阻遏子)的蛋白衔接体(例如,适配体)。一个实例是掺入适配体,如在本文中和在现有技术中所解释。通过工程化包含死亡指导物的gRNA以掺入蛋白质相互作用的适配体(Konermann等人,“Genome-scale transcription activation byan engineered CRISPR-Cas9 complex,”doi:10.1038/nature14136,通过引用并入本文),可组装多个不同的效应结构域。可在天然过程之后对其进行建模。
一般规定
在一方面,本发明提供了一种核酸结合系统。RNA与互补探针进行原位杂交是一项强大的技术。通常,使用荧光DNA寡核苷酸通过杂交来检测核酸。已经通过某些修饰诸如锁核酸(LNA)提高了效率,但是仍然需要有效且通用的替代方案。本发明提供了一种用于原位杂交的有效的可调整系统。
在本发明的实施方案中,术语指导序列和向导RNA可互换使用,如在前文引用的文献诸如WO 2014/093622(PCT/US2013/074667)中。一般来讲,指导序列是与靶多核苷酸序列具有足够互补性以与靶序列杂交并且指导CRISPR复合物与靶序列进行序列特异性结合的任何多核苷酸序列。在一些实施方案中,当使用合适的比对算法进行最佳比对时,指导序列与其对应靶序列之间的互补程度为约或大于约50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更高。可使用用于比对序列的任何合适的算法来确定最佳比对,这些算法的非限制性实例包括Smith-Waterman算法、Needleman-Wunsch算法、基于Burrows-Wheeler变换的算法(例如,Burrows Wheeler Aligner)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies;可从www.novocraft.com获取)、ELAND(Illumina,San Diego,CA)、SOAP(可从soap.genomics.org.cn获取)和Maq(可从maq.sourceforge.net获取)。在一些实施方案中,指导序列的长度为约或大于约5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50、75个或更多的核苷酸。在一些实施方案中,指导序列的长度小于约75、50、45、40、35、30、25、20、15、12个或更少的核苷酸。优选地,指导序列的长度为10-30个核苷酸。可通过任何合适的测定来评估指导序列指导CRISPR复合物与靶序列进行序列特异性结合的能力。例如,可诸如通过用编码CRISPR序列的组分的载体进行转染,然后诸如通过本文所述的Surveyor测定对靶序列内的优先裂解进行评估,将足以形成CRISPR复合物的CRISPR系统组分(包括待测试的指导序列)提供给具有对应靶序列的宿主细胞。类似地,可通过提供靶序列、CRISPR复合物的组分(包括待测试的指导序列和不同于该测试指导序列的对照指导序列),并比较测试指导序列和对照指导序列反应之间在靶序列处的结合或裂解速率,在试管中对靶多核苷酸序列的裂解进行评估。其他测定也是可能的,并且是本领域技术人员可以想到的。可选择指导序列以靶向任何靶序列。在一些实施方案中,靶序列是细胞基因组内的序列。示例性靶序列包括在靶基因组中独一无二的序列。
一般来讲,在整个说明书中,术语“载体”是指能够转运已与其连接的另一核酸的核酸分子。载体包括但不限于单链、双链或部分双链的核酸分子;包含一个或多个自由端、不包含自由端(例如,呈环状)的核酸分子;包含DNA、RNA或两者的核酸分子;以及本领域已知的其他多核苷酸变体。载体的一种类型是“质粒”,是指环状双链DNA环,可以诸如通过标准分子克隆技术在其中插入其他DNA片段。载体的另一种类型是病毒载体,其中病毒来源的DNA或RNA序列存在于该载体中以包装到病毒(例如,逆转录病毒、复制缺陷型逆转录病毒、腺病毒、复制缺陷型腺病毒和腺相关病毒)中。病毒载体还包括病毒携带的用于转染到宿主细胞中的多核苷酸。某些载体能够在引入它们的宿主细胞中自主复制(例如,具有细菌复制起点的细菌载体和游离型哺乳动物载体)。其他载体(例如,非游离型哺乳动物载体)在引入宿主细胞后整合到宿主细胞的基因组中,从而与宿主基因组一起复制。此外,某些载体能够指导与其可操作地连接的基因表达。这类载体在本文中称为“表达载体”。用于并导致在真核细胞中表达的载体在本文中可以称为“真核表达载体”。在重组DNA技术中实用的通用表达载体通常是质粒的形式。
重组表达载体可以以适合在宿主细胞中表达本发明的核酸的形式包含该核酸,这意味着重组表达载体包括与要表达的核酸序列可操作地连接的一个或多个调控元件,可根据要用于表达的宿主细胞来选择这些调控元件。在重组表达载体内,“可操作地连接”是指目标核苷酸序列以允许核苷酸序列表达的方式(例如,在体外转录/翻译系统中,或当将载体引入宿主细胞时,在宿主细胞中)与一个或多个调控元件连接。
术语“调控元件”是指包括启动子、增强子、内部核糖体进入位点(IRES)和其他表达控制元件(例如,转录终止信号,诸如聚腺苷酸化信号和poly-U序列)。例如,在Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,SanDiego,Calif.(1990)中描述了这类调控元件。调控元件包括指导核苷酸序列在许多类型的宿主细胞中指导组成性表达的调控元件以及指导核苷酸序列(例如,组织特异性调控序列)仅在某些宿主细胞中表达的调控元件。组织特异性启动子可指导主要在所需的目标组织中表达,诸如肌肉、神经元、骨骼、皮肤、血液、特定器官(例如,肝脏、胰腺)或特定细胞类型(例如,淋巴细胞)。调控元件也可以时间依赖性方式指导表达,例如以细胞周期依赖性或发育阶段依赖性方式,这些方式可以是或也可以不是组织或细胞类型特异性的。在一些实施方案中,载体包含一个或多个pol III启动子(例如,1、2、3、4、5个或更多个pol III启动子)、一个或多个pol II启动子(例如,1、2、3、4、5个或更多个pol II启动子)、一个或多个pol I启动子(例如,1、2、3、4、5个或更多个pol I启动子)或其组合。pol III启动子的实例包括但不限于U6和H1启动子。pol II启动子的实例包括但不限于逆转录病毒劳斯肉瘤病毒(RSV)LTR启动子(任选地带有RSV增强子)、巨细胞病毒(CMV)启动子(任选地带有CMV增强子)[参见例如Boshart等人,Cell,41:521-530(1985)]、SV40启动子、二氢叶酸还原酶启动子、β-肌动蛋白启动子、磷酸甘油激酶(PGK)启动子和EF1α启动子。术语“调控元件”还包括增强子元件,诸如WPRE;CMV增强子;HTLV-I的LTR中的R-U5'片段(Mol.Cell.Biol.,第8(1)卷,第466-472页,1988);SV40增强子;以及兔β-珠蛋白的外显子2和3之间的内含子序列(Proc.Natl.Acad.Sci.USA.,第78(3)卷,第1527-31页,1981)。本领域技术人员应当理解,表达载体的设计可以取决于诸如要转化的宿主细胞的选择、所需的表达水平等因素。可以将载体引入宿主细胞,从而产生由本文所述的核酸编码的转录物、蛋白质或肽,包括融合蛋白或肽(例如,成簇规律间隔短回文重复序列(CRISPR)转录物、蛋白质、酶、其突变体形式、其融合蛋白等)。
有利的载体包括慢病毒和腺相关病毒,并且也可以针对靶向特定类型的细胞来选择这类载体的类型。
如本文所用,V型或VI型CRISPR-Cas基因座效应蛋白的术语“crRNA”或“向导RNA”或“单个向导RNA”或“sgRNA”或“一种或多种核酸组分”包含与靶核酸序列具有足够互补性以与靶核酸序列杂交并且指导核酸靶向复合物与靶核酸序列进行序列特异性结合的任何多核苷酸序列。
在某些实施方案中,本文所提供的CRISPR系统可以利用包含指导序列的crRNA或类似多核苷酸,其中多核苷酸是RNA、DNA或者RNA和DNA的混合物,并且/或者其中多核苷酸包含一种或多种核苷酸类似物。该序列可以包含任何结构,包括但不限于天然crRNA的结构,诸如凸起、发夹或茎环结构。在某些实施方案中,包含指导序列的多核苷酸与第二多核苷酸序列形成双链体,第二多核苷酸序列可以是RNA或DNA序列。
在某些实施方案中,利用经化学修饰的向导RNA。向导RNA化学修饰的实例包括但不限于在一个或多个末端核苷酸处并入2'-O-甲基(M)、2'-O-甲基3'硫代磷酸酯(MS)或2'-O-甲基3'硫代膦酰基乙酸酯(MSP)。与未修饰的向导RNA相比,此类经化学修饰的向导RNA的稳定性和活性可能有所增加,但是无法预测在靶和脱靶特异性。(参见Hendel,2015,NatBiotechnol.33(9):985-9,doi:10.1038/nbt.3290,2015年6月29日在线发布)。经化学修饰的向导RNA还包括但不限于具有硫代磷酸酯键以及在核糖环的2'和4'碳之间包含亚甲基桥的锁核酸(LNA)核苷酸的RNA。
在一些实施方案中,当使用合适的比对算法进行最佳比对时,互补程度为约或大于约50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更高。可使用用于比对序列的任何合适的算法来确定最佳比对,这些算法的非限制性实例包括Smith-Waterman算法、Needleman-Wunsch算法、基于Burrows-Wheeler变换的算法(例如,Burrows WheelerAligner)、ClustalW、Clustal X、BLAT、Novoalign(Novocraft Technologies;可从www.novocraft.com获取)、ELAND(Illumina,San Diego,CA)、SOAP(可从soap.genomics.org.cn获取)和Maq(可从maq.sourceforge.net获取)。可通过任何合适的测定来评估指导序列(在核酸靶向向导RNA内)指导核酸靶向复合物与靶核酸序列进行序列特异性结合的能力。例如,可诸如通过用编码核酸靶向复合物的组分的载体进行转染,然后诸如通过本文所述的Surveyor测定对靶核酸序列内的优先靶向(例如,裂解)进行评估,将足以形成核酸靶向复合物的核酸靶向CRISPR系统组分(包括待测试的指导序列)提供给具有对应靶核酸序列的宿主细胞。类似地,可通过提供靶核酸序列、核酸靶向复合物的组分(包括待测试的指导序列和不同于该测试指导序列的对照指导序列),并比较测试指导序列和对照指导序列反应之间在靶序列处的结合或裂解速率,在试管中对靶核酸序列的裂解进行评估。其他测定也是可能的,并且是本领域技术人员可以想到的。可选择指导序列并因此可选择核酸靶向向导RNA,以靶向任何靶核酸序列。靶序列可以是DNA。靶序列可以是任何RNA序列。在一些实施方案中,靶序列可以是选自信使RNA(mRNA)、前mRNA、核糖体RNA(rRNA)、转移RNA(tRNA)、微RNA(miRNA)、小干扰RNA(siRNA)、小核RNA(snRNA)、小核仁RNA(snoRNA)、双链RNA(dsRNA)、非编码RNA(ncRNA)、长非编码RNA(lncRNA)和小胞质RNA(scRNA)的RNA分子内的序列。在一些优选的实施方案中,靶序列可以是选自mRNA、前mRNA和rRNA的RNA分子内的序列。在一些优选的实施方案中,靶序列可以是选自ncRNA和lncRNA的RNA分子内的序列。在一些更优选的实施方案中,靶序列可以是mRNA分子或前mRNA分子内的序列。
在一些实施方案中,选择核酸靶向向导RNA以降低RNA靶向向导RNA内的二级结构程度。在一些实施方案中,当进行最佳折叠时,核酸靶向向导RNA的约或小于约75%、50%、40%、30%、25%、20%、15%、10%、5%、1%或更少的核苷酸参与自身互补碱基配对。最佳折叠可通过任何合适的多核苷酸折叠算法来确定。一些程序基于计算最小吉布斯自由能。这种算法的一个实例是mFold,如Zuker和Stiegler(Nucleic Acids Res.9(1981),133-148)所述。折叠算法的另一个实例是在线网络服务器RNAfold,由维也纳大学(Universityof Vienna)理论化学研究所开发,使用质心结构预测算法(参见例如A.R.Gruber等人,2008,Cell 106(1):23-24;以及PA Carr和GM Church,2009,Nature Biotechnology 27(12):1151-62)。
在某些实施方案中,向导RNA或crRNA可包含正向重复(DR)序列以及指导序列或间隔序列、基本上由所述序列组成或由所述序列组成。在某些实施方案中,向导RNA或crRNA可包含与指导序列或间隔序列融合或连接的正向重复序列、基本上由所述序列组成或由所述序列组成。在某些实施方案中,正向重复序列可位于指导序列或间隔序列的上游(即5')。在其他实施方案中,正向重复序列可位于指导序列或间隔序列的下游(即3')。
在某些实施方案中,crRNA包含茎环、优选单个茎环。在某些实施方案中,正向重复序列形成茎环、优选单个茎环。
在某些实施方案中,向导RNA的间隔序列长度为15至35nt。在某些实施方案中,向导RNA的间隔序列长度为至少15个核苷酸,优选至少18nt,诸如至少19、20、21、22nt或更多。在某些实施方案中,间隔序列长度为15至17nt(例如,15、16或17nt)、17至20nt(例如,17、18、19或20nt)、20至24nt(例如,20、21、22、23或24nt)、23至25nt(例如,23、24或25nt)、24至27nt(例如,24、25、26或27nt)、27至30nt(例如,27、28、29或30nt)、30至35nt(例如,30、31、32、33、34或35nt)或35nt或更长。
为了最大程度地降低毒性和脱靶效应,控制所递送的RNA靶向向导RNA的浓度非常重要。可以通过在细胞或非人类真核生物动物模型中测试不同的浓度并且使用深度测序来分析潜在脱靶基因组基因座处的修饰程度来确定核酸靶向向导RNA的最佳浓度。对于体内递送,应选择提供最高在靶修饰水平同时最小化脱靶修饰水平的浓度。RNA靶向系统有利地来源于CRISPR-Cas13b系统。在一些实施方案中,RNA靶向系统的一个或多个元件来源于包含本文所讨论的Cas13b效应蛋白系统的内源RNA靶向系统的特定生物。
术语“同源物”(在本文中也称为“直系同源物”)和“同系物”在本领域中是众所周知的。通过进一步指导,本文所用的蛋白质的“同系物”是同一物种的蛋白质,其执行与该蛋白质的同系物相同或相似的功能。同系蛋白质可以但不必在结构上相关,或仅在部分结构上相关。本文所用的蛋白质的“同源物”是不同物种的蛋白质,其执行与该蛋白质的同源物相同或相似的功能。同源蛋白质可以但不必在结构上相关,或仅在部分结构上相关。在特定的实施方案中,本文所提及的Cas13b蛋白的同系物或同源物与图1所阐述的Cas13b效应蛋白具有至少50%、至少60%、至少70%、至少80%、更优选至少85%、甚至更优选至少90%诸如至少95%的序列同源性或同一性。
应当理解,可将本文所述的任何功能工程化到来自其他直系同源物的CRISPR酶中,包括包含来自多个直系同源物的片段的嵌合酶。这类直系同源物的实例在本文其他地方描述。因此,嵌合酶可包含生物的CRISPR酶直系同源物的片段,所述生物包括但不限于伯杰菌属、普雷沃菌属、卟啉单胞菌属、拟杆菌属、另枝菌属、里氏杆菌属、香味菌属、黄杆菌属、二氧化碳噬纤维菌属、金黄杆菌属(Chryseobacterium)、褐指藻杆菌属(Phaeodactylibacter)、紫单胞菌属(Paludibacter)或冷弯菌属(Psychroflexus)。嵌合酶可以包含第一片段和第二片段以及所述片段,其中第一片段和第二片段中的一个具有或来自第一物种的Cas13b效应蛋白(例如,图1中所列出的Cas13b效应蛋白),并且另一个片段具有或来自不同物种的CRISPR酶直系同源物。
在本发明的一个实施方案中,提供了以下效应蛋白:其包含与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属COT-052OH4946 Cas13b(登录号WP_039428968)、化脓拟杆菌Cas13b(登录号WP_034542281)、鸭疫里默氏杆菌Cas13b(登录号WP_004919755)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的氨基酸序列。最优选的效应蛋白是与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属COT-052OH4946 Cas13b(登录号WP_039428968)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白;并且最特别优选的是与口腔卟啉单胞菌Cas13b(登录号WP_039434803)或普雷沃菌属P5-125 Cas13b(登录号WP_044065294)的野生型Cas13b效应蛋白具有至少50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大的同源性或同一性的效应蛋白。
已经发现许多Cas13b直系同源物的特征是共有基序。因此,在特定的实施方案中,该Cas13b效应蛋白是包含与由DKHXFGAFLNLARHN(SEQ ID NO:1)、GLLFFVSLFLDK(SEQ IDNO:2)、SKIXGFK(SEQ ID NO:3)、DMLNELXRCP(SEQ ID NO:4)、RXZDRFPYFALRYXD(SEQ ID NO:5)和LRFQVBLGXY(SEQ ID NO:6)组成的序列中的一个或多个具有至少70%序列同一性的序列的蛋白质。在另外的特定实施方案中,该Cas13b效应蛋白包含与这些序列中的至少2个、3个、4个、5个或全部6个具有至少70%序列同一性的序列。在另外的特定实施方案中,与这些序列的序列同一性为至少75%、80%、85%、90%、95%或100%。在另外的特定实施方案中,该Cas13b效应蛋白是包含与GLLFFVSLFL(SEQ ID NO:7)和RHQXRFPYF(SEQ ID NO:8)具有100%序列同一性的序列的蛋白。在另外的特定实施方案中,该Cas13b效应物是包含与RHQDRFPY(SEQ ID NO:9)具有100%序列同一性的序列的Cas13b效应蛋白。
在本发明的一个实施方案中,该效应蛋白包含与VI-B型效应蛋白共有序列包括但不限于本文所述的共有序列具有至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更大序列同源性或同一性的氨基酸序列。
在本发明的一个实施方案中,该效应蛋白包含至少一个HEPN结构域,包括但不限于本文所述的HEPN结构域、本领域已知的HEPN结构域以及通过与共有序列和基序比较被识别为HEPN结构域的结构域。在一个非限制性实例中,共有序列可以来源于本文提供的Cas13b直系同源物的序列。
在本发明的一个实施方案中,该效应蛋白包含一个或多个HEPN结构域,这些HEPN结构域包含RxxxxH基序序列。RxxxxH基序序列可以但不限于来自本文所述的HEPN结构域或本领域已知的HEPN结构域。RxxxxH基序序列还包括通过组合两个或更多个HEPN结构域的各部分而产生的基序序列。
在一些实施方案中,该效应蛋白包含两个HEPN结构域。在一些实施方案中,该效应蛋白包含至少一个催化活性HEPN结构域,该HEPN结构域包含RxxxxH基序。在一些实施方案中,该效应蛋白包含两个催化活性HEPN结构域,这些HEPN结构域各自包含RxxxxH基序。在一些实施方案中,该效应蛋白包含至少一个无催化活性HEPN结构域,该HEPN结构域从突变野生型RxxxxH基序的R或H中的至少一个获得。在一些实施方案中,该效应蛋白包含两个无催化活性HEPN结构域,这些HEPN结构域各自从突变野生型RxxxxH基序的R或H中的至少一个获得。
在一个实施方案中,可针对在真核细胞中表达对编码VI-B型RNA靶向效应蛋白的一种或多种核酸分子进行密码子优化。真核生物可以如本文所讨论。一种或多种核酸分子可以被工程化或非天然存在。
在一个实施方案中,VI-B型RNA靶向效应蛋白、特别是Cas13b或其直系同源物或同系物可包含一个或多个突变(因此编码其的一种或多种核酸分子可具有突变)。这些突变可以是人工引入的突变,并且可包括但不限于催化结构域中的一个或多个突变。关于Cas9酶的催化结构域的实例可包括但不限于RuvC I、RuvC II、RuvC III和HNH结构域。关于Cas13b酶的催化结构域的实例可包括但不限于HEPN结构域。
在一个实施方案中,VI-B型蛋白诸如Cas13b或其直系同源物或同系物可包含一个或多个突变。这些突变可以是人工引入的突变,并且可包括但不限于催化结构域中的一个或多个突变。关于Cas酶的催化结构域的实例可包括但不限于HEPN结构域。
在一个实施方案中,VI-B型蛋白诸如Cas13b或其直系同源物或同系物可用作与功能结构域融合或可操作地连接的通用核酸结合蛋白。示例性功能结构域可包括但不限于翻译引发子、翻译激活子、翻译阻遏子、核酸酶,特别是核糖核酸酶、剪接体、珠、光诱导/光控结构域或者化学诱导/化学控制结构域。
在一些实施方案中,未经修饰的核酸靶向效应蛋白可具有裂解活性。在一些实施方案中,RNA靶向效应蛋白可指导一条或两条核酸(DNA或RNA)链在靶序列位置或附近诸如在靶序列内和/或在靶序列的互补序列内或在与靶序列缔合的序列处裂解。在一些实施方案中,核酸靶向Cas蛋白可指导一条或两条DNA或RNA链在距靶序列的第一个或最后一个核苷酸约1、2、3、4、5、6、7、8、9、10、15、20、25、50、100、200、500个或更多个碱基对内裂解。在一些实施方案中,载体编码可相对于对应野生型酶突变的核酸靶向Cas蛋白,使得突变的核酸靶向Cas蛋白缺乏裂解含有靶序列的靶多核苷酸的RNA链的能力。作为另一个实例,可将Cas的两个或更多个催化结构域(例如,HEPN结构域)突变以产生实质上缺乏所有RNA裂解活性的突变Cas。在一些实施方案中,当突变酶的RNA裂解活性为该酶的非突变形式的核酸裂解活性的约不超过25%、10%、5%、1%、0.1%、0.01%或更少时,可认为核酸靶向效应蛋白实质上缺乏所有RNA裂解活性;一个实例可以是当突变形式的核酸裂解活性与非突变形式相比为零或可忽略时。可以参考与来自VI-B型CRISPR系统的具有多个核酸酶结构域的最大核酸酶具有同源性的通用酶类别来鉴定效应蛋白。所谓衍生,申请人是指所衍生的酶在很大程度上与野生型酶具有高度序列同源性,但以本领域已知或本文所述的某种方式对其进行了突变(修饰)。
同样,应当理解,术语“Cas”和“CRISPR酶”以及“CRISPR蛋白”和“Cas蛋白”通常可互换使用,并且在本文的所有提及处类似地是指本申请中进一步描述的新型CRISPR效应蛋白,除非另有明显说明,诸如具体提及Cas9。如上所述,本文所用的许多残基编号是指来自VI型CRISPR基因座的效应蛋白。然而,应该理解,本发明包括更多来自其他微生物物种的效应蛋白。在某些实施方案中,Cas可组成性存在或诱导性存在,或者条件性存在或施用或递送。Cas优化可用于增强功能或开发新功能,一种优化可以产生嵌合Cas蛋白。并且Cas可用作通用核酸结合蛋白。
在一些实施方案中,将驱动核酸靶向系统的一个或多个元件表达的一个或多个载体引入宿主细胞,使得核酸靶向系统的元件的表达指导核酸靶向复合物在一个或多个靶位点处形成。例如,核酸靶向效应酶和核酸靶向向导RNA可以各自可操作地连接到单独载体上的单独调控元件。可以将核酸靶向系统的一种或多种RNA递送到转基因核酸靶向效应蛋白动物或哺乳动物,例如组成性或诱导性或条件性表达核酸靶向效应蛋白的动物或哺乳动物;或者以其他方式表达核酸靶向效应蛋白或诸如通过事先施用编码和体内表达核酸靶向效应蛋白的一个或多个载体而具有含有核酸靶向效应蛋白的细胞的动物或哺乳动物。另选地,可将由相同或不同调控元件表达的两个或更多个元件组合在单个载体中,而一个或多个附加载体提供不包括在第一载体中的核酸靶向系统的任何组分。可将在单个载体中组合的核酸靶向系统元件以任何合适的定向布置,诸如一个元件相对于第二元件(的“上游”)位于5'或相对于第二元件(的“下游”)位于3'。一个元件的编码序列可位于第二元件的编码序列的相同或相反链上,并且以相同或相反的方向定向。在一些实施方案中,单个启动子驱动编码嵌入一个或多个内含子序列内(例如,每个在不同内含子中,两个或更多个在至少一个内含子中,或者全部在单个内含子中)的核酸靶向效应蛋白和核酸靶向向导RNA的转录物的表达。在一些实施方案中,核酸靶向效应蛋白和核酸靶向向导RNA可以可操作地连接到相同启动子并由该启动子表达。用于表达核酸靶向系统的一个或多个元件的递送媒介物、载体、颗粒、纳米颗粒、制剂及其组分如前述文献诸如WO2014/093622(PCT/US2013/074667)中所用。在一些实施方案中,载体包含一个或多个插入位点,诸如限制性核酸内切酶识别序列(也称为“克隆位点”)。在一些实施方案中,一个或多个插入位点(例如,约或大于约1、2、3、4、5、6、7、8、9、10个或更多个插入位点)位于一个或多个载体的一个或多个序列元件的上游和/或下游。在一些实施方案中,载体包含两个或更多个插入位点,以允许在每个位点处插入指导序列。在这种布置中,两个或更多个指导序列可包括单个指导序列的两个或更多个拷贝、两个或更多个不同的指导序列或这些情况的组合。当使用多个不同的指导序列时,单个表达构建体可用于将核酸靶向活性靶向细胞内的多个不同的对应靶序列。例如,单个载体可包含约或大于约1、2、3、4、5、6、7、8、9、10、15、20个或更多个指导序列。在一些实施方案中,可提供约或大于约1、2、3、4、5、6、7、8、9、10个或更多个这类含指导序列的载体,并任选地将其递送到细胞。在一些实施方案中,载体包含与编码核酸靶向效应蛋白的酶编码序列可操作地连接的调控元件。可以分开递送核酸靶向效应蛋白或者一种或多种核酸靶向向导RNA;并且有利地,经由颗粒或纳米颗粒复合物递送这些物质中的至少一种。可以在核酸靶向向导RNA之前递送核酸靶向效应蛋白mRNA,以留出时间表达核酸靶向效应蛋白。可以在施用核酸靶向向导RNA前1-12小时(优选约2-6小时)施用核酸靶向效应蛋白mRNA。另选地,可以一起施用核酸靶向效应蛋白mRNA和核酸靶向向导RNA。有利地,可以在初次施用核酸靶向效应蛋白mRNA+向导RNA后1-12小时(优选约2-6小时)施用第二加强剂量的向导RNA。额外施用核酸靶向效应蛋白mRNA和/或向导RNA可能有助于获得最有效的基因组和/或转录组修饰水平。
在一方面,本发明提供了使用核酸靶向系统的一个或多个元件的方法。本发明的核酸靶向复合物提供了修饰靶RNA的有效手段。本发明的核酸靶向复合物具有广泛的用途,包括修饰(例如,缺失、插入、转运、失活、激活)多种细胞类型中的靶RNA。因此,本发明的核酸靶向复合物在例如基因疗法、药物筛选、疾病诊断和预后中具有广泛的应用。示例性核酸靶向复合物包含与向导RNA复合的RNA靶向效应蛋白,该向导RNA与目标靶基因座内的靶序列杂交。
在一个实施方案中,本发明提供了一种裂解靶RNA的方法。该方法可包括使用与靶RNA结合的核酸靶向复合物并实现对所述靶RNA的裂解来对靶RNA进行修饰。在一个实施方案中,本发明的核酸靶向复合物在被引入细胞中时可在RNA序列中产生断裂(例如,单链断裂或双链断裂)。例如,所述方法可以用于裂解细胞中的疾病RNA。例如,可将包含要整合的序列并侧接上游序列和下游序列的外源RNA模板引入细胞中。上游和下游序列与RNA中整合位点的任一侧具有序列相似性。需要时,供体RNA可以是mRNA。外源RNA模板包含要整合的序列(例如,突变的RNA)。用于整合的序列可以是细胞内源或外源的序列。要整合的序列的实例包括编码蛋白的RNA或非编码RNA(例如,微RNA)。因此,用于整合的序列可以可操作地连接到合适的一个或多个控制序列。另选地,要整合的序列可提供调控功能。选择外源RNA模板中的上游和下游序列以促进目标RNA序列和供体RNA之间的重组。上游序列是与用于整合的靶位点上游的RNA序列具有序列相似性的RNA序列。类似地,下游序列是与整合的靶位点下游的RNA序列具有序列相似性的RNA序列。外源RNA模板中的上游和下游序列可以与靶RNA序列具有75%、80%、85%、90%、95%或100%的序列同一性。优选地,外源RNA模板中的上游和下游序列与靶RNA序列具有约95%、96%、97%、98%、99%或100%的序列同一性。在一些方法中,外源RNA模板中的上游和下游序列与靶RNA序列具有约99%或100%的序列同一性。上游或下游序列可包含约20bp至约2500bp,例如约50、100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000、2100、2200、2300、2400或2500bp。在一些方法中,示例性上游或下游序列具有约200bp至约2000bp、约600bp至约1000bp或更特别地约700bp至约1000bp。在一些方法中,外源RNA模板还可包含标记。这种标记可使筛选靶整合变得容易。合适的标记的实例包括限制位点、荧光蛋白或选择性标记。可以使用重组技术来构建本发明的外源RNA模板(参见例如Sambrook等人,2001;以及Ausubel等人,1996)。在通过整合外源RNA模板来修饰靶RNA的方法中,通过核酸靶向复合物将断裂(例如,双链或单链DNA或RNA中的双链或单链断裂)引入DNA或RNA序列中,通过与外源RNA模板的同源重组来修复断裂,从而将模板整合到RNA靶标中。双链断裂的存在促进了模板的整合。在其他实施方案中,本发明提供了一种修饰RNA在真核细胞中的表达的方法。该方法包括通过使用与RNA(例如,mRNA或前mRNA)结合的核酸靶向复合物来增加或减少靶多核苷酸的表达。在一些方法中,可以使靶RNA失活,以实现对细胞中的表达进行修饰。例如,当RNA靶向复合物与细胞中的靶序列结合后,靶RNA失活,使得序列不被翻译,不产生编码的蛋白,或序列不会像野生型序列那样起作用。例如,可使蛋白或微RNA编码序列失活,使得不产生蛋白或微RNA或前体微RNA转录物。RNA靶向复合物的靶RNA可以是真核细胞内源或外源的任何RNA。例如,靶RNA可以是位于真核细胞核中的RNA。靶RNA可以是编码基因产物(例如,蛋白)的序列(例如,mRNA或前mRNA)或非编码序列(例如,ncRNA、lncRNA、tRNA或rRNA)。靶RNA的实例包括与信号转导生化途径相关的序列,例如与信号转导生化途径相关的RNA。靶RNA的实例包括疾病相关的RNA。“疾病相关的”RNA是指与非疾病对照的组织或细胞相比在来源于受疾病影响的组织的细胞中以异常水平或以异常形式产生翻译产物的任何RNA。它可能是从异常高水平表达的基因转录而来的RNA。它可能是从异常低水平表达的基因转录而来的RNA,其中表达改变与疾病发生和/或发展相关。疾病相关的RNA还指从具有一个或多个突变或遗传变异的基因转录而来的RNA,该突变或遗传变异直接导致疾病病因或与导致疾病病因的一种或多种基因连锁不平衡。翻译的产物可能是已知的或未知的,并且可能处于正常或异常水平。RNA靶向复合物的靶RNA可以是真核细胞内源或外源的任何RNA。例如,靶RNA可以是位于真核细胞核中的RNA。靶RNA可以是编码基因产物(例如,蛋白)的序列(例如,mRNA或前mRNA)或非编码序列(例如,ncRNA、lncRNA、tRNA或rRNA)。
在一些实施方案中,所述方法可包括允许核酸靶向复合物与靶RNA结合以实现所述靶RNA或RNA的裂解,从而修饰靶RNA,其中核酸靶向复合物包含与向导RNA复合的核酸靶向效应蛋白,该向导RNA与所述靶RNA内的靶序列杂交。在一方面,本发明提供了一种修饰RNA在真核细胞中的表达的方法。在一些实施方案中,所述方法包括允许核酸靶向复合物与RNA结合,使得所述结合导致所述RNA的表达增加或减少;其中核酸靶向复合物包含与向导RNA复合的核酸靶向效应蛋白。类似的考虑和条件如上所述适用于修饰靶RNA的方法。实际上,这些采样、培养和重新引入选项适用于本发明的各个方面。在一方面,本发明提供了修饰真核细胞中的靶RNA的方法,该靶RNA可以是体内、离体或体外的。在一些实施方案中,所述方法包括从人类或非人类动物中取样细胞或细胞群,并且修饰一个或多个细胞。培养可在任何阶段离体进行。甚至可将一种或多种细胞重新引入非人类动物或植物中。对于重新引入的细胞,特别优选细胞是干细胞。
实际上,在本发明的任何方面,核酸靶向复合物可包含与向导RNA复合的核酸靶向效应蛋白,该向导RNA与靶序列杂交。
本发明涉及对用于控制涉及RNA序列靶向的基因表达的系统、方法和组合物的工程化和优化,其涉及核酸靶向系统及其组分。在有利的实施方案中,效应蛋白是VI-B型蛋白,诸如Cas13b。本发明方法的优点是CRISPR系统可最小化或避免脱靶结合及其产生的副作用。这是通过使用被布置成对靶RNA具有高度序列特异性的系统来实现的。
使用两种不同的适配体(各自与不同的核酸靶向向导RNA缔合)允许与不同的核酸靶向向导RNA一起使用激活子-衔接蛋白融合物和阻遏子-衔接蛋白融合物,以激活一种DNA或RNA的表达,而抑制另一种。可以将它们及其不同的向导RNA以多重方法一起或基本上一起施用。可以同时使用大量此类经修饰的核酸靶向向导RNA,例如10种或20种或30种等,而仅需要递送一种(或至少最小数量的)效应蛋白分子,因为相对少量的效应蛋白分子可以与大量经修饰的指导物一起使用。衔接蛋白可与一种或多种激活子或者一种或多种阻遏子缔合(优选连接或融合)。例如,衔接蛋白可与第一激活子和第二激活子缔合。第一激活子和第二激活子可以相同,但是它们优选地是不同的激活子。可使用三个或更多个或者甚至四个或更多个激活子(或阻遏子),但包装尺寸可限制其数量高于5个不同的功能结构域。接头优选地用于与衔接蛋白直接融合,其中两个或更多个功能结构域与衔接蛋白缔合。合适的接头可能包括GlySer接头。
还设想了核酸靶向效应蛋白-向导RNA复合物作为整体可与两个或更多个功能结构域缔合。例如,可能有与核酸靶向效应蛋白缔合的两个或更多个功能结构域,或者可能有与向导RNA缔合的两个或更多个功能结构域(经由一个或多个衔接蛋白),或者可能有与核酸靶向效应蛋白缔合的一个或多个功能结构域以及与向导RNA缔合的一个或多个功能结构域(经由一个或多个衔接蛋白)。
衔接蛋白与激活子或阻遏子之间的融合物可包括接头。例如,可以使用GlySer接头GGGS。它们可以用于3个、6个、9个或甚至12个或更多个((GGGGS)3)的重复序列,以根据需要提供合适的长度。接头可以在向导RNA与功能结构域(激活子或阻遏子)之间或者在核酸靶向效应蛋白与功能结构域(激活子或阻遏子)之间使用。接头使用户可以设计适当数量的“机械灵活性”。
本发明包括核酸靶向复合物,其包含核酸靶向效应蛋白和向导RNA,其中核酸靶向效应蛋白包含至少一个突变,使得核酸靶向Cas蛋白的活性不超过不具有该至少一个突变的核酸靶向Cas蛋白的5%,并且核酸靶向Cas蛋白任选地具有至少一个或多个核定位序列;向导RNA包含能够与细胞中目标RNA中的靶序列杂交的指导序列;并且其中:核酸靶向效应蛋白与两个或更多个功能结构域缔合;或者通过插入与一个或多个衔接蛋白结合的一个或多个不同的RNA序列来对向导RNA的至少一个环进行修饰,并且其中衔接蛋白与两个或更多个功能结构域缔合;或者核酸靶向效应蛋白与一个或多个功能结构域缔合,并且通过插入与一个或多个衔接蛋白结合的一个或多个不同的RNA序列来对向导RNA的至少一个环进行修饰,并且其中衔接蛋白与一个或多个功能结构域缔合。
Cas13b效应蛋白复合物可以递送功能性效应物
与CRISPR-Cas13b介导的敲除(通过在RNA水平上进行突变来消除表达)不同,CRISPR-Cas13b敲低允许通过使用人工转录因子例如经由使Cas13b蛋白的一个或多个裂解结构域中的残基突变来暂时降低基因表达,从而导致产生无催化活性的Cas13b蛋白。无催化活性的Cas13b与向导RNA或crRNA形成复合物,并定位到该向导RNA或crRNA的靶向结构域指定的RNA序列上,但是它不能裂解靶标。无活性的Cas13b蛋白与效应结构域例如转录阻遏结构域融合使得能够将效应物募集到由向导RNA指定的任何位点。
优化的功能性RNA靶向系统
因此,在一方面,本发明提供了一种用于将功能性组分特异性递送到RNA环境的系统。这可以使用包含本发明的允许将不同组分特异性靶向RNA的RNA靶向效应蛋白的CRISPR系统来确保。更具体地,此类组分包括激活子或阻遏子,诸如RNA翻译、降解等的激活子或阻遏子。
根据一个方面,本发明提供了一种非天然存在的或工程化的组合物,其包含向导RNA或crRNA,所述向导RNA或crRNA包含能够与细胞中的目标序列杂交的指导序列,其中通过插入与衔接蛋白结合的一个或多个不同RNA序列来对所述向导RNA或crRNA进行修饰。在特定的实施方案中,RNA序列可与两个或更多个衔接蛋白(例如,适配体)结合,并且其中每个衔接蛋白与一个或多个功能结构域缔合。当存在一个以上的功能结构域时,这些功能结构域可以相同或不同,例如两个功能结构域相同,或两个功能结构域的激活子或阻遏子不同。在一方面,本发明提供了本文讨论的组合物,其中一个或多个功能结构域附接到RNA靶向酶,使得在与靶RNA结合时,该功能结构域处于允许该功能结构域以其属性功能起作用的空间取向;在一方面,本发明提供了本文讨论的组合物,其中该组合物包含具有至少三个功能结构域的CRISPR-Cas13b复合物,至少一个功能结构域与RNA靶向酶缔合,并且至少两个功能结构域与gRNA或crRNA缔合。
Cas13b效应蛋白复合物或其组分的递送
通过本公开和本领域的知识,可以通过本文一般和详细描述的递送系统来递送TALE、CRISPR-Cas系统或其组分或其核酸分子(包括例如HDR模板)或者编码或提供其组分的核酸分子。
载体递送,例如质粒、病毒递送:可以使用任何合适的载体(例如,质粒或病毒载体,诸如腺相关病毒(AAV)、慢病毒、腺病毒或其他病毒载体类型或者它们的组合)来递送CRISPR酶和/或任何本发明的RNA,例如向导RNA。可以将效应蛋白和一种或多种向导RNA包装到一个或多个载体例如质粒或病毒载体中。在一些实施方案中,通过例如肌内注射将载体例如质粒或病毒载体递送到目标组织,而其他时间经由静脉内、透皮、鼻内、口服、粘膜或其他递送方法进行递送。这种递送可以是经由单剂量或多剂量进行的。本领域技术人员应当理解,本文中所递送的实际剂量可根据多种因素而有很大变化,诸如载体选择、靶细胞、生物或组织、待治疗受试者的一般状况、所寻求的转化/修饰程度、施用途径、施用方式、所寻求的转化/修饰类型等。
这种剂量还可包含例如运载体(水、盐水、乙醇、甘油、乳糖、蔗糖、磷酸钙、明胶、右旋糖酐、琼脂、果胶、花生油、芝麻油等)、稀释剂、药学上可接受的运载体(例如,磷酸盐缓冲盐水)、药学上可接受的赋形剂和/或本领域已知的其他化合物。剂量还可包含一种或多种药学上可接受的盐,诸如无机酸盐,诸如盐酸盐、氢溴酸盐、磷酸盐、硫酸盐等;以及有机酸的盐,诸如乙酸盐、丙酸盐、丙二酸盐、苯甲酸盐等。另外,辅助物质诸如润湿剂或乳化剂、pH缓冲物质、凝胶或胶凝材料、调味剂、着色剂、微球、聚合物、悬浮剂等也可存在于其中。另外,尤其是如果剂型是可重构形式,则还可存在一种或多种其他常规药物成分,诸如防腐剂、湿润剂、悬浮剂、表面活性剂、抗氧化剂、抗结块剂、填充剂、螯合剂、包衣剂、化学稳定剂等。合适的示例性成分包括微晶纤维素、羧甲基纤维素钠、聚山梨醇酯80、苯乙醇、氯丁醇、山梨酸钾、山梨酸、二氧化硫、没食子酸丙酯、对羟基苯甲酸酯、乙基香草醛、甘油、苯酚、对氯苯酚、明胶、白蛋白以及它们的组合。对药学上可接受的赋形剂的详细讨论可在REMINGTON'S PHARMACEUTICAL SCIENCES(Mack Pub.Co.,N.J.1991)中获得,该文献通过引用并入本文。
在本文的一个实施方案中,经由腺病毒进行递送,该腺病毒可以是含有至少1×105个腺病毒载体颗粒(也称为颗粒单位,pu)的单次加强剂量。在本文的一个实施方案中,剂量优选地是至少约1×106个腺病毒载体颗粒(例如,约1×106-1×1012个颗粒)、更优选至少约1×107个颗粒、更优选至少约1×108个颗粒(例如,约1×108-1×1011个颗粒或约1×108-1×1012个颗粒)、最优选至少约1×100个颗粒(例如,约1×109-1×1010个颗粒或约1×109-1×1012个颗粒)或甚至至少约1×1010个颗粒(例如,约1×1010-1×1012个颗粒)。另选地,剂量包含不超过约1×1014个颗粒,优选不超过约1×1013个颗粒,甚至更优选不超过约1×1012个颗粒,甚至更优选不超过约1×1011个颗粒,并且最优选不超过约1×1010个颗粒(例如,不超过约1×109个颗粒)。因此,剂量可含有单剂量的腺病毒载体,其具有例如约1×106颗粒单位(pu)、约2×106pu、约4×106pu、约1×107pu、约2×107pu、约4×107pu、约1×108pu、约2×108pu、约4×108pu、约1×109pu、约2×109pu、约4×109pu、约1×1010pu、约2×1010pu、约4×1010pu、约1×1011pu、约2×1011pu、约4×1011pu、约1×1012pu、约2×1012pu或约4×1012pu的腺病毒载体。参见例如2013年6月4日授予Nabel等人的美国专利号8,454,972B2(通过引用并入本文)中的腺病毒载体;以及其在第29栏第36-58行的剂量。在本文的一个实施方案中,腺病毒经由多次剂量递送。
在本文的一个实施方案中,经由AAV进行递送。据认为用于体内向人体内递送AAV的治疗有效剂量的范围为约20至约50ml盐水溶液,其含有约1×1010至约1×1010个功能性AAV/ml溶液。可以调节剂量以平衡治疗益处与任何副作用。在本文的一个实施方案中,AAV剂量的浓度范围一般为约1×105至1×1050个基因组AAV、约1×108至1×1020个基因组AAV、约1×1010至约1×1016个基因组,或约1×1011至约1×1016个基因组AAV。人类剂量可为约1×1013个基因组AAV。此类浓度可以约0.001ml至约100ml、约0.05至约50ml或约10至约25ml的运载体溶液递送。通过建立剂量反应曲线的常规试验,本领域普通技术人员可以容易地确定其他有效剂量。参见例如2013年3月26日授予Hajjar等人的美国专利号8,404,658B2第27栏第45-60行。
在本文的一个实施方案中,经由质粒进行递送。在此类质粒组合物中,剂量应为足以引起反应的质粒量。例如,质粒组合物中质粒DNA的合适量可为每70kg个体约0.1至约2mg或约1μg至约10μg。本发明的质粒一般包含(i)启动子;(ii)与所述启动子可操作地连接的编码核酸靶向CRISPR酶的序列;(iii)选择性标记;(iv)复制起点;以及(v)在(ii)下游并与其可操作地连接的转录终止子。质粒还可以编码CRISPR复合物的RNA组分,但是一种或多种组分可替代地在不同的载体上编码。
本文的剂量是基于平均70kg的个体。施用频率在医学或兽医学从业者(例如,医师、兽医)或本领域技术人员的能力范围内。还应当注意,实验中使用的小鼠通常为约20g,并且根据小鼠实验,可以放大到70kg的个体。
在一些实施方案中,本发明的RNA分子以脂质体或脂质转染蛋白制剂等形式递送,并且可以通过本领域技术人员众所周知的方法制备。此类方法例如在美国专利号5,593,972、5,589,466和5,580,859中描述,这些专利通过引用并入本文。已经开发了专门针对增强和改善将siRNA递送到哺乳动物细胞中的递送系统(参见例如Shen等人,FEBS Let.2003,539:111-114;Xia等人,Nat.Biotech.2002,20:1006-1010;Reich等人,Mol.Vision.2003,9:210-216;Sorensen等人,J.Mol.Biol.2003,327:761-766;Lewis等人,Nat.Gen.2002,32:107-108以及Simeoni等人,NAR 2003,31,11:2717-2724),这些递送系统可应用于本发明。siRNA最近已成功用于抑制灵长类动物中的基因表达(参见例如Tolentino等人,Retina 24(4):660),其也可应用于本发明。
实际上,RNA递送是有用的体内递送方法。可以使用脂质体或颗粒将核酸靶向Cas蛋白和向导RNA(以及例如HR修复模板)递送到细胞中。因此,可以RNA形式并且经由微泡、脂质体或颗粒进行本发明的核酸靶向Cas13b蛋白的递送和/或向导RNA或crRNA的递送。例如,可以将Cas13b mRNA和向导RNA或crRNA包装到脂质体颗粒中以用于体内递送。脂质体转染试剂诸如Life Technologies的lipofectamine以及市场上的其他试剂可以有效地将RNA分子输送到肝脏中。
RNA的递送手段还优选地包括经由纳米颗粒(Cho,S.,Goldberg,M.,Son,S.,Xu,Q.,Yang,F.,Mei,Y.,Bogatyrev,S.,Langer,R.and Anderson,D.,Lipid-likenanoparticles for small interfering RNA delivery to endothelial cells,Advanced Functional Materials,19:3112-3118,2010)或外泌体(Schroeder,A.,Levins,C.,Cortez,C.,Langer,R.,and Anderson,D.,Lipid-based nanotherapeutics for siRNAdelivery,Journal of Internal Medicine,267:9-21,2010,PMID:20059641)进行RNA递送。实际上,已经表明外泌体在递送siRNA中特别有用,它是一种与RNA靶向系统有一些相似之处的系统。例如,El-Andaloussi S等人(“Exosome-mediated delivery of siRNA invitro and in vivo.”Nat Protoc.2012年12月;7(12):2112-26.doi:10.1038/nprot.2012.131.2012年11月15日的电子版)描述了外泌体作为跨越不同生物屏障进行药物递送的有前景的工具并且可以用来在体内外递送siRNA的原因。他们的方法是通过转染包含与肽配体融合的外泌体蛋白的表达载体来产生靶向的外泌体。然后从转染的细胞上清液中纯化外泌体并进行表征,然后将RNA加载到外泌体中。根据本发明的递送或施用可以用外泌体进行,特别是但不限于脑。可将维生素E(α-生育酚)与核酸靶向Cas蛋白缀合,并且例如以与Uno等人将短干扰RNA(siRNA)递送到脑类似的方式(HUMAN GENE THERAPY 22:711–719(2011年6月))将其与高密度脂蛋白(HDL)一起递送到脑。经由渗透微型泵(型号1007D;Alzet,Cupertino,CA)对小鼠进行输注,该渗透微型泵装满磷酸盐缓冲液(PBS)或游离TocsiBACE或Toc-siBACE/HDL并与Brain Infusion Kit 3(Alzet)连接。将脑输注套管放置在中线处,位于前卤后约0.5mm,以便输注到背侧第三脑室中。Uno等人发现,使用相同的ICV输注方法,低至3nmol的Toc-siRNA与HDL一起可以诱导程度相当的靶标降低。在本发明中,可考虑人类中靶向脑的缀合到α-生育酚并与HDL共同施用的核酸靶向效应蛋白的相似剂量,例如可考虑约3nmol至约3μmol的靶向脑的核酸靶向效应蛋白。Zou等人((HUMAN GENETHERAPY 22:465-475(2011年4月))描述了一种慢病毒介导的递送靶向PKCγ的短发夹RNA的方法,用于在大鼠脊髓中进行体内基因沉默。Zou等人通过鞘内导管施用约10μl效价为1×109转导单位(TU)/ml的重组慢病毒。在本发明中,可考虑人类中靶向脑的在慢病毒载体中表达的核酸靶向效应蛋白的相似剂量,例如可考虑约10-50ml效价为1×109转导单位(TU)/ml的靶向脑的核酸靶向效应蛋白。
就局部递送到脑而言,这可以通过多种方式来实现。例如,可以例如通过注射在纹状体内递送材料。可以经由穿颅术立体定向地进行注射。
通用包装和启动子
将编码RNA靶向效应蛋白(Cas13b蛋白)的核酸分子例如DNA包装到载体例如病毒载体中以介导体内基因组修饰的方法包括:
单病毒载体:
含有两个或更多个表达盒的载体:
编码启动子-核酸靶向效应蛋白的核酸分子-终止子
启动子-向导RNA1-终止子
启动子-向导RNA(N)-终止子(直到载体的大小限制)
双病毒载体:
含有用于驱动RNA靶向效应蛋白(Cas13b)的一个表达盒的载体1
编码启动子-RNA靶向效应蛋白(Cas13b)的核酸分子-终止子
含有用于驱动一种或多种向导RNA或crRNA的表达的一个或多个表达盒的载体2
启动子-向导RNA1或crRNA1-终止子
启动子-向导RNA1(N)或crRNA1(N)-终止子(直到载体的大小限制)。
用于驱动编码RNA靶向效应蛋白的核酸分子表达的启动子可以包括AAV ITR,其可以用作启动子:这有利于消除对额外启动子元件(其可占据载体中的空间)的需要。释放的额外空间可以用于驱动其他元件(gRNA等)的表达。而且,ITR活性相对较弱,因此可以用于降低由于核酸靶向效应蛋白的过量表达引起的潜在毒性。对于全身性表达,可以使用启动子:CMV、CAG、CBh、PGK、SV40、铁蛋白重链或轻链等。对于脑或其他CNS表达,可以使用启动子:用于所有神经元的突触蛋白I、用于兴奋性神经元的CaMKIIalpha、用于GABA能神经元的GAD67或GAD65或VGAT等。对于肝脏表达,可以使用白蛋白启动子。对于肺表达,可以使用SP-B。对于内皮细胞,可以使用ICAM。对于造血细胞,可以使用IFNbeta或CD45。对于成骨细胞,可以使用OG-2。用于驱动向导RNA的启动子可以包括:Pol III启动子,诸如U6或H1;Pol II启动子和内含子盒,用来表达向导RNA或crRNA。
腺相关病毒(AAV)
可以使用腺相关病毒(AAV)、慢病毒、腺病毒或其他质粒或病毒载体类型,特别是使用例如来自美国专利号8,454,972(腺病毒的制剂、剂量)、8,404,658(AAV的制剂、剂量)和5,846,946(DNA质粒的制剂、剂量)以及来自临床试验和关于涉及慢病毒、AAV和腺病毒的临床试验的出版物的制剂和剂量来递送Cas13b和一种或多种向导RNA或crRNA。例如,对于AAV,施用途径、制剂和剂量可以如美国专利号8,454,972和涉及AAV的临床试验。对于腺病毒,施用途径、制剂和剂量可以如美国专利号8,404,658和涉及腺病毒的临床试验。对于质粒递送,施用途径、制剂和剂量可以如美国专利号5,846,946和涉及质粒的临床研究。剂量可基于或外推到平均70kg的个体(例如,成年男性),并且可以针对患者、受试者、不同体重和物种的哺乳动物进行调节。施用频率在医学或兽医学从业者(例如,医师、兽医)的能力范围内,取决于常规因素,包括患者或受试者的年龄、性别、一般健康状况、其他状况以及着手解决的特殊状况或症状。可以将病毒载体注射到目标组织中。对于细胞类型特异性基因组修饰,RNA靶向效应蛋白(Cas13b效应蛋白)的表达可以由细胞类型特异性启动子驱动。例如,肝脏特异性表达可使用白蛋白启动子,而神经元特异性表达(例如,用于靶向CNS疾病)可使用突触蛋白I启动子。就体内递送而言,AAV优于其他病毒载体,有两个原因:毒性低(这可能是由于纯化方法不需要对细胞颗粒进行超速离心,因为超速离心可能激活免疫反应),以及引起插入诱变的可能性低,因为它不整合到宿主基因组中。
AAV的包装限制为4.5或4.75Kb。这意味着必须将编码RNA靶向效应蛋白(Cas13b效应蛋白)的序列以及启动子和转录终止子都装配在同一病毒载体中。关于AAV,AAV可以是AAV1、AAV2、AAV5或它们的任何组合。可以针对要靶向的细胞选择AAV中的AAV;例如,可以选择AAV血清型1、2、5或杂合衣壳AAV1、AAV2、AAV5或它们的任何组合用于靶向脑或神经元细胞;并且可以选择AAV4用于靶向心脏组织。AAV8可用于递送到肝脏。本文的启动子和载体是单独优选的。关于这些细胞的某些AAV血清型的列表(参见Grimm,D.等人,J.Virol.82:5887-5911(2008))如下:
细胞系 AAV-1 AAV-2 AAV-3 AAV-4 AAV-5 AAV-6 AAV-8 AAV-9
Huh-7 13 100 2.5 0.0 0.1 10 0.7 0.0
HEK293 25 100 2.5 0.1 0.1 5 0.7 0.1
HeLa 3 100 2.0 0.1 6.7 1 0.2 0.1
HepG2 3 100 16.7 0.3 1.7 5 0.3 ND
Hep1A 20 100 0.2 1.0 0.1 1 0.2 0.0
911 17 100 11 0.2 0.1 17 0.1 ND
CHO 100 100 14 1.4 333 50 10 1.0
COS 33 100 33 3.3 5.0 14 2.0 0.5
MeWo 10 100 20 0.3 6.7 10 1.0 0.2
NIH3T3 10 100 2.9 2.9 0.3 10 0.3 ND
A549 14 100 20 ND 0.5 10 0.5 0.1
HT1180 20 100 10 0.1 0.3 33 0.5 0.1
单核细胞 1111 100 ND ND 125 1429 ND ND
不成熟的DC 2500 100 ND ND 222 2857 ND ND
成熟的DC 2222 100 ND ND 333 3333 ND ND
慢病毒
慢病毒是复杂的逆转录病毒,能够在有丝分裂和有丝分裂后细胞中感染并表达其基因。最常见的慢病毒是人类免疫缺陷病毒(HIV),其使用其他病毒的包膜糖蛋白来靶向广泛的细胞类型。慢病毒可如下制备。克隆pCasES10(含有慢病毒转移质粒主链)后,将低传代(p=5)的HEK293FT接种在T-75烧瓶中,直到在转染的前一天在含10%胎牛血清且无抗生素的DMEM中达到50%的汇合。20小时后,将培养基更换为OptiMEM(无血清)培养基,并在4小时后进行转染。用10μg慢病毒转移质粒(pCasES10)和以下包装质粒转染细胞:5μg pMD2.G(VSV-g假型)和7.5ug psPAX2(gag/pol/rev/tat)。用阳离子脂质递送剂(50uLLipofectamine 2000和100ul Plus试剂)在4mL OptiMEM中进行转染。6小时后,将培养基更换为含10%胎牛血清的无抗生素DMEM。这些方法在细胞培养过程中使用血清,但优选无血清的方法。
慢病毒可如下纯化。48小时后收获病毒上清液。首先清除上清液中的碎片,并通过0.45um低蛋白结合(PVDF)滤膜进行过滤。然后将它们在超速离心机中以24,000rpm旋转2小时。将病毒沉淀重新悬浮在50ul DMEM中,在4C下过夜。然后将它们等分,并立即在-80℃下冷冻。
在另一个实施方案中,还考虑了基于马传染性贫血病毒(EIAV)的最小非灵长类慢病毒载体,特别是用于眼部基因疗法(参见例如Balagaan,J Gene Med 2006;8:275-285)。在另一个实施方案中,还考虑了
Figure BDA0002313867470001421
一种经由视网膜下注射递送用于治疗湿性年龄相关性黄斑变性、表达血管生成抑制蛋白(内皮抑素和血管抑素)的基于马传染性贫血病毒的慢病毒基因疗法载体(参见例如Binley等人,HUMAN GENE THERAPY 23:980-991(2012年9月)),并且可对这种载体进行修饰以用于本发明的核酸靶向系统。
在另一个实施方案中,可将具有靶向由HIV tat/rev共用的共有外显子的siRNA、核仁定位TAR诱饵和抗CCR5特异性锤头状核酶的自失活慢病毒载体(参见例如DiGiusto等人,(2010)Sci Transl Med2:36ra43)用于和/或调整为本发明的核酸靶向系统。每千克患者体重可收集最少2.5×106个CD34+细胞,并且以2×106个细胞/ml的密度在含有2μmol/L谷氨酰胺、干细胞因子(100ng/ml)、Flt-3配体(Flt-3L)(100ng/ml)和促血小板生成素(10ng/ml)(CellGenix)的X-VIVO 15培养基(Lonza)中预刺激16至20小时。可在75cm2的包被有纤连蛋白(25mg/cm2)(RetroNectin,Takara Bio Inc.)的组织培养瓶中用慢病毒以感染复数5转导预刺激的细胞16至24小时。
公开了慢病毒载体用于治疗帕金森病,参见例如美国专利公开号20120295960以及美国专利号7303910和7351585。还公开了慢病毒载体用于治疗眼部疾病,参见例如美国专利公开号20060281180、20090007284,US20110117189;US20090017543;US20070054961、US20100317109。还公开了慢病毒载体用于递送到脑,参见例如美国专利公开号US20110293571;US20110293571、US20040013648、US20070025970、US20090111106和美国专利号US7259015。
RNA递送
RNA递送:也可以RNA的形式递送核酸靶向Cas13b蛋白和/或向导RNA。可以使用含有以下元件的PCR盒来合成mRNA:来自β珠蛋白-polyA尾部(一串120个或更多个腺嘌呤)的T7_启动子-kozak序列(GCCACC)-效应蛋白-3'UTR。该盒可以用于通过T7聚合酶进行转录。也可以使用体外转录从含有T7_启动子-GG-向导RNA或crRNA序列的盒转录向导RNA或crRNA。
颗粒递送系统和/或制剂:
已知有多种类型的颗粒递送系统和/或制剂可用于各种生物医学应用。一般来讲,将颗粒定义为在转运和特性方面作为整体表现的小物体。根据直径将颗粒进一步分类。粗颗粒的覆盖范围在2,500至10,000纳米之间。细颗粒的大小在100至2,500纳米之间。超细颗粒或纳米颗粒的大小一般在1至100纳米之间。以100nm作为限值基于以下事实:使粒子区分于大块材料的新型特性通常是在100nm以下的临界长度尺度下显现的。
如本文所用,将颗粒递送系统/制剂定义为包括根据本发明的颗粒的任何生物递送系统/制剂。根据本发明的颗粒是最大尺寸(例如,直径)小于100微米(μm)的任何实体。在一些实施方案中,本发明的颗粒的最大尺寸小于10μm。在一些实施方案中,本发明的颗粒的最大尺寸小于2000纳米(nm)。在一些实施方案中,本发明的颗粒的最大尺寸小于1000纳米(nm)。在一些实施方案中,本发明的颗粒的最大尺寸小于900nm、800nm、700nm、600nm、500nm、400nm、300nm、200nm或100nm。通常,本发明的颗粒的最大尺寸(例如,直径)为500nm或更小。在一些实施方案中,本发明的颗粒的最大尺寸(例如,直径)为250nm或更小。在一些实施方案中,本发明的颗粒的最大尺寸(例如,直径)为200nm或更小。在一些实施方案中,本发明的颗粒的最大尺寸(例如,直径)为150nm或更小。在一些实施方案中,本发明的颗粒的最大尺寸(例如,直径)为100nm或更小。在本发明的一些实施方案中使用较小的颗粒,例如最大尺寸为50nm或更小。在一些实施方案中,本发明的颗粒的最大尺寸在25nm至200nm的范围内。
使用多种不同技术进行颗粒表征(包括表征形态、尺寸等)。常用技术是电子显微术(TEM、SEM)、原子力显微镜术(AFM)、动态光散射(DLS)、X-射线光电子能谱法(XPS)、粉末X射线衍射(XRD)、傅里叶变换红外光谱法(FTIR)、基质辅助激光解吸/电离飞行时间质谱法(MALDI-TOF)、紫外-可见光谱法、双偏振干涉法和核磁共振(NMR)。可针对天然颗粒(即预加载)或在加载负荷物(本文的负荷物是指例如CRISPR-Cas13b系统的一种或多种组分,例如Cas13b酶或mRNA或向导RNA或者它们的任何组合,并且可包括另外的运载体和/或赋形剂)后进行表征(尺寸测量),以提供具有最佳大小的颗粒用于本发明的任何体外、离体和/或体内应用的递送。在某些优选的实施方案中,颗粒尺寸(例如,直径)表征是基于使用动态激光散射(DLS)的测量。提到了美国专利号8,709,843;美国专利号6,007,845;美国专利号5,855,913;美国专利号5,985,309;美国专利号5,543,158;以及James E.Dahlman和CarmenBarnes等人的出版物(Nature Nanotechnology(2014),2014年5月11日在线发布,doi:10.1038/nnano.2014.84),其涉及颗粒、制备和使用它们的方法及其测量。还可参见Dahlman等人,“Orthogonal gene control with a catalytically active Cas9nuclease,”Nature Biotechnology 33,1159-1161(2015年11月)。
本发明范围内的颗粒递送系统可以任何形式提供,包括但不限于固体、半固体、乳液或胶体颗粒。因此,本文所述的任何递送系统,包括但不限于例如基于脂质的系统、脂质体、微团、微泡、外泌体或基因枪,可作为本发明范围内的颗粒递送系统提供。
颗粒
Cas13b mRNA和向导RNA或crRNA可使用颗粒或脂质包膜同时递送;例如,本发明的CRISPR酶和RNA例如作为复合物可以经由如Dahlman等人的WO2015089419A2及其中引用的文献中的颗粒诸如7C1来递送(参见例如James E.Dahlman和Carmen Barnes等人,NatureNanotechnology(2014),2014年5月11日在线发布,doi:10.1038/nnano.2014.84),例如包含脂质或类脂质和亲水性聚合物(例如,阳离子脂质和亲水性聚合物)的递送颗粒,例如其中阳离子脂质包括1,2-二油酰基-3-三甲基铵-丙烷(DOTAP)或1,2-二十四酰基-sn-甘油-3-磷酸胆碱(DMPC)并且/或者其中亲水性聚合物包括乙二醇或聚乙二醇(PEG);并且/或者其中颗粒还包含胆固醇(例如,来源于以下制剂的颗粒:制剂1=DOTAP 100,DMPC 0,PEG 0,胆固醇0;制剂2=DOTAP 90,DMPC 0,PEG 10,胆固醇0;制剂3=DOTAP 90,DMPC 0,PEG 5,胆固醇5),其中使用有效的多步骤过程形成颗粒,其中首先将效应蛋白和RNA例如在无菌、不含核酸酶的1X PBS中例如在室温下以例如1:1的摩尔比混合在一起例如30分钟;分别将适用于制剂的DOTAP、DMPC、PEG和胆固醇溶解于醇例如100%乙醇中;并且将这两种溶液混合在一起以形成含有这些复合物的颗粒。Cas13b效应蛋白mRNA和向导RNA可使用颗粒或脂质包膜同时递送。Dahlman等人的技术可以应用于本发明。可利用环氧化物修饰的脂质聚合物将本发明的核酸靶向系统递送到肺细胞、心血管细胞或肾细胞,但是本领域技术人员可调整该系统以递送到其他靶器官。设想了剂量范围为约0.05至约0.6mg/kg。还设想了几天或几周的剂量,总剂量为约2mg/kg。例如,Su X,Fricke J,Kavanagh DG,Irvine DJ(“Invitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymernanoparticles”Mol Pharm.2011年6月6日;8(3):774-87.doi:10.1021/mp100390w.2011年4月1日的电子版)描述了可生物降解的核-壳结构颗粒,其具有被磷脂双层壳包封的聚(β-氨基酯)(PBAE)核。这些被开发用于体内mRNA递送。选择pH响应性PBAE组分以促进内体破坏,而选择脂质表面层以最大程度降低聚阳离子核心的毒性。因此,这对于递送本发明的RNA是优选的。
在一个实施方案中,考虑了基于自组装生物粘附性聚合物的颗粒,其可用于口服递送肽、静脉内递送肽和鼻内递送肽,所有这些均被递送到脑。还考虑了其他实施方案,诸如疏水药物的口服吸收和眼部递送。分子包膜技术涉及被保护并递送到疾病部位的工程化聚合物包膜(参见例如Mazza,M.等人ACSNano,2013.7(2):1016-1026;Siew,A.等人MolPharm,2012.9(1):14-28;Lalatsa,A.等人J Contr Rel,2012.161(2):523-36;Lalatsa,A.等人,Mol Pharm,2012.9(6):1665-80;Lalatsa,A.等人Mol Pharm,2012.9(6):1764-74;Garrett,N.L.等人J Biophotonics,2012.5(5-6):458-68;Garrett,N.L.等人J RamanSpect,2012.43(5):681-688;Ahmad,S.等人J Royal Soc Interface 2010.7:S423-33;Uchegbu,I.F.Expert Opin Drug Deliv,2006.3(5):629-40;Qu,X.等人Biomacromolecules,2006.7(12):3452-9以及Uchegbu,I.F.等人Int J Pharm,2001.224:185-199)。考虑了约5mg/kg的剂量,根据靶组织,采用单剂量或多剂量。
关于颗粒,还可参见Alabi等人,Proc Natl Acad Sci USA.2013年8月6日;110(32):12881-6;Zhang等人,Adv Mater.2013年9月6日;25(33):4641-5;Jiang等人,NanoLett.2013年3月13日;13(3):1059-64;Karagiannis等人,ACS Nano.2012年10月23日;6(10):8484-7;Whitehead等人,ACS Nano.2012年8月28日;6(8):6922-9以及Lee等人,NatNanotechnol.2012年6月3日;7(6):389-93。
美国专利申请20110293703涉及类脂质化合物在多核苷酸的施用中也特别有用,其可用于递送本发明的核酸靶向系统。在一个方面,将氨基醇类脂质化合物与要递送到细胞或受试者的试剂组合以形成微粒、纳米颗粒、脂质体或微团。由颗粒、脂质体或微团递送的试剂可以是气体、液体或固体的形式,并且该试剂可以是多核苷酸、蛋白、肽或小分子。可将氨基醇类脂质化合物与其他氨基醇类脂质化合物、聚合物(合成的或天然的)、表面活性剂、胆固醇、碳水化合物、蛋白、脂质等组合以形成颗粒。然后可将这些颗粒任选地与药物赋形剂组合以形成药物组合物。美国专利公开号20110293703还提供了制备氨基醇类脂质化合物的方法。使胺的一种或多种等效物与环氧化物封端化合物的一种或多种等效物在适当条件下反应以形成本发明的氨基醇类脂质化合物。在某些实施方案中,胺的所有氨基基团与环氧化物封端化合物充分反应以形成叔胺。在其他实施方案中,胺的所有氨基基团不与环氧化物封端化合物充分反应以形成叔胺,从而在氨基醇类脂质化合物中产生伯胺或仲胺。这些伯胺或仲胺保持原样,或可与另一种亲电体诸如不同的环氧化物封端化合物反应。如本领域技术人员将理解的,使胺与未过量的环氧化物封端化合物反应将产生多种不同的具有不同尾部数的氨基醇类脂质化合物。某些胺可被两个环氧化物衍生的化合物尾部充分官能化,而其他分子将不会被环氧化物衍生的化合物尾部完全官能化。例如,二胺或多胺可包括脱离该分子的不同氨基部分的一个、二个、三个或四个环氧化物衍生的化合物尾部,从而产生伯胺、仲胺和叔胺。在某些实施方案中,并不是所有氨基基团均被充分官能化。在某些实施方案中,使用两种相同类型的环氧化物封端化合物。在其他实施方案中,使用两种或更多种不同的环氧化物封端化合物。氨基醇类脂质化合物的合成在有或没有溶剂的情况下进行,并且该合成可在30-100℃、优选大约50-90℃的较高温度下进行。可任选地纯化所制备的氨基醇类脂质化合物。例如,可纯化氨基醇类脂质化合物的混合物,以产生具有特定数量的环氧化物衍生的化合物尾部的氨基醇类脂质化合物。或者可纯化混合物以产生特定的立体异构体或区异构体。也可使用烷基卤化物(例如,甲基碘)或其他烷化剂将氨基醇类脂质化合物烷化,并且/或者可将它们酰化。
美国专利公开号20110293703还提供了通过本发明方法制备的氨基醇类脂质化合物的文库。可使用涉及液体处理器、自动机、微量滴定板、计算机等的高通量技术来制备和/或筛选这些氨基醇类脂质化合物。在某些实施方案中,筛选氨基醇类脂质化合物将多核苷酸或其他试剂(例如,蛋白、肽、小分子)转染到细胞中的能力。美国专利公开号20130302401涉及使用组合聚合制备的一类聚(β-氨基醇)(PBAA)。本发明的PBAA可在生物技术和生物医学应用中用作涂层(诸如用于医疗装置或植入物的膜或多层膜的涂层)、添加剂、材料、赋形剂、生物防污剂、微图案化剂和细胞包封剂。当用作表面涂层时,这些PBAA会根据其化学结构在体内和体外引起不同程度的炎症。这类材料具有各不相同的化学多样性使我们能够鉴定出在体外抑制巨噬细胞激活的聚合物涂层。此外,在皮下植入羧化聚苯乙烯微粒之后,这些涂层减少了炎症细胞的募集并减少了纤维化。这些聚合物可用于形成进行细胞包封的聚电解质复合物胶囊。本发明还可具有许多其他生物学应用,诸如抗微生物涂层、DNA或siRNA递送以及干细胞组织工程。美国专利公开号20130302401的教导可应用于本发明的核酸靶向系统。
在另一个实施方案中,考虑了脂质纳米颗粒(LNP)。已经将抗转甲状腺素蛋白小干扰RNA包封在脂质纳米颗粒中并递送给人类(参见例如Coelho等人,N Engl J Med 2013;369:819-29),并且可将这种系统调整为并应用于本发明的核酸靶向系统。考虑了静脉内施用约0.01至约1mg/kg体重的剂量。考虑了降低输注相关反应的风险的药物,诸如考虑了地塞米松、对乙酰氨基酚、苯海拉明或西替利嗪以及雷尼替丁。还考虑了每4周约0.3mg/kg的多剂量,持续五个剂量。已经表明LNP在将siRNA递送到肝脏方面非常有效(参见例如Tabernero等人,Cancer Discovery,2013年4月,第3卷,第4期,第363-470页),因此被考虑用于将编码核酸靶向效应蛋白的RNA递送到肝脏。可考虑每两周约四个剂量的6mg/kg的LNP这一剂量。Tabern ero等人证明,在以0.7mg/kg给药LNP的前2个周期之后,观察到肿瘤消退,并且在6个周期结束时,患者已经实现了部分应答,其中淋巴结转移完全消退并且肝脏肿瘤显著萎缩。该患者接受40个剂量后获得了完全应答,在接受26个月以上的剂量后处于缓解状态并完成了治疗。患有RCC和在用VEGF途径抑制剂进行在先治疗之后进展的肝外部位(包括肾脏、肺和淋巴结)疾病的两名患者在所有部位的疾病都保持稳定大约8至12个月,并且患有PNET和肝转移的一名患者继续在18个月(36个剂量)的延伸研究中保持疾病稳定。但是,必须考虑LNP的电荷。当阳离子脂质与带负电荷的脂质结合,诱导促进细胞内递送的非双层结构。由于带电荷的LNP在静脉注射之后迅速从循环中清除,因此开发了pKa值低于7的可电离阳离子脂质(参见例如Rosin等人,Molecular Therapy,第19卷,第12期,第1286-2200页,2011年12月)。可将带负电荷的聚合物诸如RNA在低pH值(例如,pH 4)下加载到LNP中,在此pH下可电离脂质显示出正电荷。但是,在生理pH值下,LNP表现出与更长的循环时间相容的低表面电荷。已经关注的有四种可电离阳离子脂质,即1,2-二亚油酰基-3-二甲基铵-丙烷(DLinDAP)、1,2-二亚油基氧基-3-N,N-二甲基氨基丙烷(DLinDMA)、1,2-二亚油基氧基-酮基-N,N-二甲基-3-氨基丙烷(DLinKDMA)和1,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(DLinKC2-DMA)。已经表明,含有这些脂质的LNP siRNA系统在体内肝细胞中表现出显著不同的基因沉默特性,具有根据采用因子VII基因沉默模型的级数DLinKC2-DMA>DLinKDMA>DLinDMA>>DLinDAP而变化的潜能(参见例如Rosin等人,Molecular Therapy,第19卷,第12期,第1286-2200页,2011年12月)。可考虑1μg/ml的LNP或者LNP中或与LNP相关联的CRISPR-Cas RNA的剂量,尤其是对于含有DLinKC2-DMA的制剂而言。
LNP的制备和CRISPR-Cas13b包封可根据Rosin等人,Molecular Therapy,第19卷,第12期,第1286-2200页,2011年12月)使用和/或调整。阳离子脂质1,2-二亚油酰基-3-二甲基铵-丙烷(DLinDAP)、1,2-二亚油基氧基-3-N,N-二甲基氨基丙烷(DLinDMA)、1,2-二亚油基氧基酮基-N,N-二甲基-3-氨基丙烷(DLinK-DMA)、1,2-二亚油基-4-(2-二甲基氨基乙基)-[1,3]-二氧戊环(DLinKC2-DMA)、(3-o-[2″-(甲氧基聚乙二醇2000)琥珀酰]-1,2-二肉豆蔻酰基-sn-二醇(PEG-S-DMG)和R-3-[(ω-甲氧基-聚(乙二醇)2000)氨甲酰]-1,2-二肉豆蔻酰氧基丙基-3-胺(PEG-C-DOMG)可由Tekmira Pharmaceuticals(Vancouver,Canada)提供或者合成。胆固醇可购自Sigma(St Louis,MO)。可将特异性核酸靶向复合物(CRISPR-Cas)RNA包封在含有DLinDAP、DLinDMA、DLinK-DMA和DLinKC2-DMA的LNP中(阳离子脂质:DSPC:CHOL:PEGS-DMG或PEG-C-DOMG的摩尔比为40:10:40:10)。需要时,可掺入0.2%SP-DiOC18(Invitrogen,Burlington,Canada)来评估细胞摄取、细胞内传递和生物分布。可通过将由阳离子脂质:DSPC:胆固醇:PEG-c-DOMG(摩尔比为40:10:40:10)组成的脂质混合物溶解在乙醇中直到最终脂质浓度为10mmol/l来进行包封。可将脂质的这种乙醇溶液逐滴加入pH 4.0的50mmol/l柠檬酸盐中形成多层囊泡,从而产生30%乙醇(体积/体积)的最终浓度。在使用挤出机(Northern Lipids,Vancouver,Canada)通过两个重叠的80nm Nuclepore聚碳酸酯滤膜挤出多层囊泡之后,可形成较大单层囊泡。可通过如下步骤实现包封:将以2mg/ml溶解在含有30%乙醇(体积/体积)的pH 4.0的50mmol/l柠檬酸盐中的RNA逐滴加入所挤出的预成型较大单层囊泡中,并且在31℃下孵育30分钟,同时不断搅拌直到最终的RNA/脂质重量比为0.06/1(重量/重量)。通过使用Spectra/Por2再生纤维素透析膜在pH7.4的磷酸盐缓冲液(PBS)中透析16小时去除乙醇并中和制剂缓冲液。可使用NICOMP 370粒度分析仪、囊泡/强度模型和高斯拟合(Nicomp Particle Sizing,Santa Barbara,CA)通过动态光散射来确定粒度分布。所有三个LNP系统的粒度在直径上均为约70nm。可通过使用VivaPureD MiniH色谱柱(Sartorius Stedim Biotech)从透析前后收集的样品中去除游离RNA来确定RNA包封效率。可从洗脱的颗粒中提取包封的RNA,并在260nm处对其进行定量。通过使用来自Wako Chemicals USA(Richmond,VA)的胆固醇E酶学测定测量囊泡中的胆固醇含量来确定RNA与脂质的比率。结合本文对LNP和PEG脂质的讨论,聚乙二醇化脂质体或LNP同样适合递送核酸靶向系统或其组分。较大LNP的制备可根据Rosin等人,MolecularTherapy,第19卷,第12期,第1286-2200页,2011年12月使用和/或调整。可在以摩尔比50:10:38.5含有DLinKC2-DMA、DSPC和胆固醇的乙醇中制备脂质预混溶液(总脂质浓度为20.4mg/ml)。可以0.75:1的摩尔比(乙酸钠:DLinKC2-DMA)将乙酸钠加入脂质预混物中。随后可通过将该混合物与1.85倍体积的柠檬酸盐缓冲液(10mmol/l,pH 3.0)在剧烈搅拌下合并来使脂质水合,从而导致在含有35%乙醇的在水性缓冲液中自发形成脂质体。可在37℃下孵育脂质体溶液,以使粒度随时间增加。可在孵育的不同时间移出等分试样以通过动态光散射(Zetasizer Nano ZS,Malvern Instruments,Worcestershire,UK)研究脂质体尺寸的变化。一旦实现所希望的粒度,就可将水性PEG脂质溶液(储备液=10mg/ml PEG-DMG的35%(体积/体积)乙醇)加入脂质体混合物中,以产生最终PEG摩尔浓度为3.5%的总脂质。加入PEG-脂质后,脂质体应其大小,从而有效地猝灭进一步生长。然后可以大约1:10(重量:重量)的RNA与总脂质比率将RNA加入空脂质体中,然后在37℃下孵育30分钟以形成加载的LNP。随后可将混合物在PBS中透析过夜,并用0.45μm注射器式过滤器过滤。
还考虑了球形核酸(SNATM)构建体和其他颗粒(尤其是金颗粒)作为将核酸靶向系统递送到预期靶标的手段。重要数据表明,基于核酸功能化金颗粒的AuraSense治疗性球形核酸(SNATM)构建体是有用的。
可与本文的教导结合使用的文献包括:Cutler等人,J.Am.Chem.Soc.2011 133:9254-9257;Hao等人,Small.2011 7:3158-3162;Zhang等人,ACS Nano.2011 5:6962-6970;Cutler等人,J.Am.Chem.Soc.2012 134:1376-1391;Young等人,Nano Lett.2012 12:3867-71;Zheng等人,Proc.Natl.Acad.Sci.USA.2012 109:11975-80,Mirkin,Nanomedicine2012 7:635-638;Zhang等人,J.Am.Chem.Soc.2012134:16488-1691,Weintraub,Nature2013 495:S14-S16;Choi等人,Proc.Natl.Acad.Sci.USA.2013 110(19):7625-7630;Jensen等人,Sci.Transl.Med.5,209ra152(2013);以及Mirkin等人,Small,10:186-192。
具有RNA的自组装颗粒可用被聚乙二醇化的聚乙烯亚胺(PEI)进行构建,其中Arg-Gly-Asp(RGD)肽配体附接在聚乙二醇(PEG)的远端。例如,这种系统已经被用作靶向表达整合素的肿瘤新血管系统和递送抑制血管内皮生长因子受体2(VEGF R2)表达的siRNA从而实现抑制肿瘤血管发生的手段(参见例如Schiffelers等人,Nucleic Acids Research,2004,第32卷,第19期)。可通过将等体积的阳离子聚合物水溶液和核酸水溶液混,以产生相对于磷酸盐(核酸)净摩尔过量(2至6范围内)的可电离氮(聚合物),从而制备纳米复合体。阳离子聚合物和核酸之间的静电相互作用导致形成平均粒度分布为约100nm的聚复合体,因此这里称为纳米复合体。设想了约100至200mg的核酸靶向复合物RNA的剂量用于在Schiffelers等人的自组装颗粒中进行递送。
Bartlett等人的纳米复合体(PNAS,2007年9月25日,第104卷,第39期)也可应用于本发明。通过将等体积的阳离子聚合物水溶液和核酸水溶液混,以产生相对于磷酸盐(核酸)净摩尔过量(2至6范围内)的可电离氮(聚合物),从而制备Bartlett等人的纳米复合体。阳离子聚合物和核酸之间的静电相互作用导致形成平均粒度分布为约100nm的聚复合体,因此这里称为纳米复合体。如下合成Bartlett等人的DOTA-siRNA:从Macrocyclics(Dallas,TX)订购1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸单(N-羟基琥珀酰亚胺酯)(DOTA-NHS酯)。将具有100倍摩尔过量的DOTA-NHS-酯的经胺修饰的RNA有义链的碳酸盐缓冲液(pH 9)加入微量离心管中。通过在室温下搅拌4小时使内容物反应。将DOTA-RNA有义缀合物用乙醇沉淀,重新悬浮在水中,并退火为未修饰的反义链,以产生DOTA-siRNA。所有液体均用Chelex-100(Bio-Rad,Hercules,CA)进行预处理,以去除痕量金属污染物。可通过使用含环糊精的聚阳离子形成Tf靶向和非靶向siRNA颗粒。通常,以3(+/-)的电荷比和0.5g/l的siRNA浓度在水中形成颗粒。用Tf(金刚烷-PEG-Tf)对靶向颗粒表面上百分之一的金刚烷-PEG分子进行修饰。将颗粒悬浮在5%(重量/体积)葡萄糖运载体溶液中以用于注射。
Davis等人(Nature,第464卷,2010年4月15日)使用靶向颗粒递送系统进行了RNA临床试验(临床试验注册号NCT00689065)。在21天周期的第1、3、8和10天,通过30分钟的静脉输注向患有标准护理疗法难治的实体癌的患者施用靶向颗粒剂量。颗粒包含合成递送系统、基本上由该合成递送系统组成或由该合成递送系统组成,该合成递送系统含有:(1)线性的基于环糊精的聚合物(CDP),(2)显示在纳米颗粒外部上以接合癌细胞表面上的TF受体(TFR)的人转铁蛋白(TF)靶向配体,(3)亲水性聚合物(用于促进生物流体中的纳米颗粒稳定性的聚乙二醇(PEG)),以及(4)被设计成降低RRM2表达的siRNA(临床中所用的序列先前表示为siR2B+5)。早已清楚TFR在恶性细胞中上调,并且RRM2是确立的抗癌靶标。这些颗粒(临床版本表示为CALAA-01)在非人类灵长类动物中的多剂量研究中显示出良好的耐受性。虽然已经通过脂质体递送向患有慢性粒细胞白血病的单个患者施用了siRNA,但是Davis等人的临床试验是首次用靶向递送系统全身性递送siRNA并且治疗患有实体癌的患者的人体试验。为了确定靶向递送系统是否可以将功能性siRNA有效递送到人类肿瘤,Davis等人研究了来自三个不同剂量组的三名患者(患者A、B和C,均患有转移性黑素瘤,并且分别接受了18、24和30mg m-2 siRNA的CALAA-01剂量)的活组织检查。对于本发明的核酸靶向系统也可考虑相似的剂量。可用含有线性的基于环糊精的聚合物(CDP)、显示在颗粒外部上以接合癌细胞表面上的TF受体(TFR)的人转铁蛋白(TF)靶向配体和/或亲水性聚合物(例如,用于促进生物流体中的颗粒稳定性的聚乙二醇(PEG))的颗粒来实现本发明的递送。
就本发明而言,优选的是使用颗粒或脂质包膜来递送RNA靶向复合物的一种或多种组分,例如核酸靶向效应蛋白(Cas13b)或其mRNA或者向导RNA或crRNA。可结合本发明的颗粒方面使用其他递送系统或载体。本发明涵盖的颗粒可以不同形式例如作为固体颗粒(例如,金属(诸如银、金、铁、钛)、非金属、基于脂质的固体、聚合物)、颗粒的悬浮液或它们的组合提供。可制备金属颗粒、介电颗粒和半导体颗粒以及杂合结构(例如,核-壳颗粒)。如果由半导体材料制成的颗粒足够小(通常小于10nm),可以发生电子能级的量化,则也可将这些颗粒标记为量子点。此类纳米级颗粒在生物医学应用中用作药物运载体或成像剂,并且可对其进行调整以用于本发明中的类似目的。
已经制造了半固体和软颗粒,并且它们在本发明的范围内。具有半固体性质的原型颗粒是脂质体。各种类型的脂质体颗粒目前在临床上用作进行抗癌药物和疫苗的递送系统。一半亲水并且另一半疏水的颗粒被称为Janus颗粒,对稳定乳液特别有效。它们可以在水/油界面处自组装并充当固体表面活性剂。
美国专利号8,709,843(通过引用并入本文)提供了一种用于将含治疗剂的颗粒靶向递送到组织、细胞和细胞内隔室的药物递送系统。本发明提供了包含与表面活性剂、亲水性聚合物或脂质缀合的聚合物的靶向颗粒。美国专利号6,007,845(通过引用并入本文)提供了具有通过将多官能化合物与一种或多种疏水性聚合物和一种或多种亲水性聚合物共价连接而形成的多嵌段共聚物的核并且含有生物活性材料的颗粒。美国专利号5,855,913(通过引用并入本文)提供了一种具有空气动力学上较轻的颗粒的微粒组合物,这些颗粒的振实密度小于0.4g/cm3,平均直径在5μm至30μm之间,其表面上掺有表面活性剂以用于将药物递送到肺部系统。美国专利号5,985,309(通过引用并入本文)提供了掺有表面活性剂和/或带正电或带负电的治疗剂或诊断剂和带相反电荷的带电分子的亲水性或疏水性复合物以用于递送到肺部系统的颗粒。美国专利号5,543,158(通过引用并入本文)提供了具有可生物降解固体的可生物降解的可注射颗粒,该固体核在表面上包含生物活性材料和聚(亚烷基二醇)部分。WO2012135025(也公开为US20120251560,通过引用并入本文)描述了缀合聚乙烯亚胺(PEI)聚合物和缀合氮杂大环化合物(统称为“缀合脂聚物(lipomer)”或“脂聚物”)。在某些实施方案中,可以设想本文引用的文献的此类方法和材料例如缀合脂聚物可以在核酸靶向系统的背景下用来实现体外、离体和体内基因组干扰,从而修饰基因表达,包括调节蛋白表达。
外泌体
外泌体是转运RNA和蛋白并且可以将RNA递送到脑和其他靶器官的内源性纳米囊泡。为了降低免疫原性,Alvarez-Erviti等人(2011,Nat Biotechnol 29:341)使用自衍生的树突细胞来产生外泌体。通过将树突细胞工程化为表达Lamp2b(一种与神经元特异性RVG肽融合的外泌体膜蛋白)来实现靶向脑。通过电穿孔用外源RNA加载纯化的外泌体。经静脉注射的RVG靶向外泌体将GAPDH siRNA特异性递送到脑中的神经元、小胶质细胞、少突胶质细胞,从而导致特异性基因敲低。预暴露于RVG外泌体未减弱敲低作用,并且在其他组织中未观察到非特异性摄取。通过强力敲低BACE1(阿尔茨海默病的一种治疗靶标)的mRNA(60%)和蛋白(62%),证明了外泌体介导的siRNA递送具有治疗潜能。
为了获得免疫惰性的外泌体池,Alvarez-Erviti等人从具有同质主要组织相容性复合物(MHC)单体型的近交C57BL/6小鼠中收获了骨髓。由于未成熟树突细胞会产生大量缺乏T细胞激活子诸如MHC-II和CD86的外泌体,因此Alvarez-Erviti等人选择具有粒细胞/巨噬细胞集落刺激因子(GM-CSF)的树突细胞培养7天。次日,使用成熟的超速离心方案从培养上清液中纯化外泌体。产生的外泌体在物理上是同质的,粒度分布在直径为80nm处达到峰值,这是通过粒子跟踪分析(NTA)和电子显微镜确定的。Alvarez-Erviti等人每106个细胞获得了6-12μg外泌体(基于蛋白浓度测量)。接下来,Alvarez-Erviti等人研究了使用适用于纳米级应用的电穿孔方案用外源负荷物加载经修饰的外泌体的可能性。由于电穿孔对于纳米级的膜颗粒尚未良好表征,因此使用非特异性Cy5标记的RNA来对电穿孔方案进行经验优化。超速离心和裂解外泌体后测定包封的RNA的量。在400V和125μF下进行电穿孔可最好保留RNA并且用于所有的后续实验。Alvarez-Erviti等人向正常C57BL/6小鼠施用150μg包封在150μg RVG外泌体中的每种BACE1 siRNA并且将敲低效率与四个对照进行比较:未处理的小鼠、仅用RVG外泌体注射的小鼠、用与体内阳离子脂质体试剂复合的BACE1 siRNA注射的小鼠,以及用与RVG-9R复合的BACE1 siRNA注射的小鼠,其中RVG肽与静电结合到siRNA的9个D-精氨酸缀合。在施用后3天分析皮层组织样品,在siRNA-RVG-9R处理的和siRNARVG外泌体处理的小鼠中均观察到显著的蛋白敲低(45%,P<0.05,以及62%,P<0.01),这是由于BACE1mRNA水平显著降低(分别为66%[+或-]15%,P<0.001,以及61%[+或-]13%,P<0.01)。此外,申请人证明了总[β]-淀粉样蛋白1-42水平(阿尔茨海默病的淀粉样斑块的一种主要组分)在RVG-外泌体处理的动物中显著降低(55%,P<0.05)。在脑室内注射BACE1抑制剂后,观察到β-淀粉样蛋白1-40的减少量大于正常小鼠中的减少量。Alvarez-Erviti等人对BACE1裂解产物进行了5'-cDNA末端快速扩增(RACE),为通过siRNA实现了RNAi介导的敲低提供了证据。最后,Alvarez-Erviti等人通过评估IL-6、IP-10、TNFα和IFN-α血清浓度研究了RNA-RVG外泌体是否在体内诱导了免疫反应。在外泌体处理之后,类似于siRNA转染试剂处理(与siRNA-RVG-9R相比之下,其有力地刺激了IL-6分泌),所有细胞因子都被记录为发生非显著变化,从而证实了外泌体处理具有免疫惰性属性。鉴于外泌体仅包封20%siRNA,用RVG-外泌体递送比RVG-9R递送显得更有效,因为用少五倍的siRNA实现了相当的mRNA敲低和更好的蛋白敲低,而没有相应水平的免疫刺激。这一实验证明了RVG-外泌体技术具有治疗潜力,其潜在地适合于与神经退行性疾病相关的基因的长期沉默。Alvarez-Erviti等人的外泌体递送系统可用于将本发明的核酸靶向系统递送到治疗靶标,尤其是神经退行性疾病。本发明可考虑约100至1000mg包封在约100至1000mg RVG外泌体中的核酸靶向系统的剂量。
El-Andaloussi等人(Nature Protocols 7,2112–2126(2012))提供了来源于培养细胞的外泌体,这些外泌体用来在体外和体内递送RNA。该方案首先描述了通过转染表达载体生成靶向外泌体,该表达载体包含与肽配体融合的外泌体蛋白。接着,El-Andaloussi等人解释了如何从转染的细胞上清液中纯化和表征外泌体。接下来,El-Andaloussi等人详述了将RNA加载到外泌体中的关键步骤。最后,El-Andaloussi等人概述了如何使用外泌体将RNA在体外和体内有效递送到小鼠脑中。还提供了预期结果的实例,其中通过功能测定和成像评估了外泌体介导的RNA递送。整个方案耗时约3周。根据本发明的递送或施用可使用由自衍生的树突细胞产生的外泌体进行。根据本文的教导,这可以用于实践本发明。
在另一个实施方案中,考虑了Wahlgren等人(Nucleic Acids Research,2012,第40卷,第17期,e130)的血浆外泌体。外泌体是由许多细胞类型包括树突细胞(DC)、B细胞、T细胞、肥大细胞、上皮细胞和肿瘤细胞产生的纳米大小的囊泡(大小为30-90nm)。这些囊泡是由晚期内体向内出芽而形成,然后在与质膜融合后释放到细胞外环境中。因为外泌体天然地在细胞之间运载RNA,所以这种特性可用于基因疗法,并且根据本公开可以用于实践本发明。来自血浆的外泌体可以如下制备:以900g离心血沉棕黄层20分钟以分离血浆,然后收获细胞上清液,以300g离心10分钟以去除细胞,并且以16 500g离心30分钟,然后通过0.22mm过滤器进行过滤。通过以120 000g超速离心70分钟使外泌体沉淀。根据RNAi Human/Mouse Starter Kit(Quiagen,Hilden,Germany)中的制造商说明将siRNA化学转染到外泌体中。将siRNA以2mmol/ml的最终浓度加入100ml PBS中。加入HiPerFect转染试剂后,将混合物在室温下孵育10分钟。为了去除过量的微团,使用醛/硫酸盐乳胶珠再分离外泌体。将核酸靶向系统化学转染到外泌体中可类似于siRNA进行。外泌体可与从健康供体外周血中分离的单核细胞和淋巴细胞共培养。因此,可以考虑将含有核酸靶向系统的外泌体引入人的单核细胞和淋巴细胞中,并以自体方式再引入人体内。因此,根据本发明的递送或施用可使用血浆外泌体进行。
脂质体
根据本发明的递送或施用可以用脂质体进行。脂质体是球形囊泡结构,由围绕内部水性区室的单层或多层脂质双层以及相对不可渗透的外部亲脂性磷脂双层组成。脂质体作为药物递送运载体受到了广泛关注,因为它们具有生物相容性、无毒性,可以递送亲水性和亲脂性药物分子,保护其负荷物免于被血浆酶降解,并且可以跨生物膜和血脑屏障(BBB)转运其负载(参见例如Spuch和Navarro,Journal of Drug Delivery,第2011卷,文章编号469679,第12页,2011,doi:10.1155/2011/469679查看综述)。脂质体可以由几种不同类型的脂质制成;然而,最常使用磷脂来产生脂质体作为药物运载体。虽然当脂质膜与一种水性溶液混合时脂质体形成是自发的,但是也可通过使用均质机、超声发生器或挤出设备以振动形式施加力来使该过程加速(参见例如Spuch和Navarro,Journal of Drug Delivery,第2011卷,文章编号469679,第12页,2011,doi:10.1155/2011/469679查看综述)。
可将几种其他添加剂加入脂质体中,以修饰其结构和特性。例如,可将胆固醇或鞘磷脂加入脂质体混合物中,以帮助稳定脂质体结构并防止脂质体内部负荷物泄漏。此外,由氢化卵磷脂酰胆碱或卵磷脂酰胆碱、胆固醇和磷酸二鲸蜡酯制备脂质体,并将它们的平均囊泡大小调节为约50和100nm。(参见例如Spuch和Navarro,Journal of Drug Delivery,第2011卷,文章编号469679,第12页,2011,doi:10.1155/2011/469679查看综述)。脂质体制剂主要可由天然磷脂和脂质诸如1,2-二硬脂酰基-sn-甘油-3-磷脂酰胆碱(DSPC)、鞘磷脂、卵磷脂酰胆碱和单唾液酸神经节苷脂组成。由于这种制剂仅由磷脂组成,因此脂质体制剂遇到了许多挑战,其中一个挑战就是在血浆中的不稳定性。已经作出了克服这些挑战的若干尝试,特别是在脂质膜的处理方面。其中一种尝试集中在胆固醇的处理方面。将胆固醇加入常规制剂中减缓了包封的生物活性化合物快速释放到血浆中的速度,或者加入1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE)增加了稳定性(参见例如Spuch和Navarro,Journal ofDrug Delivery,第2011卷,文章编号469679,第12页,2011,doi:10.1155/2011/469679查看综述)。在一个特别有利的实施方案中,Trojan Horse脂质体(也称为Trojan Horses分子)是可取的,其方案可见于http://cshprotocols.cshlp.org/content/2010/4/pdb.prot5407.long。这些颗粒允许在血管内注射转基因后将其递送到整个脑中。不受限制,据认为具有与表面缀合的特异性抗体的中性脂质颗粒允许经由内吞作用跨越血脑屏障。申请人假定利用Trojan Horse脂质体经由血管内注射将CRISPR-Cas13b复合物递送到脑中,这将获得全脑转基因动物而无需胚胎操作。对于在脂质体中的体内施用,可考虑约1-5g DNA或RNA。
在另一个实施方案中,核酸靶向系统或其组分可在脂质体诸如稳定的核酸-脂质颗粒(SNALP)中施用(参见例如Morrissey等人,Nature Biotechnology,第23卷,第8期,2005年8月)。考虑了每日静脉注射约1、3或5mg/kg/天的在SNALP中靶向的特异性核酸靶向系统。每日治疗可超过约三天,然后每周治疗持续约五周。在另一个实施方案中,还考虑了通过以约1或2.5mg/kg的剂量静脉注射施用的封装有特异性核酸靶向系统的SNALP(参见例如Zimmerman等人,Nature Letters,第441卷,2006年5月4日)。SNALP制剂可含有摩尔百分比为2:40:10:48的脂质3-N-[(w-甲氧基聚(乙二醇)2000)氨甲酰]-1,2-二肉豆蔻氧基-丙胺(PEG-C-DMA)、1,2-二亚油基氧基-N,N-二甲基-3-氨基丙烷(DLinDMA)、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)和胆固醇(例如参见Zimmerman等人,Nature Letters,第441卷,2006年5月4日)。在另一个实施方案中,已经证明稳定的核酸-脂质颗粒(SNALP)可以将分子有效递送到高度血管化的HepG2-衍生的肝脏肿瘤,但是不递送到血管化较差的HCT-116衍生的肝脏肿瘤(参见例如Li,Gene Therapy(2012)19,775-780)。SNALP脂质体可如下制备:用二硬脂酰磷脂酰胆碱(DSPC)、胆固醇和siRNA,使用25:1的脂质/siRNA比率和48/40/10/2的胆固醇/D-Lin-DMA/DSPC/PEG-C-DMA摩尔比配制D-Lin-DMA和PEG-C-DMA。所得的SNALP脂质体的大小为约80-100nm。在又一个实施方案中,SNALP可包含合成胆固醇(Sigma-Aldrich,St Louis,MO,USA)、二棕榈酰磷脂酰胆碱(Avanti Polar Lipids,Alabaster,AL,USA)、3-N-[(w甲氧基聚(乙二醇)2000)氨甲酰]-1,2-二肉豆蔻氧基丙基胺和阳离子1,2-二亚油基氧基-3-N,N二甲基氨基丙烷(参见例如Geisbert等人,Lancet 2010;375:1896-905)。可考虑以例如作为静脉推注施用的每剂量约2mg/kg总核酸靶向系统的剂量。在又一个实施方案中,SNALP可包含合成胆固醇(Sigma-Aldrich)、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC;Avanti Polar Lipids Inc.)、PEG-cDMA和1,2-二亚油基氧基-3-(N;N-二甲基)氨基丙烷(DLinDMA)(参见例如Judge,J.Clin.Invest.119:661-673(2009))。用于体内研究的制剂可包含约9:1的最终脂质/RNA质量比。
Alnylam Pharmaceuticals的Barros和Gollob已对RNAi纳米药物的安全性进行了综述(例如参见Advanced Drug Delivery Reviews 64(2012)1730-1737)。稳定的核酸脂质颗粒(SNALP)由四种不同的脂质组成:在低pH下为阳离子的可电离脂质(DLinDMA)、中性辅助脂质、胆固醇和可扩散聚乙二醇(PEG)-脂质。该颗粒的直径为大约80nm,并且在生理pH值下呈电中性。在配制过程中,可电离脂质用于在颗粒形成过程中使脂质与阴离子RNA凝聚。当在越来越酸性的内体条件下带正电时,可电离脂质还会介导SNALP与内体膜融合,从而使RNA释放到细胞质中。PEG-脂质在配制过程中可稳定颗粒并减少聚集,随后提供可改善药代动力学特性的中性亲水性外部。迄今为止,已经使用SNALP制剂和RNA启动了两个临床项目。Tekmira Pharmaceuticals最近在LDL胆固醇升高的成年志愿者中完成了SNALP-ApoB的I期单剂量研究。ApoB主要在肝脏和空肠中表达,对于VLDL和LDL的组装和分泌必不可少。十七名受试者接受了单剂量的SNALP-ApoB(跨7个剂量水平的剂量递增)。没有证据表明产生了肝脏毒性(基于临床前研究,被预期为潜在的剂量限制性毒性)。接受最高剂量的(两名受试者中的)一名受试者经历了与免疫系统刺激相一致的流感样症状,于是决定结束试验。Alnylam Pharmaceuticals类似地推出了ALN-TTR01,其采用如上所述的SNALP技术并且靶向突变体和野生型TTR的肝细胞产生,从而治疗TTR淀粉样变性(ATTR)。已经描述了三种ATTR综合征:家族性淀粉样多神经病(FAP)和家族性淀粉样心肌病(FAC),这两者均由TTR中的常染色体显性突变引起;以及由野生型TTR引起的老年全身性淀粉样变性(SSA)。最近在ATTR患者中完成了ALN-TTR01的安慰剂对照单剂量递增I期试验。通过15分钟静脉输注在0.01至1.0mg/kg(基于siRNA)的剂量范围内向31名患者施用ALN-TTR01(23名输注研究药物,8名输注安慰剂)。治疗耐受性良好,在肝功能检查中没有显著增加。23名患者中,以≥0.4mg/kg输注的3名患者出现了与输注相关的反应;所有患者都对减慢输注速度有反应,并且所有患者都继续参与研究。以最高剂量1mg/kg输注的两名患者出现了血清细胞因子IL-6、IP-10和IL-1ra的最小和瞬时升高(根据临床前和NHP研究预期)。在1mg/kg处观察到血清TTR的降低,这是ALN-TTR01的预期药理效应。
在又一个实施方案中,可通过将阳离子脂质、DSPC、胆固醇和PEG-脂质例如以40:10:40:10的摩尔比分别溶解在例如乙醇中来制备SNALP(参见Semple等人,NatureNiotechnology,第28卷,第2期,2010年2月,第172-177页)。将该脂质混合物加入水性缓冲液(50mM柠檬酸盐,pH 4)中,混合直到最终的乙醇和脂质浓度分别为30%(体积/体积)和6.1mg/ml,使其在22℃下平衡2分钟,然后挤出。使用Lipex挤出机(Northern Lipids),在22℃下将水合脂质通过两个重叠的孔径为80nm的滤膜(Nuclepore)挤出,直到获得直径为70-90nm的囊泡(通过动态光散射分析确定)。这一般需要通过1-3次。将siRNA(溶解在50mM柠檬酸盐、pH 4水溶液中,含30%乙醇)以约5ml/min的速率一边混合一边加入预平衡(35℃)的囊泡中。达到0.06(重量/重量)的最终靶siRNA/脂质比率后,将混合物在35℃下再孵育30分钟,以进行囊泡重组和siRNA包封。然后除去乙醇,并通过透析或切向流渗滤将外部缓冲液替换为PBS(155mM NaCl、3mM Na2HPO4、1mM KH2PO4,pH 7.5)。使用受控的逐步稀释法过程将siRNA包封在SNALP中。KC2-SNALP的脂质成分为DLin-KC2-DMA(阳离子脂质)、二棕榈酰磷脂酰胆碱(DPPC;Avanti Polar Lipids)、合成胆固醇(Sigma)和PEG-C-DMA,它们以摩尔比57.1:7.1:34.3:1.4使用。在形成加载的颗粒后,将SNALP用PBS透析,并在使用前通过0.2μm滤膜过滤灭菌。平均粒度为75-85nm,并且90-95%的siRNA被包封在脂质颗粒中。用于体内测试的制剂中最终的siRNA/脂质比率为约0.15(重量/重量)。即将使用前,将含有因子VIIsiRNA的LNP-siRNA系统在无菌PBS中稀释到适当浓度,并且通过侧尾静脉以10ml/kg的总体积静脉施用制剂。这种方法和这些递送系统可外推到本发明的核酸靶向系统。
其他脂质
其他阳离子脂质诸如氨基脂质2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环(DLin-KC2-DMA)可用来例如类似于SiRNA包封核酸靶向系统或其一种或多种组分或编码其的一种或多种核酸分子(参见例如Jayaraman,Angew.Chem.Int.Ed.2012,51,8529–8533),因此可用于实践本发明。可考虑具有以下脂质组成的预成型囊泡:摩尔比分别为40/10/40/10的氨基脂质、二硬脂酰磷脂酰胆碱(DSPC)、胆固醇和(R)-2,3-双(十八烷氧基)丙基-1-(甲氧基聚(乙二醇)2000)丙基碳酸酯(PEG-脂质),以及比率为大约0.05(重量/重量)的FVII siRNA/总脂质。为了确保在70-90nm范围内的窄粒度分布以及0.11+0.04(n=56)的低多分散性指数,可在加入向导RNA之前将颗粒通过80nm膜挤出多达三次。可使用含有高效氨基脂质16的颗粒,其中可进一步优化四种脂质组分即16、DSPC、胆固醇和PEG-脂质的摩尔比(50/10/38.5/1.5)以增强体内活性。
Michael S D Kormann等人("Expression of therapeutic proteins afterdelivery of chemically modified mRNA in mice:Nature Biotechnology,第29卷,第154-157页(2011))描述了使用脂质包膜来递送RNA。使用脂质包膜在本发明中也是优选的。
在另一个实施方案中,可将脂质与本发明的RNA靶向系统(CRISPR-Cas13b复合物,即与crRNA复合的Cas13b)或其一种或多种组分或编码其的一种或多种核酸分子一起配制,以形成脂质纳米颗粒(LNP)。脂质包括但不限于DLin-KC2-DMA4、C12-200和辅助脂质二硬脂酰磷脂酰胆碱、胆固醇,并且可使用自发囊泡形成程序将PEG-DMG与RNA靶向系统而不是siRNA一起配制(参见例如Novobrantseva,Molecular Therapy–Nucleic Acids(2012)1,e4;doi:10.1038/mtna.2011.3)。组分摩尔比可为约50/10/38.5/1.5(DLin-KC2-DMA或C12-200/二硬脂酰磷脂酰胆碱/胆固醇/PEG-DMG)。在为DLin-KC2-DMA和C12-200脂质颗粒(LNP)的情况下,最终的脂质:siRNA重量比可分别为约12:1和9:1。制剂的平均粒径可为约80nm,包覆效率>90%。可考虑3mg/kg的剂量。Tekmira在美国和国外拥有大约95个专利家族的产品组合,涉及LNP和LNP制剂的各个方面(参见例如美国专利号7,982,027、7,799,565;8,058,069;8,283,333;7,901,708;7,745,651;7,803,397;8,101,741;8,188,263;7,915,399;8,236,943和7,838,658以及欧洲专利号1766035 1519714、1781593和1664316),所有这些产品都可用于和/或适于本发明。
可将RNA靶向系统或其一种或多种组分或编码其的一种或多种核酸分子包封在诸如在美国公开申请20130252281和20130245107以及20130244279(转让给ModernaTherapeutics)中进一步描述的PLGA微球中进行递送,这些申请涉及配制包含经修饰的核酸分子的组合物的各方面,所述核酸分子可编码蛋白、蛋白前体或者蛋白或蛋白前体的部分或完全加工形式。该制剂的摩尔比可为50:10:38.5:1.5-3.0(阳离子脂质:融合脂质:胆固醇:PEG脂质)。PEG脂质可选自但不限于PEG-c-DOMG、PEG-DMG。融合脂质可为DSPC。还可参见Schrum等人,Delivery and Formulation of Engineered Nucleic Acids、美国公开申请20120251618。
Nanomerics的技术解决了许多疗法的生物利用度挑战,包括低分子量疏水性药物、肽和基于核酸的疗法(质粒、siRNA、miRNA)。该技术已经证明具有明显优势的特异性施用途径包括口服途径、跨血脑屏障转运、向实体瘤和眼部递送。参见例如Mazza等人,2013,ACS Nano.2013年2月26日;7(2):1016-26;Uchegbu和Siew,2013,J Pharm Sci.102(2):305-10以及Lalatsa等人,2012,J Control Release.2012年7月20日;161(2):523-36。
美国专利公开号20050019923描述了用于将生物活性分子诸如多核苷酸分子、肽和多肽和/或药剂递送到哺乳动物体内的阳离子树状大分子。所述树状大分子适合靶向将生物活性分子递送到例如肝、脾、肺、肾或心脏(或甚至脑)。树状大分子是由简单的分支单体单元逐步制备而成的合成三维大分子,可以轻松控制和改变其性质和功能。树状大分子是通过将构建嵌段重复加成到多功能核(发散合成法)上或朝向多功能核重复加成构建嵌段(收敛合成法)而合成的,并且每次加成构建嵌段的三维壳都会导致新一代的树状大分子形成。聚丙烯亚胺树状大分子从二氨基丁烷核开始,通过将丙烯腈双迈克尔加成到伯胺上,然后将腈加氢,在该二氨基丁烷核上加成两倍数量的氨基基团。这导致氨基基团加倍。聚丙烯亚胺树状大分子含有100%的可质子化氮和多达64个末端氨基基团(第5代,DAB 64)。可质子化基团通常是能够在中性pH下接受质子的胺基团。树状大分子作为基因递送剂的用途主要集中在聚酰胺-胺和含磷化合物的用途,其中胺/酰胺的混合物或N--P(O2)S分别作为缀合单元,还没有工作报道更低代的聚丙烯亚胺树状大分子用于基因递送的用途。还研究了聚丙烯亚胺树状大分子作为pH敏感的受控释放系统,用于递送药物以及当被外周氨基酸基团化学修饰时用于包封它们的客体分子。还研究了聚丙烯亚胺树状大分子的细胞毒性和与DNA的相互作用以及DAB 64的转染效率。美国专利公开号20050019923基于以下观察结果:与早期报道相反,阳离子树状大分子诸如聚丙烯亚胺树状大分子显示出用于靶向递送生物活性分子诸如遗传物质的合适特性,诸如特异性靶向和低毒性。另外,阳离子树状大分子的衍生物也显示出用于靶向递送生物活性分子的合适特性。还可参见BioactivePolymers(美国公开申请20080267903),其公开了包括阳离子聚胺聚合物和树状聚合物在内的各种聚合物被证明具有抗增殖活性,因此可用于治疗其特征为发生不希望的细胞增殖的疾病,诸如赘生物和肿瘤、炎症性疾病(包括自身免疫性疾病)、银屑病和动脉粥样硬化。这些聚合物可单独用作活性剂,或用作其他治疗剂诸如用于基因疗法的药物分子或核酸的递送媒介物。在这种情况下,这些聚合物本身固有的抗肿瘤活性可补充要递送的药剂的活性。这些专利公开的公开内容可与本文的教导结合使用,用于递送核酸靶向系统或其一种或多种组分或编码其的一种或多种核酸分子。
超电荷蛋白
超电荷蛋白是一类具有异常高的正或负净理论电荷的工程化或天然存在的蛋白,并且可用于递送一个或多个核酸靶向系统或其一种或多种组分或编码其的一种或多种核酸分子。超负电荷和超正电荷蛋白均表现出显著的抵抗热诱导或化学诱导的聚集的能力。超正电荷蛋白还能够穿透哺乳动物细胞。将负荷物诸如质粒DNA、RNA或其他蛋白与这些蛋白结合可以使这些大分子能够在体外和体内功能性递送到哺乳动物细胞中。David Liu的实验室在2007年报道了超电荷蛋白的产生和表征(Lawrence等人,2007,Journal of theAmerican Chemical Society 129,10110–10112)。
将RNA和质粒DNA以非病毒方式递送到哺乳动物细胞中对于研究和治疗应用都是有价值的(Akinc等人,2010,Nat.Biotech.26,561-569)。将纯化的+36GFP蛋白(或其他超正电荷蛋白)在适当的无血清培养基中与RNA混合并使其复合,然后加入细胞中。在此阶段加入血清会抑制超电荷蛋白-RNA复合物的形成并降低治疗效果。发现以下方案对多种细胞系有效(McNaughton等人,2009,Proc.Natl.Acad.Sci.USA 106,6111–6116)。但是,应当进行改变蛋白和RNA剂量的先导实验,以优化特定细胞系的程序。(1)治疗前一天,在48孔板中每孔接种1×105个细胞。(2)治疗当天,在无血清培养基中稀释纯化的+36GFP蛋白直到最终浓度为200nM。加入RNA直到最终浓度为50nM。涡旋混合并在室温下孵育10分钟。(3)孵育期间,从细胞中吸出培养基,并用PBS洗涤一次。(4)孵育+36GFP和RNA后,将蛋白-RNA复合物加入细胞中。(5)将细胞与复合物在37℃下孵育4小时。(6)孵育后,吸出培养基,并用20U/mL肝素PBS洗涤三次。将细胞与含血清的培养基再孵育48小时或更长时间,具体取决于活性测定。(7)通过免疫印迹、qPCR、表型测定或其他合适的方法分析细胞。
发现+36GFP在许多细胞中都是有效的质粒递送试剂。还可参见例如McNaughton等人,Proc.Natl.Acad.Sci.USA 106,6111-6116(2009);Cronican等人,ACS ChemicalBiology 5,747-752(2010);Cronican等人,Chemistry&Biology 18,833-838(2011);Thompson等人,Methods in Enzymology 503,293-319(2012);Thompson,D.B.等人,Chemistry&Biology 19(7),831-843(2012)。超荷电蛋白的方法可用于和/或被调适为递送本发明的一个或多个RNA靶向系统或其一种或多种组分或编码其的一种或多种核酸分子。
细胞穿透肽(CPP)
在又一个实施方案中,考虑了细胞穿透肽(CPP)用于递送CRISPR Cas系统。CPP是促进细胞摄取各种分子负荷物(从纳米级颗粒到小化学分子和大DNA片段)的短肽。本文所用的术语“负荷物”包括但不限于治疗剂、诊断探针、肽、核酸、反义寡核苷酸、质粒、蛋白、颗粒(包括纳米颗粒)、脂质体、发色团、小分子和放射性物质。在本发明的各方面,负荷物还可包括CRISPR Cas系统的任何组分或整个功能性CRISPR Cas系统。本发明的各方面还提供了用于将希望的负荷物递送到受试者体内的方法,其包括:(a)制备包含本发明的细胞穿透肽以及希望的负荷物的复合物,并且(b)将复合物经口服、关节内、腹膜内、鞘内、动脉内、鼻内、实质内、皮下、肌内、静脉内、经皮、直肠内或局部施用给受试者。负荷物通过化学键合经由共价键或通过非共价相互作用与肽缔合。CPP的功能是将负荷物递送到细胞中,这一过程通常通过内吞作用发生,其中负荷物被递送到活哺乳动物细胞的内体中。细胞穿透肽具有不同的大小、氨基酸序列和电荷,但是所有CPP都具有一个独特的特征,即能够转运质膜并促进将各种分子负荷物递送到细胞质或细胞器中。CPP转运可分为三种主要进入机制:直接穿透膜、内吞作用介导的进入以及通过形成暂时结构进行转运。CPP已在医学上得到广泛应用,在治疗不同疾病(包括癌症)时作为药物递送剂、作为病毒抑制剂以及作为用于细胞标记的造影剂。后者的实例包括充当GFP的运载体、MRI造影剂或量子点。CPP作为用于研究和医学的体外和体内递送载体具有巨大潜力。CPP通常具有以下氨基酸组成:包含较高相对丰度的带负电荷氨基酸,诸如赖氨酸或精氨酸,或者具有包含交替模式的极性/带电荷氨基酸和非极性疏水氨基酸的序列。这两种类型的结构分别称为聚阳离子或两亲性。第三类CPP是仅包含非极性残基、具有低净电荷或具有对于细胞摄入至关重要的疏水氨基酸基团的疏水肽。最初发现的其中一种CPP是来自人类免疫缺陷病毒1(HIV-1)的反式激活转录激活因子(Tat),发现其被多种培养细胞类型从周围培养基中有效摄取。从那以后,已知CPP的数量大大增加,并产生了具有更有效蛋白转导特性的小分子合成类似物。CPP包括但不限于穿透素、Tat(48-60)、转运素和(R-AhX-R4)(Ahx=氨基己酰基)。
美国专利8,372,951提供了一种来源于嗜酸粒细胞阳离子蛋白(ECP)的CPP,其表现出高细胞穿透效率和低毒性。还提供了将CPP与其负荷物一起递送到脊椎动物受试者中的各方面。CPP及其递送的其他方面在美国专利8,575,305、8;614,194和8,044,019中描述。CPP可以用于递送CRISPR-Cas系统或其组分。Suresh Ramakrishna、Abu-Bonsrah KwakuDad、Jagadish Beloor等人的稿件“Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA”(Genome Res,2014年4月2日,[印刷版前的电子版])中也提供了CPP可以用于递送CRISPR-Cas系统或其组分,该文献全文通过引用并入,其中证明了用CPP缀合的重组Cas9蛋白和CPP复杂的向导RNA处理可以导致人类细胞系中的内源基因破坏。在该论文中,Cas9蛋白经由硫醚键缀合到CPP,而向导RNA与CPP复合,从而形成缩合的带负电荷颗粒。结果表明,用经修饰的Cas9和向导RNA同时和顺序处理人类细胞,包括胚胎干细胞、真皮成纤维细胞、HEK293T细胞、HeLa细胞和胚胎癌细胞,可以导致有效的基因破坏,相对于质粒转染降低了脱靶突变。CPP递送可以用于实践本发明。
可植入装置
在另一个实施方案中,还考虑了可植入装置用于递送核酸靶向系统或其一种或多种组分或编码其的一种或多种核酸分子。例如,美国专利公开20110195123公开了一种局部且长期洗脱药物的可植入医疗装置,包括几种类型的这种装置、实施的治疗模式和植入方法。该装置包括聚合物基材诸如用作装置主体的基质以及药物,在某些情况下还包括支架材料诸如金属或其他聚合物以及增强可见度和成像的材料。可植入递送装置可有利于提供局部且长期释放,其中药物直接释放到病变区域诸如肿瘤、炎症、变性的细胞外基质(ECM),或用于有症状的目的,或释放到受损的平滑肌细胞,或用于预防。如上文所公开,一种药物是RNA,并且该系统可用于和/或适于本发明的核酸靶向系统。在一些实施方案中,植入模式是当今针对包括近距离放射疗法和针吸活组织检查在内的其他治疗开发和使用的现有植入程序。在这种情况下,本发明中描述的新植入物的尺寸类似于原始植入物。通常,在同一治疗程序中会植入几个装置。
美国专利公开20110195123提供了一种药物递送可植入或可插入系统,其包括适用于腔体诸如腹腔和/或其中未锚定或未附接该药物递送系统的任何其他类型的施用的系统,包含可生物稳定的和/或可降解的和/或可生物吸收的聚合物基材,所述聚合物基材可例如任选地是基质。应当注意,术语“插入”也包括植入。如美国专利公开20110195123中所述,该药物输送系统优选地被实施为“Loder”。
聚合物或多种聚合物是生物相容的,结合药剂和/或多种药剂,使得能够以受控的速率释放药剂,其中在一些实施方案中,聚合物基材诸如基质的总体积任选地且优选地不大于允许达到该药剂的治疗水平的最大体积。作为非限制性实例,这种体积优选地在0.1m3至1000mm3的范围内,如药剂负载的体积所要求的。例如在与其尺寸由功能性决定的装置(例如但不限于膝关节、宫内节育环或子宫颈环等等)结合时,该Loder可任选地更大。
在一些实施方案中,药物递送系统(用于递送组合物)被设计成优选地采用可降解的聚合物,其中主要释放机制是本体溶蚀。或者在某些实施方案中,使用不可降解或降解缓慢的聚合物,其中主要释放机制是扩散而不是本体溶蚀,因此外部起到膜的作用,而其内部起到药物贮存器的作用,该贮存器长时间(例如约一周至约几个月)内几乎不受环境的影响。还可任选地使用具有不同释放机制的不同聚合物的组合。在总药物释放期的相当长一段时间内,优选地维持表面处的浓度梯度有效恒定,因此扩散速率是有效恒定的(称为“零模”扩散)。所谓术语“恒定”,是指优选地维持在治疗效果的较低阈值之上的扩散速率,但是其仍可任选地具有初期突释的特征并且/或者可波动,例如从而增加和降低到一定程度。优选地长期如此维持扩散速率,并且可以认为它恒定到一定水平,以优化治疗有效期,例如有效沉默期。
药物递送系统任选地且优选地被设计成保护基于核苷酸的治疗剂免于降解,无论是由于化学性质还是由于受试者体内的酶和其他因素的攻击。
美国专利公开号20110195123的药物输送系统任选地与感测和/或激活器具相关联,这些器具在通过激活和/或加速/减速的无创和/或微创方法植入装置之时和/或之后运行,所述方法例如任选地包括但不限于热力加热和冷却、激光束和超声波,包括聚焦超声和/或RF(射频)方法或装置。
根据美国专利公开20110195123的一些实施方案,用于局部递送的部位可任选地包括特征为细胞高度异常增殖、细胞凋亡受到抑制的靶部位,包括肿瘤、活动性和/或慢性炎症和感染,包括自身免疫性疾病状态、退化组织(包括肌肉和神经组织)、慢性疼痛、退行性部位,以及用于增强组织再生的骨折位置以及其他伤口位置,以及受损的心肌、平滑肌和横纹肌。
用于植入组合物的部位或靶部位优选地具有足够小用于靶向局部递送的半径、面积和/或体积。例如,靶部位的直径任选地在约0.1mm至约5cm的范围内。
优选地选择靶部位的位置以实现最大治疗功效。例如,任选地且优选地将药物递送系统的组合物(任选地与如上所述用于植入的装置一起)植入肿瘤环境或与其相关的血液供应内或附近。
例如,任选地将所述组合物(任选地与所述装置一起)经由乳头在血管系统之内植入胰腺、前列腺、乳房、肝脏内或附近等等。
靶位置任选地选自以下位置、基本上由以下位置组成或由以下位置组成(仅作为非限制性实例,因为任选地体内的任何部位都可能适合植入Loder):1.脑中的退行性部位,如帕金森病或阿尔茨海默病中的基底神经节、白质和灰质;2.脊柱,如肌萎缩性脊髓侧索硬化症(ALS);3.子宫颈,用于预防HPV感染;4.活动性和慢性炎症性关节;5.真皮,如银屑病;6.交感和感觉神经部位,用于止痛作用;7.骨内植入;8.急性和慢性感染部位;9.阴道内;10.内耳听觉系统、内耳迷路、前庭系统;11.气管内12.心内、冠状动脉、心外膜;13.膀胱;14.胆道系统;15.实质组织,包括但不限于肾、肝、脾;16.淋巴结;17.唾液腺;18.牙龈;19.关节内(进入关节);20.眼内;21.脑组织;22.脑室;23.腔体,包括腹腔(例如但不限于卵巢癌);24.食道内以及25.直肠内。
任选地,系统(例如,含有组合物的装置)的插入与在靶部位及该部位附近向ECM注射材料相关联,以影响该靶部位及该部位附近的局部pH和/或温度和/或影响ECM中的药物扩散和/或药物动力学的其他生物因素。
任选地,根据一些实施方案,所述药剂的释放可以与感测和/或激活器具相关联,这些器具在通过激活和/或加速/减速的无创和/或微创和/或其他方法植入装置之时和/或之后运行,所述方法包括激光束、辐射、热力加热和冷却以及超声波,包括聚焦超声和/或RF(射频)方法或装置以及化学激活物。
根据美国专利公开20110195123的其他实施方案,药物优选地包含RNA,例如用于如下所述的乳房、胰腺、脑、肾脏、膀胱、肺和前列腺中的局部癌症病例。虽然以RNAi为例,但是许多药物都适用于包封在Loder中,并且可以与本发明结合使用,只要这些药物可以包封在Loder基材诸如基质中即可,并且这种系统可用于和/或被调适为递送本发明的核酸靶向系统。
作为特定应用的另一个实例,由于基因表达异常而发生神经和肌肉退行性疾病。局部递送RNA可具有治疗特性,以干扰这种异常基因表达。局部递送包括小药物和大分子在内的抗凋亡、抗炎和抗退行性药物也可任选地具有治疗性。在这种情况下,Loder用于以恒定的速率和/或通过单独植入的专用装置延长释放。所有这些均可用于和/或适用于本发明的核酸靶向系统。
作为特定应用的又一个实例,用基因修饰剂治疗精神和认知障碍。基因敲低是一种治疗选择。Loder向中枢神经系统部位局部递送药剂是精神和认知障碍的治疗选择,这些精神和认知障碍包括但不限于精神病、双相障碍、精神官能症和行为疾病。当在特定脑部位植入时,Loder还可局部递送药物,包括小药物和大分子。所有这些均可用于和/或适用于本发明的核酸靶向系统。
作为特定应用的另一个实例,在局部位点使先天性和/或适应性免疫介质沉默能够预防器官移植排斥。利用植入移植器官和/或植入部位中的Loder局部递送RNA和免疫调节试剂可以通过排斥性免疫细胞诸如针对移植器官被激活的CD8而抑制局部免疫。所有这些均可用于和/或适用于本发明的核酸靶向系统。
作为特定应用的另一个实例,包括VEGF和血管生成素等在内的血管生长因子对于新血管形成必不可少。局部递送这些因子、肽、拟肽或抑制它们的阻遏物的是一种重要的治疗方式;使阻遏物沉默以及用Loder局部递送刺激血管生成的这些因子、肽、大分子和小药物对于周围血管疾病、全身性血管疾病和心血管疾病具有治疗性。
插入方法诸如植入可任选地已用于其他类型的组织植入和/或用于插入和/或用于组织取样,任选地在这类方法中没有进行修改,或者另选地任选地仅进行了非重点修改。这类方法任选地包括但不限于近距离放射治疗方法、活组织检查、用和/或不用超声的内窥镜检查诸如ERCP、进入脑组织的立体定向法、腹腔镜检查,包括用腹腔镜植入关节、腹腔器官、膀胱壁和体腔中。
在本文讨论的可植入装置技术可以与本文的教导一起使用,因此根据本公开和本领域的知识,可经由可植入装置递送CRISPR-Cas系统或其组分或者编码或提供组分的核酸分子。
患者特异性筛选方法
靶向RNA例如三核苷酸重复序列的核酸靶向系统可以用于筛选患者或患者样品中是否存在这类重复序列。这些重复序列可以是核酸靶向系统的RNA的靶标,并且如果核酸靶向系统与其结合,则可以检测到该结合,从而表明存在这种重复序列。因此,核酸靶向系统可以用于筛选患者或患者样品中是否存在重复序列。然后可以向患者施用一种或多种合适的化合物以解决病症;或者,可以向患者施用核酸靶向系统以结合并且引起插入、缺失或突变并减轻病症。
本发明使用核酸来结合靶RNA序列。
CRISPR效应蛋白mRNA和向导RNA
也可以分开递送CRISPR效应蛋白(Cas13b)或其mRNA(或更一般为其核酸分子)和向导RNA或crRNA,例如施用前者1-12小时(优选2-6小时左右)后才施用向导RNA或crRNA,也可以一起递送。可以在初次施用后1-12小时(优选2-6小时左右)施用第二加强剂量的向导RNA或crRNA。
Cas13b效应蛋白有时在本文中称为CRISPR酶。应当理解,效应蛋白基于酶或衍生自酶,因此在一些实施方案中,术语“效应蛋白”当然包括“酶”。然而,还应当理解,如一些实施方案中所要求的,效应蛋白可具有DNA或RNA结合活性,但不一定具有切割或切口活性,包括死亡Cas效应蛋白功能。
细胞靶标包括造血干/祖细胞(CD34+);人类T细胞;以及眼睛(视网膜细胞),例如光感器前体细胞。
本发明的方法还可以包括模板的递送。模板的递送可与任何或所有CRISPR效应蛋白(Cas13b)或指导序列或crRNA的递送同时或分开进行,并且经由相同或不同的递送机制进行。诱导型系统
在一些实施方案中,CRISPR效应蛋白(Cas13b)可形成诱导型系统的组分。系统的可诱导性质将允许使用一种能量形式来对基因编辑或基因表达进行时空控制。能量形式可包括但不限于电磁辐射、声能、化学能和热能。诱导型系统的实例包括四环素诱导型启动子(Tet-On或Tet-Off)、小分子双杂交转录激活系统(FKBP、ABA等)或光诱导型系统(光敏素、LOV结构域或隐花色素)。在一个实施方案中,CRISPR效应蛋白可以是光诱导型转录效应物(LITE)的一部分,以便以序列特异性方式指导转录活性的变化。光的组分可包括CRISPR效应蛋白、光响应性细胞色素异二聚体(例如,来自拟南芥)和转录激活/阻遏结构域。诱导型DNA结合蛋白的其他实例及其使用方法在US 61/736465和US 61/721,283以及WO2014018423 A2中提供,这些文献全文据此通过引用并入。
自失活系统
一旦细胞中RNA的所有拷贝都被编辑,就不再需要在该细胞中继续Cas13b效应蛋白表达或活性。依靠使用Cas13b的RNA或者crRNA作为指导靶序列的自失活系统可以通过阻止Cas13b的表达或复合物的形成来关闭系统。
试剂盒
在一方面,本发明提供了含有上述方法和组合物中公开的任何一种或多种元件的试剂盒。在一些实施方案中,该试剂盒包含本文所教导的载体系统或本文所教导的CRISPR/Cas13b系统或复合物的一种或多种组分,诸如crRNA和/或Cas13b效应蛋白或编码Cas13b效应蛋白的mRNA,以及使用该试剂盒的说明书。这些元件可单独或组合提供,并且可在任何合适的容器诸如小瓶、瓶或管中提供。在一些实施方案中,该试剂盒包括一种或多种语言例如一种以上语言的说明书。说明书可特定于本文所述的应用和方法。在一些实施方案中,该试剂盒包含一种或多种试剂,用于利用本文所述的一种或多种元件的过程中。试剂可在任何合适的容器中提供。例如,试剂盒可提供一种或多种反应或储存缓冲液。试剂可以可用于特定测定的形式提供,或者以在使用前需要添加一种或多种其他组分的形式(例如,以浓缩或冻干形式)提供。缓冲液可以是任何缓冲液,包括但不限于碳酸钠缓冲液、碳酸氢钠缓冲液、硼酸盐缓冲液、Tris缓冲液、MOPS缓冲液、HEPES缓冲液以及它们的组合。在一些实施方案中,缓冲剂是碱性的。在一些实施方案中,缓冲液的pH为约7至约10。在一些实施方案中,该试剂盒包含一个或多个寡核苷酸,它们对应于用于插入载体中的指导序列,以便可操作地连接指导序列或crRNA序列和调控元件。在一些实施方案中,该试剂盒包含同源重组模板多核苷酸。在一些实施方案中,该试剂盒包含本文所述的一个或多个载体和/或一个或多个多核苷酸。试剂盒可有利地允许提供本发明的系统的所有元件。
本发明在例如基因疗法、药物筛选、疾病诊断和预后中具有广泛的应用。
术语“多核苷酸”、“核苷酸”、“核苷酸序列”、“核酸”和“寡核苷酸”可互换使用。它们是指任何长度的核苷酸的聚合形式,即脱氧核糖核苷酸或核糖核苷酸或其类似物。多核苷酸可具有任何三维结构,并且可执行任何已知或未知的功能。以下是多核苷酸的非限制性实例:基因或基因片段的编码或非编码区、根据连锁分析定义的基因座、外显子、内含子、信使RNA(mRNA)、转移RNA、核糖体RNA、短干扰RNA(siRNA)、短发夹RNA(shRNA)、微RNA(miRNA)、核酶、cDNA、重组多核苷酸、分支多核苷酸、质粒、载体、任何序列的分离DNA、任何序列的分离RNA、核酸探针和引物。该术语还涵盖具有合成主链的核酸样结构,参见例如Eckstein,1991;Baserga等人,1992;Milligan,1993;WO 97/03211;WO 96/39154;Mata,1997;Strauss-Soukup,1997;以及Samstag,1996。多核苷酸可包含一个或多个经修饰的核苷酸,诸如甲基化核苷酸和核苷酸类似物。如果存在的话,可在组装聚合物之前或之后对核苷酸结构进行修饰。核苷酸的序列可被非核苷酸组分打断。可在聚合后对多核苷酸进行进一步修饰,诸如通过与标记组分缀合。如本文所用,术语“野生型”是本领域技术人员理解的术语,是指与突变体或变体形式不同的天然存在的生物、菌株、基因或特征的典型形式。“野生型”可以是基线。如本文所用,术语“变体”应被理解为表示展现出与天然存在的模式不同的品质。术语“非天然存在”或“工程化”可互换使用,表示人为介入。当提及核酸分子或多肽时,这些术语是指该核酸分子或多肽至少基本上不含与它们天然缔合且天然存在的至少一种其他组分。“互补性”是指核酸通过传统的Watson-Crick碱基配对或其他非传统类型与另一个核酸序列形成一个或多个氢键的能力。互补性百分比表示核酸分子中可以与第二核酸序列形成氢键(例如,Watson-Crick碱基配对)的残基的百分比(例如,10个残基中有5、6、7、8、9、10个残基与第二核酸序列形成氢键,则为50%、60%、70%、80%、90%和100%互补)。“完全互补”是指核酸序列的所有连续残基将与第二核酸序列中相同数目的连续残基氢键键合。本文所用的“基本上互补”是指在8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45、50个或更多个核苷酸的区上至少60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%的互补程度,或者是指在严格条件下杂交的两个核酸。如本文所用,用于杂交的“严格条件”是指与靶序列具有互补性的核酸主要与靶序列杂交而基本上不与非靶序列杂交的条件。严格条件一般是序列依赖性的,并且取决于许多因素而变化。一般来讲,序列越长,序列与其靶序列特异性杂交的温度越高。严格条件的非限制性实例在Tijssen(1993),Laboratory Techniques In Biochemistry And MolecularBiology-Hybridization With Nucleic Acid Probes第一部分、第二章“Overview ofprinciples of hybridization and the strategy of nucleic acid probe assay”,Elsevier,N.Y.中描述。当提及多核苷酸序列时,还设想了互补或部分互补序列。这些序列优选地能够在高度严格的条件下与参考序列杂交。一般来讲,为了使杂交速率达到最大,选择严格性相对低的杂交条件:比热熔点(Tm)低约20至25℃。Tm是指在限定的离子强度和pH下,溶液中50%的特异性靶序列与完全互补探针杂交的温度。一般来讲,为了要求杂交序列具有至少约85%的核苷酸互补性,将高度严格的洗涤条件选择为比Tm低约5至15℃。为了要求杂交序列具有至少约70%的核苷酸互补性,将中等严格的洗涤条件选择为比Tm低约15至30℃。高度宽容(严格性极低)的洗涤条件可低至Tm以下50℃,从而允许杂交序列之间发生高度错配。本领域技术人员将认识到,也可以改变杂交和洗涤阶段中的其他物理和化学参数,从而影响来自靶序列和探针序列之间的特定同源水平的可检测杂交信号的结果。优选的高度严格条件包括在42℃下在50%甲酰胺、5×SSC和1%SDS中孵育,或在65℃下在5×SSC和1%SDS中孵育,并在65℃下在0.2×SSC和0.1%SDS中洗涤。“杂交”是指一个或多个多核苷酸反应形成一种经由核苷酸残基的碱基之间的氢结合而稳定的复合物的反应。氢结合可通过Watson Crick碱基配对、Hoogstein结合或以任何其他序列特异性方式发生。复合物可包含形成双链体结构的两条链、形成多链复合物的三条或更多条链、一条自杂交链或这些的任何组合。杂交反应可构成更广泛的过程诸如PCR的启动或酶对多核苷酸的裂解中的步骤。能够与给定序列杂交的序列称为给定序列的“互补物”。如本文所用,术语“基因组基因座”或“基因座”是基因或DNA序列在染色体上的特定位置。“基因”是指编码多肽或RNA链的DNA或RNA片段,所编码的多肽或RNA链在生物中发挥功能作用,因此是活生物中的遗传分子单元。出于本发明的目的,可认为基因包括调控基因产物的产生的区,无论这些调控序列是否与编码序列和/或转录序列相邻。因此,基因包括但不一定限于启动子序列、终止子、翻译调控序列诸如核糖体结合位点和内部核糖体进入位点、增强子、沉默子、绝缘子、边界元件、复制起点、基质附着位点和基因座控制区。如本文所用,“基因组基因座的表达”或“基因表达”是将来自基因的信息用于功能性基因产物的合成的过程。基因表达的产物通常是蛋白质,但是在非蛋白质编码基因诸如rRNA基因或tRNA基因中,产物是功能性RNA。基因表达的过程被所有已知的生命即真核生物(包括多细胞生物)、原核生物(细菌和古细菌)和病毒用来产生赖以生存的功能性产物。如本文所用,基因或核酸的“表达”不仅涵盖细胞基因表达,而且涵盖在克隆系统中以及在任何其他情况下一种或多种核酸的转录和翻译。如本文所用,“表达”还指从DNA模板转录成多核苷酸(诸如转录成mRNA或其他RNA转录物)的过程和/或随后将转录的mRNA翻译成肽、多肽或蛋白质的过程。转录物和编码的多肽可统称为“基因产物”。如果多核苷酸来源于基因组DNA,则表达可包括真核细胞中mRNA的剪接。术语“多肽”、“肽”和“蛋白质”在本文可互换使用,是指具有任何长度的氨基酸的聚合物。该聚合物可以是直链或支链的,其可包含经修饰的氨基酸,并且其可被非氨基酸中断。该术语还涵盖已被修饰的氨基酸聚合物;例如,二硫键形成、糖基化、脂化、乙酰化、磷酸化或任何其他操作,诸如与标记组分缀合。如本文所用,术语“氨基酸”包括天然氨基酸和/或非天然或合成氨基酸,包括甘氨酸以及D或L旋光异构体,以及氨基酸类似物和拟肽。如本文所用,术语“结构域”或“蛋白质结构域”是指可独立于蛋白质链的其余部分而存在并起作用的蛋白质序列的一部分。如本发明的各方面所述,序列同一性与序列同源性有关。同源性比较可通过肉眼进行,或更通常地,借助于容易获得的序列比较程序进行。这些可商购的计算机程序可计算两个或更多个序列之间的同源性百分比(%),还可计算两个或更多个氨基酸或核酸序列共有的序列同一性。
如本文所用,术语“野生型”是本领域技术人员理解的术语,是指与突变体或变体形式不同的天然存在的生物、菌株、基因或特征的典型形式。“野生型”可以是基线。
如本文所用,术语“变体”应被理解为表示展现出与天然存在的模式不同的品质。术语“非天然存在”或“工程化”可互换使用,表示人为介入。当提及核酸分子或多肽时,这些术语是指该核酸分子或多肽至少基本上不含与它们天然缔合且天然存在的至少一种其他组分。在所有方面和实施方案中,无论它们是否包括这些术语,应当理解,优选地,它们可以是任选的,因此优选地包括或不优选地不包括。此外,术语“非天然存在”和“工程化”可互换使用,因此可以单独或组合使用,并且一个或另一个可代替对两者一起的提及。具体地,“工程化”代替“非天然存在”或“非天然存在和/或工程化”是优选的。
序列同源性可通过本领域已知的许多计算机程序例如BLAST或FASTA等中的任何一种来生成。用于进行这种比对的合适的计算机程序是GCG Wisconsin Bestfit软件包(University of Wisconsin,U.S.A;Devereux等人,1984,Nucleic Acids Research 12:387)。可执行序列比较的其他软件的实例包括但不限于BLAST程序包(参见Ausubel等人,1999同上,第18章)、FASTA(Atschul等人,1990,J.Mol.Biol.,403-410)和GENEWORKS比较工具套件。BLAST和FASTA均可用于离线和在线搜索(参见Ausubel等人,1999同上,第7-58至7-60页)。但是,优选的是使用GCG Bestfit程序。可在连续序列上计算序列同源性百分比(%),即将一个序列与另一个序列进行比对,并且将一个序列中的每个氨基酸或核苷酸直接与另一个序列中对应的氨基酸或核苷酸进行比较,一次比较一个残基。这被称为“无空位”比对。通常,仅在相对少数量的残基上进行这种无空位比对。虽然这是一种非常简单且一致的方法,但是它没有考虑到例如在其他方面相同的序列对中,一个插入或缺失可能引起随后的氨基酸残基比对不成功,从而可能导致进行全局比对时同源性百分比大大降低。因此,大多数序列比较方法被设计成产生最佳比对,这种比对考虑了可能的插入和缺失而不会对整体同源性或同一性得分进行过度罚分。这是通过在序列比对中插入“空位”以试图将局部同源性或同一性最大化来实现的。但是,这些较复杂的方法向比对中出现的每个空位分配“空位罚分”,以便对于相同数量的相同氨基酸,利用尽可能少的空位进行序列比对(反映了两个被比较序列之间具有较高的关联性)可比利用许多空位进行序列比对获得更高的得分。通常使用“亲和空位成本(Affinity gap cost)”,其对空位的存在收取相对较高的成本,而对空位中的每个后续残基收取较小的罚分。这是最常用的空位评分系统。当然,高空位罚分可产生空位较少的优化比对。大多数比对程序都允许对空位罚分进行修改。但是,优选的是在使用这种软件进行序列比较时使用默认值。例如,当使用GCG WisconsinBestfit软件包时,氨基酸序列的默认空位罚分对于空位是-12,对于每个延伸是-4。因此,计算最大同源性百分比首先要求在考虑空位罚分的情况下产生最佳比对。用于进行这种比对的合适的计算机程序是GCG Wisconsin Bestfit软件包(Devereux等人,1984Nuc.AcidsResearch 12第387页)。可执行序列比较的其他软件的实例包括但不限于BLAST程序包(参见Ausubel等人,1999 Short Protocols in Molecular Biology,第4版,第18章)、FASTA(Altschul等人,1990 J.Mol.Biol.403-410)和GENEWORKS比较工具套件。BLAST和FASTA均可用于离线和在线搜索(参见Ausubel等人,1999,Short Protocols in MolecularBiology,第7-58至7-60页)。但是,对于一些应用,优选的是使用GCG Bestfit程序。一种称为BLAST 2 Sequences的新工具也可用于比较蛋白质和核苷酸序列(参见FEMS MicrobiolLett.1999 174(2):247-50;FEMS Microbiol Lett.1999 177(1):187-8以及美国国立卫生研究院网站上的国家生物技术中心信息网站)。虽然可根据同一性来测量最终的同源性百分比,但是比对过程本身通常不基于全配对或无配对比较。而是,通常使用成比例的相似性得分矩阵,该矩阵基于化学相似性或进化距离向每个成对比较分配得分。常用的这种矩阵的实例是BLOSUM62矩阵,是BLAST程序套件的默认矩阵。如果提供的话,GCG Wisconsin程序一般使用公共默认值或自定义符号比较表(有关更多详细信息,参见用户手册)。对于一些应用,优选的是使用GCG软件包的公共默认值,或在为其他软件的情况下,优选的是使用默认矩阵诸如BLOSUM62。另选地,可基于类似于CLUSTAL(Higgins DG&Sharp PM(1988),Gene73(1),237-244)的算法,使用DNASISTM(Hitachi Software)中的多重比对特征来计算同源性百分比。一旦软件产生最佳比对,就可以计算同源性百分比、优选序列同一性百分比。该软件通常将其作为序列比较的一部分,并生成数值结果。这些序列还可具有氨基酸残基的缺失、插入或取代,其产生沉默变化并形成功能上等同的物质。可基于氨基酸特性(诸如残基的极性、电荷、溶解度、疏水性、亲水性和/或两亲性质)的相似性来进行有意的氨基酸取代,因此根据官能团将氨基酸分组在一起是有用的。可仅基于氨基酸侧链的特性将氨基酸分组在一起。但是,还包括突变数据会更有用。出于结构原因,由此得到的氨基酸集合可能是保守的。可以文氏图(Venn diagram)的形式描述这些集合(Livingstone C.D.andBarton G.J.(1993)“Protein sequence alignments:a strategy for the hierarchicalanalysis of residue conservation”Comput.Appl.Biosci.9:745-756)(Taylor W.R.(1986)“The classification of amino acid conservation”J.Theor.Biol.119;205-218)。可例如根据下表进行保守性取代,下表描述了对氨基酸的公认文氏图分组。
Figure BDA0002313867470001801
Figure BDA0002313867470001811
术语“受试者”、“个体”和“患者”在本文可互换使用,是指脊椎动物、优选哺乳动物、更优选人类。哺乳动物包括但不限于鼠类、猿猴、人类、农场动物、运动动物和宠物。还包括体内获得或体外培养的生物实体的组织、细胞及其子代。
术语“治疗性剂”、“具有治疗能力的药剂”或“治疗剂”可互换使用,是指在施用于受试者时赋予一些有益效果的分子或化合物。有益效果包括实现诊断确定;改善疾病、症状、障碍或病理病症;减少或预防疾病、症状、障碍或病症的发作;以及一般可以抵抗疾病、症状、障碍或病理病症。如本文所用,“治疗”或“缓解”或“改善”可互换使用。这些术语是指获得有益或期望结果包括但不限于治疗性益处和/或预防性益处的方法。所谓治疗益处,是指对一种或多种治疗中的疾病、病症或症状的任何与治疗有关的改善或效果。对于预防性益处,可将组合物施用于有发展为特定疾病、病症或症状的风险的受试者,或者施用于报告有疾病的一种或多种生理症状的受试者,即使疾病、病症或症状可能尚未显现也是如此。术语“有效量”或“治疗有效量”是指足以实现有益或期望结果的药剂量。治疗有效量可根据以下一项或多项而变化:受治疗的受试者和疾病状况、受试者的体重和年龄、疾病状况的严重程度、可以由本领域普通技术人员容易地确定的施用方式等。该术语还适用于将提供图像以通过本文所述的任何一种成像方法进行检测的剂量。具体剂量可根据以下一项或多项而变化:所选的特定药剂、要遵循的给药方案、是否与其他化合物联合施用、施用时间、要成像的组织以及携带其的物理递送系统。
除非另有说明,否则本发明的实践采用本领域技术范围内的免疫学、生物化学、化学、分子生物学、微生物学、细胞生物学、基因组学和重组DNA的常规技术。参见Sambrook、Fritsch和Maniatis,MOLECULAR CLONING:A LABORATORY MANUAL,第2版(1989);CURRENTPROTOCOLS IN MOLECULAR BIOLOGY(F.M.Ausubel等人编辑,(1987));METHODS INENZYMOLOGY系列(Academic Press,Inc.):PCR 2:A PRACTICAL APPROACH(M.J.MacPherson,B.D.Hames和G.R.Taylor编辑(1995));Harlow和Lane编辑(1988)ANTIBODIES,A LABORATORY MANUAL;以及ANIMAL CELL CULTURE(R.I.Freshney编辑(1987))。本发明的若干个方面涉及包含一个或多个载体的载体系统,或者载体本身。载体可以被设计用于在原核或真核细胞中表达CRISPR转录物(例如,核酸转录物、蛋白质或酶)。例如,CRISPR转录物可以在细菌细胞诸如大肠杆菌(Escherichia coli)、昆虫细胞(使用杆状病毒表达载体)、酵母细胞或哺乳动物细胞中表达。合适的宿主细胞在Goeddel,GENEEXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)中进一步讨论。另选地,重组表达载体可以例如使用T7启动子调控序列和T7聚合酶在体外转录和翻译。本发明的实施方案包括可包含同源取代(取代和置换在本文中均用于表示现有氨基酸残基或核苷酸与替代残基或核苷酸的互换)的序列(多核苷酸或多肽),该同源取代,在氨基酸的情况下,可发生即同类取代(like-for-like substitution),诸如碱性取代碱性、酸性取代酸性、极性取代极性等。也可发生非同源取代,即从一类残基取代为另一类残基,或者另选地涉及包含非天然氨基酸诸如鸟氨酸(在下文称为Z)、二氨基丁酸鸟氨酸(在下文称为B)、正亮氨酸鸟氨酸(在下文称为O)、吡啶基丙氨酸、噻吩基丙氨酸、萘基丙氨酸和苯基甘氨酸。变体氨基酸序列可包括可插入该序列的任何两个氨基酸残基之间的合适间隔基团,除了氨基酸间隔物诸如甘氨酸或β-丙氨酸残基之外,还包括烷基基团诸如甲基、乙基或丙基基团。本领域技术人员可很好地理解另一种形式的变化,其涉及以类肽形式存在一个或多个氨基酸残基。为避免疑义,“类肽形式”用于指变体氨基酸残基,其中α-碳取代基在该残基的氮原子上,而不是在α-碳上。用于制备类肽形式的肽的过程是本领域已知的,例如Simon RJ等人,PNAS(1992)89(20),9367-9371和Horwell DC,TrendsBiotechnol.(1995)13(4),132-134。同源性建模:其他Cas13b直系同源物中的对应残基可以通过Zhang等人,2012(Nature;490(7421):556-60)和Chen等人,2015(PLoS ComputBiol;11(5):e1004248)的方法鉴定,所述方法是一种用于预测由结构域-基序界面介导的相互作用的计算蛋白-蛋白相互作用(PPI)方法。PrePPI(预测PPI)是一种基于结构的PPI预测方法,它使用Bayesian统计框架将结构证据与非结构证据结合在一起。该方法涉及获取一对查询蛋白并使用结构比对,以鉴定对应于其实验测定结构或同源性模型的结构代表。还通过考虑全局和局部几何关系将结构比对用于鉴定近结构相邻部和远结构相邻部。每当结构代表的两个相邻部形成蛋白质数据库中报告的复合物时,这就定义了用于对两个查询蛋白之间的相互作用进行建模的模板。通过在模板中将代表性结构叠加在其对应的结构邻居部上来创建复合物的模型。该方法在Dey等人,2013(Prot Sci;22:359-66)中进一步描述。
出于本发明的目的,扩增是指利用引物和聚合酶的能够以合理的保真度复制靶序列的任何方法。可通过天然或重组DNA聚合酶诸如TaqGoldTM、T7 DNA聚合酶、大肠杆菌DNA聚合酶的Klenow片段以及逆转录酶进行扩增。优选的扩增方法是PCR。在某些方面,本发明涉及载体。如本文所用,“载体”是允许或促进实体从一种环境转移到另一种环境的工具。载体是复制子,诸如质粒、噬菌体或粘粒,可在其中插入另一个DNA片段,以实现所插入片段的复制。一般来讲,载体在与适当的控制元件结合时能够复制。一般来讲,术语“载体”是指能够转运已与其连接的另一核酸的核酸分子。载体包括但不限于单链、双链或部分双链的核酸分子;包含一个或多个自由端、不包含自由端(例如,呈环状)的核酸分子;包含DNA、RNA或两者的核酸分子;以及本领域已知的其他多核苷酸变体。载体的一种类型是“质粒”,是指环状双链DNA环,可以诸如通过标准分子克隆技术在其中插入其他DNA片段。载体的另一种类型是病毒载体,其中病毒来源的DNA或RNA序列存在于该载体中以包装到病毒(例如,逆转录病毒、复制缺陷型逆转录病毒、腺病毒、复制缺陷型腺病毒和腺相关病毒(AAV))中。病毒载体还包括病毒携带的用于转染到宿主细胞中的多核苷酸。某些载体能够在引入它们的宿主细胞中自主复制(例如,具有细菌复制起点的细菌载体和游离型哺乳动物载体)。其他载体(例如,非游离型哺乳动物载体)在引入宿主细胞后整合到宿主细胞的基因组中,从而与宿主基因组一起复制。此外,某些载体能够指导与其可操作地连接的基因表达。这类载体在本文中称为“表达载体”。在重组DNA技术中实用的通用表达载体通常是质粒的形式。重组表达载体可以以适合在宿主细胞中表达本发明的核酸的形式包含该核酸,这意味着重组表达载体包括与要表达的核酸序列可操作地连接的一个或多个调控元件,可根据要用于表达的宿主细胞来选择这些调控元件。在重组表达载体内,“可操作地连接”是指目标核苷酸序列以允许核苷酸序列表达的方式(例如,在体外转录/翻译系统中,或当将载体引入宿主细胞时,在宿主细胞中)与一个或多个调控元件连接。关于重组和克隆方法,提到了2004年9月2日公开为US 2004-0171156 A1的美国专利申请10/815,730,其内容全文通过引用并入本文。本发明的各方面涉及用于向导RNA以及野生型、经修饰或经突变的CRISPR效应蛋白/酶(例如,Cas13b效应蛋白)的双顺反子载体。双顺反子表达载体向导RNA以及野生型、经修饰或经突变的CRISPR效应蛋白/酶(例如,Cas13b效应蛋白)是优选的。一般来讲,特别是在该实施方案中,野生型、经修饰或经突变的CRISPR效应蛋白/酶(例如,Cas13b效应蛋白)优选地由CBh启动子驱动。RNA可优选地由Pol III启动子诸如U6启动子驱动。理想情况下,将两者结合。
在一些实施方案中,提供了向导RNA或crRNA中的环。该环可以是茎环或四环。该环优选地是GAAA,但不限于该序列或实际上长度仅为4bp。实际上,用于发夹结构的优选的环形成序列的长度为四个核苷酸,并且最优选地具有序列GAAA。但是,可使用更长或更短的环序列,也可使用另选的序列。这些序列优选地包括核苷酸三联体(例如,AAA)和另外的核苷酸(例如,C或G)。环形成序列的实例包括CAAA和AAAG。
在实践本文公开的任何方法时,可以经由本领域已知的一种或多种方法将适合的载体引入细胞或胚胎中,这些方法包括但不限于显微注射、电穿孔、声致穿孔、生物弹射、磷酸钙介导的转染、阳离子转染、脂质体转染、树状大分子转染、热休克转染、核转染、磁转染、脂质转染、刺穿转染(impalefection)、光学转染、专有试剂增强的核酸摄取以及经由脂质体、免疫脂质体、病毒颗粒或人工病毒体进行递送。在一些方法中,通过显微注射将载体引入胚胎中。可将一个或多个载体显微注射到胚胎的细胞核或细胞质中。在一些方法中,可通过核转染将一个或多个载体引入细胞中。
载体可以被设计用于在原核或真核细胞中表达CRISPR转录物(例如,核酸转录物、蛋白质或酶)。例如,CRISPR转录物可以在细菌细胞诸如大肠杆菌(Escherichia coli)、昆虫细胞(使用杆状病毒表达载体)、酵母细胞或哺乳动物细胞中表达。合适的宿主细胞在Goeddel,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,Academic Press,San Diego,Calif.(1990)中进一步讨论。另选地,重组表达载体可以例如使用T7启动子调控序列和T7聚合酶在体外转录和翻译。
载体可被引入原核生物或原核细胞中并在其中繁殖。在一些实施方案中,原核生物用于扩增将要引入真核细胞中的载体的拷贝或者用作要引入真核细胞中的载体的产生中的中间载体(例如,扩增质粒,作为病毒载体包装系统的一部分)。在一些实施方案中,原核生物用于扩增载体的拷贝并表达一种或多种核酸,诸如以提供一种或多种蛋白质的来源以递送到宿主细胞或宿主生物。蛋白质在原核生物中的表达最经常在大肠杆菌中用含有指导融合或非融合蛋白表达的组成型或诱导型启动子的载体来进行。融合载体将许多氨基酸添加到其中编码的蛋白质上,诸如添加到重组蛋白质的氨基末端上。此类融合载体可用于一个或多个目的,诸如:(i)增加重组蛋白的表达;(ii)增加重组蛋白的溶解度;和(iii)通过在亲和纯化中充当配体来帮助纯化重组蛋白。通常,在融合表达载体中,在融合部分和重组蛋白的接合处引入蛋白水解裂解位点,以使得在纯化融合蛋白之后能够从融合部分分离重组蛋白。此类酶及其同源识别序列包括Xa因子、凝血酶和肠激酶。示例融合表达载体包括pGEX(Pharmacia Biotech Inc;Smith and Johnson,1988.Gene 67:31-40)、pMAL(NewEngland Biolabs,Beverly,Mass.)和pRIT5(Pharmacia,Piscataway,N.J.),它们分别将谷胱甘肽S-转移酶(GST)、麦芽糖E结合蛋白或蛋白A与靶重组蛋白融合。合适的诱导型非融合大肠杆菌表达载体的实例包括pTrc(Amrann等人,(1988)Gene 69:301-315)和pET 11d(Studier等人,GENE EXPRESSION TECHNOLOGY:METHODS IN ENZYMOLOGY 185,AcademicPress,San Diego,Calif.(1990)60-89)。在一些实施方案中,载体是酵母表达载体。用于在酿酒酵母(Saccharomyces cerivisae)中表达的载体的实例包括pYepSec1(Baldari等人,1987.EMBO J.6:229-234)、pMFa(Kuijan和Herskowitz,1982.Cell 30:933-943)、pJRY88(Schultz等人,1987.Gene 54:113-123)、pYES2(Invitrogen Corporation,San Diego,Calif.)和picZ(InVitrogen Corp,San Diego,Calif.)。在一些实施方案中,载体使用杆状病毒表达载体驱动昆虫细胞中的蛋白表达。可用于在培养的昆虫细胞(例如,SF9细胞)中表达蛋白质的杆状病毒载体包括pAc系列(Smith等人,1983.Mol.Cell.Biol.3:2156-2165)和pVL系列(Lucklow和Summers,1989.Virology 170:31-39)。在一些实施方案中,载体能够使用哺乳动物表达载体来驱动哺乳动物细胞中一个或多个序列的表达。哺乳动物表达载体的实例包括pCDM8(Seed,Nature(1987)329:840)和pMT2PC(Kaufman等,1987.EMBO J.6 187:-195)。当用于哺乳动物细胞时,表达载体的控制功能通常由一个或多个调控元件提供。例如,常用的启动子来源于多瘤病毒、腺病毒2、巨细胞病毒、猿猴病毒40以及本文公开和本领域已知的其他病毒。对于用于原核和真核细胞的其他合适的表达系统,参见例如Sambrook等人,MOLECULAR CLONING:A LABORATORY MANUAL.第2版,Cold Spring HarborLaboratory,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989的第16章和第17章。在一些实施方案中,重组哺乳动物表达载体能够指导核酸优先在特定细胞类型中表达(例如,使用组织特异性调控元件来表达核酸)。组织特异性调控元件是本领域已知的。合适的组织特异性启动子的非限制性实例包括白蛋白启动子(具有肝脏特异性;Pinkert等人,1987.Genes Dev.1:268-277)、淋巴特异性启动子(Calame和Eaton,1988.Adv.Immunol.43:235-275)(特别是T细胞受体的启动子(Winoto和Baltimore,1989.EMBO J.8:729-733)和免疫球蛋白的启动子(Baneiji等人,1983.Cell 33:729-740;Queen和Baltimore,1983.Cell 33:741-748))、神经元特异性启动子(例如,神经丝启动子;Byrne和Ruddle,1989.Proc.Natl.Acad.Sci.USA 86:5473-5477)、胰腺特异性启动子(Edlund等人,1985.Science 230:912-916)和乳腺特异性启动子(例如,乳清启动子;美国专利号4,873,316和欧洲申请公开号264,166)。还包括发育型调控启动子,例如鼠类hox启动子(Kessel和Gruss,1990.Science 249:374-379)和α-甲胎蛋白启动子(Campes和Tilghman,1989.Genes Dev.3:537-546)。关于这些原核和真核载体,提到了美国专利6,750,059,其内容全文通过引用并入本文。本发明的其他实施方案可涉及病毒载体的用途,关于这在一方面,提到了美国专利申请13/092,085,其内容全文通过引用并入本文。组织特异性调控元件是本领域已知的,在这在一方面,提到了美国专利7,776,321,其内容全文通过引用并入本文。
在一些实施方案中,调控元件可操作地连接到CRISPR系统或复合物的一个或多个元件或者编码CRISPR Cas13b系统或复合物,以便驱动CRISPR系统的一个或多个元件表达。一般来讲,CRISPR(成簇规律间隔短回文重复序列)也称为SPIDR(间隔序列间隔正向重复序列),构成通常对特定细菌物种具有特异性的DNA基因座家族。CRISPR基因座包含在大肠杆菌识别的一类不同的间隔短序列重复序列(SSR)(Ishino等人,J.Bacteriol.,169:5429-5433[1987];以及Nakata等人,J.Bacteriol.,171:3553-3556[1989])以及相关基因。已经在地中海富盐菌(Haloferax mediterranei)、酿脓链球菌(Streptococcus pyogenes)、鱼腥藻(Anabaena)和结核分枝杆菌(Mycobacterium tuberculosis)中鉴定了类似的间隔SSR(参见Groenen等人,Mol.Microbiol.,10:1057-1065[1993];Hoe等人,Emerg.Infect.Dis.,5:254-263[1999];Masepohl等人,Biochim.Biophys.Acta 1307:26-30[1996];以及Mojica等人,Mol.Microbiol.,17:85-93[1995])。CRISPR基因座通常与其他SSR的不同之处在于重复序列的结构,这些重复序列被称为短规则间隔重复序列(SRSR)(Janssen等人,OMICSJ.Integ.Biol.,6:23-33[2002];以及Mojica等人,Mol.Microbiol.,36:244-246[2000])。一般来讲,重复序列是出现在簇中的短元件,这些短元件由长度基本恒定的独特间插序列规则地间隔开(Mojica等人,[2000],同上)。虽然重复序列在菌株之间是高度保守的,但是间隔重复序列的数目和间隔区的序列通常因菌株而异(van Embden等人,J.Bacteriol.,182:2393-2401[2000])。已经在40多种原核生物中鉴定了CRISPR基因座(参见例如Jansen等人,Mol.Microbiol.,43:1565-1575[2002];以及Mojica等人,[2005]),这些原核生物包括但不限于气火菌属(Aeropyrum)、热棒菌属(Pyrobaculum)、硫化叶菌属(Sulfolobus)、古球菌属(Archaeoglobus)、盐盒菌属(Halocarcula)、甲烷杆菌属(Methanobacterium)、甲烷球菌属(Methanococcus)、甲烷八叠球菌属(Methanosarcina)、甲烷火菌属(Methanopyrus)、火球菌属(Pyrococcus)、嗜酸菌属(Picrophilus)、热原体属(Thermoplasma)、棒杆菌属(Corynebacterium)、分枝杆菌属(Mycobacterium)、链霉菌属(Streptomyces)、产水菌属(Aquifex)、卟啉单胞菌属(Porphyromonas)、绿菌属(Chlorobium)、栖热菌属(Thermus)、芽孢杆菌属(Bacillus)、李斯特菌属(Listeria)、葡萄球菌属(Staphylococcus)、梭菌属(Clostridium)、好热厌氧杆菌属(Thermoanaerobacter)、支原体属(Mycoplasma)、梭杆菌属(Fusobacterium)、固氮弓菌属(Azarcus)、色杆菌属(Chromobacterium)、奈瑟氏菌属(Neisseria)、亚硝化单胞菌属(Nitrosomonas)、脱硫弧菌属(Desulfovibrio)、地杆菌属(Geobacter)、粘球菌属(Myxococcus)、弯曲杆菌属(Campylobacter)、沃廉菌属(Wolinella)、不动杆菌属(Acinetobacter)、欧文菌属(Erwinia)、埃希氏杆菌属(Escherichia)、军团菌属(Legionella)、甲基球菌属(Methylococcus)、巴斯德菌属(Pasteurella)、发光杆菌属(Photobacterium)、沙门氏菌属(Salmonella)、黄单胞菌属(Xanthomonas)、耶尔森菌属(Yersinia)、密螺旋体属(Treponema)和热袍菌属(Thermotoga)。
一般来讲,本申请中所用的“RNA靶向系统”统指涉及与RNA靶向CRISPR相关的13b(“Cas13b”)基因(在本文中也称为效应蛋白)的表达或指导该基因的活性的转录物和其他元件,包括编码RNA靶向Cas(效应)蛋白和向导RNA(或crRNA序列)的序列,参考本文中讨论的图1。一般来讲,RNA靶向系统的特征在于促进在靶序列的位点处形成RNA靶向复合物的元件。在形成RNA靶向复合物的情况下,“靶序列”是指指导序列(或crRNA的指导序列)被设计成与其具有互补性的RNA序列,其中靶序列和向导RNA之间的杂交促进了RNA靶向复合物的形成。假如存在足够的互补性以引起杂交并促进RNA靶向复合物的形成,则不一定需要完全互补。在一些实施方案中,靶序列位于细胞的细胞核或细胞质中。在一些实施方案中,靶序列可在真核细胞的细胞器内。可用于重组为包含靶序列的靶基因座的序列或模板被称为“编辑模板”或“编辑RNA”或“编辑序列”。在本发明的各方面,外源模板RNA可称为编辑模板。在本发明的在一方面,重组是同源重组。一般来讲,指导序列是与靶多核苷酸序列具有足够互补性以与靶序列杂交并且指导核酸靶向复合物与靶序列进行序列特异性结合的任何多核苷酸序列。在一些实施方案中,当使用合适的比对算法进行最佳比对时,指导序列与其对应靶序列之间的互补程度为约或大于约50%、60%、75%、80%、85%、90%、95%、97.5%、99%或更高。可使用用于比对序列的任何合适的算法来确定最佳比对,这些算法的非限制性实例包括Smith-Waterman算法、Needleman-Wunsch算法、基于Burrows-Wheeler变换的算法(例如,Burrows Wheeler Aligner)、ClustalW、Clustal X、BLAT、Novoalign(NovocraftTechnologies)、ELAND(Illumina,San Diego,CA)、SOAP(可从soap.genomics.org.cn获取)和Maq(可从maq.sourceforge.net获取)。在一些实施方案中,指导序列的长度为约或大于约5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50、75个或更多的核苷酸。在一些实施方案中,指导序列的长度小于约75、50、45、40、35、30、25、20、15、12个或更少的核苷酸。可通过任何合适的测定来评估指导序列向导RNA靶向复合物与靶序列进行序列特异性结合的能力。模板多核苷酸可具有任何合适的长度,诸如长度为约或大于约10、15、20、25、50、75、100、150、200、500、1000个或更多个核苷酸。在一些实施方案中,模板多核苷酸与多核苷酸的包含靶序列的一部分互补。当进行最佳比对时,模板多核苷酸可能与靶序列的一个或多个核苷酸(例如,约或大于约1、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100个或更多个核苷酸)重叠。在一些实施方案中,当将模板序列和包含靶序列的多核苷酸进行最佳比对时,模板多核苷酸的最近核苷酸在距靶序列约1、5、10、15、20、25、50、75、100、200、300、400、500、1000、5000、10000个或更多个核苷酸内。在一些实施方案中,RNA靶向效应蛋白是融合蛋白的包含一个或多个异源蛋白结构域(例如,除了核酸靶向效应蛋白外,还包含约或大于约1、2、3、4、5、6、7、8、9、10个或更多个结构域)的部分。在一些实施方案中,CRISPR Cas13b效应蛋白/酶是融合蛋白的包含一个或多个异源蛋白结构域(例如,除了CRISPR Cas13b酶外,还包含约或大于约1、2、3、4、5、6、7、8、9、10个或更多个结构域)的部分。可与效应蛋白融合的蛋白结构域的实例包括但不限于表位标签、报告基因序列以及具有以下一种或多种活性的蛋白结构域:甲基化酶活性、脱甲基酶活性、转录激活活性、转录阻遏活性、转录释放因子活性、组蛋白修饰活性、RNA裂解活性和核酸结合活性。表位标签的非限制性实例包括组氨酸(His)标签、V5标签、FLAG标签、流感血凝素(HA)标签、Myc标签、VSV-G标签和硫氧还蛋白(Trx)标签。报告基因的实例包括但不限于谷胱甘肽-S-转移酶(GST)、辣根过氧化物酶(HRP)、氯霉素乙酰转移酶(CAT)β-半乳糖苷酶、β-葡萄糖醛酸酶、荧光素酶、绿色荧光蛋白(GFP)、HcRed、DsRed,青色荧光蛋白(CFP)、黄色荧光蛋白(YFP)以及包括蓝色荧光蛋白(BFP)在内的自发荧光蛋白。核酸靶向效应蛋白可与编码结合DNA分子或结合其他细胞分子的蛋白或蛋白片段的基因序列融合,所述蛋白或蛋白片段包括但不限于麦芽糖结合蛋白(MBP)、S-标签、Lex A DNA结合结构域(DBD)融合物、GAL4 DNA结合结构域融合物和单纯疱疹病毒(HSV)BP16蛋白融合物。可形成融合蛋白的包含核酸靶向效应蛋白的部分的其他结构域在US20110059502中描述,该文献通过引用并入本文。在一些实施方案中,标记的核酸靶向效应蛋白用于鉴定靶序列的位置。在一些实施方案中,CRISPR Cas13b酶可形成诱导型系统的组分。系统的可诱导性质将允许使用一种能量形式来对基因编辑或基因表达进行时空控制。能量形式可包括但不限于电磁辐射、声能、化学能和热能。诱导型系统的实例包括四环素诱导型启动子(Tet-On或Tet-Off)、小分子双杂交转录激活系统(FKBP、ABA等)或光诱导型系统(光敏素、LOV结构域或隐花色素)。在一个实施方案中,CRISPR Cas13b酶可以是光诱导型转录效应物(LITE)的一部分,以便以序列特异性方式指导转录活性的变化。光的组分可包括CRISPR酶、光响应性细胞色素异二聚体(例如,来自拟南芥)和转录激活/阻遏结构域。诱导型DNA结合蛋白的其他实例及其使用方法在US61/736465和US 61/721,283和WO 2014/018423和US8889418、US8895308、US20140186919、US20140242700、US20140273234、US20140335620、WO2014093635中提供,这些文献全文据此通过引用并入。在一些方面,本发明提供了包括将一种或多种多核苷酸诸如本文所述的一个或多个载体、其一种或多种转录物和/或从其转录的一种或多种蛋白递送到宿主细胞的方法。在一些方面,本发明还提供了通过此类方法产生的细胞,以及包含此类细胞或由此类细胞产生的生物(诸如动物、植物或真菌)。在一些实施方案中,将与向导RNA或crRNA结合(并且任选地与之复合)的RNA靶向效应蛋白递送到细胞。常规的基于病毒和非病毒的基因转移方法可以用于将核酸引入哺乳动物细胞或靶组织。此类方法可以用于向培养物中或宿主生物中的细胞施用编码RNA靶向系统的组分的核酸。非病毒载体递送系统包括DNA质粒、RNA(例如,本文所述的载体的转录物)、裸核酸以及与递送媒介物诸如脂质体复合的核酸。病毒载体递送系统包括DNA和RNA病毒,它们在被递送到细胞后具有游离或整合基因组。有关基因疗法程序的综述,参见Anderson,Science 256:808-813(1992);Nabel&Felgner,TIBTECH 11:211-217(1993);Mitani&Caskey,TIBTECH 11:162-166(1993);Dillon,TIBTECH 11:167-175(1993);Miller,Nature 357:455-460(1992);Van Brunt,Biotechnology 6(10):1149-1154(1988);Vigne,Restorative Neurology andNeuroscience 8:35-36(1995);Kremer&Perricaudet,British Medical Bulletin 51(1):31-44(1995);Haddada等人,Current Topics in Microbiology and Immunology,Doerfler and
Figure BDA0002313867470001921
编辑(1995);以及Yu等人,Gene Therapy 1:13-26(1994)。核酸的非病毒递送方法包括脂质转染、核转染、显微注射、生物弹射、病毒颗粒、脂质体、免疫脂质体、聚阳离子或脂质:核酸缀合物、裸DNA、人工病毒体和试剂增强的DNA摄取。脂质转染在例如美国专利号5,049,386、4,946,787和4,897,355中描述,并且脂质转染试剂在商业上有售(例如,TransfectamTM和LipofectinTM)。适用于多核苷酸的有效受体识别脂质转染的阳离子和中性脂质包括Felgner,WO 91/17424、WO 91/16024中的那些脂质。可以递送到细胞(例如,体外或离体施用)或靶组织(例如,体内施用)。
病症模型
本发明的方法可用于产生植物、动物或细胞,所述植物、动物或细胞可用于诸如通过目标突变模型或疾病模型来对目标遗传或表观遗传病症进行建模和/或研究。如本文所用,“疾病”是指受试者的疾病、障碍或适应症。例如,本发明的方法可用于产生包含与疾病相关的一个或多个核酸序列的修饰的动物或细胞,或者其中与疾病相关的一个或多个核酸序列的表达发生改变的植物、动物或细胞。这种核酸序列可编码或翻译疾病相关的蛋白序列,或者可以是疾病相关的控制序列。因此,应当理解,在本发明的实施方案中,植物、受试者、患者、生物或细胞可以是非人类受试者、患者、生物或细胞。因此,本发明提供了通过本方法产生的植物、动物或细胞,或者其子代。子代可以是所产生的植物或动物的克隆,或者可通过与相同物种的其他个体杂交以将其他所需性状渗入其后代中的有性繁殖而产生。在多细胞生物、特别是动物或植物的情况下,细胞可以是体内或离体的。在细胞处于培养中的情况下,如果满足适当的培养条件,并且优选地如果针对建立细胞系目的(例如干细胞)对细胞进行了适当的调整,则可建立细胞系。还设想了由本发明产生的细菌细胞系。因此,还设想了细胞系。在一些方法中,使用在疾病研究中常用的措施,该疾病模型可以用于研究突变或者更普遍的改变诸如减少基因或基因产物的表达对动物或细胞以及疾病的发展和/或进展的影响。另选地,这种疾病模型可用于研究药物活性化合物对疾病的影响。在一些方法中,该疾病模型可以用于评估潜在基因疗法策略的功效。也就是说,可以对疾病相关的RNA进行修饰,从而显示或抑制或减少疾病的发展和/或进展,然后测试化合物对该进展或抑制或减少的影响。
在利用Cas13b效应蛋白及其复合物的本发明的实践中有用的是编码其的核酸分子和使用其的方法,参考:Genome-Scale CRISPR-Cas9 Knockout Screening in HumanCells.Shalem,O.,Sanjana,NE.,Hartenian,E.,Shi,X.,Scott,DA.,Mikkelson,T.,Heckl,D.,Ebert,BL.,Root,DE.,Doench,JG.,Zhang,F.Science.2013年12月12日[印刷版前的电子版];以最终编辑形式出版为:Science.2014年1月3日;343(6166):84–87。Shalem等人提出了一种在全基因组规模内探询基因功能的新方法。他们的研究表明,利用64,751个独特的指导序列递送靶向18,080个基因的基因组规模CRISPR-Cas9基因敲除(GeCKO)文库,可以在人类细胞中进行阴性和阳性选择筛选。首先,作者展示了使用GeCKO文库来鉴定癌症和多能干细胞中细胞存活所必需的基因。接下来,在黑素瘤模型中,作者筛选了其丢失与对维莫非尼(一种抑制突变蛋白激酶BRAF的治疗剂)的抗性有关的基因。他们的研究表明,排名最高的候选基因包括先前验证的基因NF1和MED12,以及新型命中基因NF2、CUL3、TADA2B和TADA1。作者观察到靶向相同基因的独立向导RNA之间的高度一致性以及高比率的命中确认,从而证明了用Cas9进行基因组规模筛选的前景。还参考了美国专利公开号US20140357530和PCT专利公开WO2014093701,这些专利据此通过引用并入本文。
术语“与……缔合”此处用来指功能结构域缔合到Cas13b效应蛋白或衔接蛋白。它用来表示一个分子如何例如在衔接蛋白和功能结构域之间或在Cas13b效应蛋白和功能结构域之间与另一个分子“缔合”。在这种蛋白-蛋白相互作用的情况下,可以抗体识别表位的方式从识别的角度看待这种缔合。另选地,一种蛋白可经由与另一种蛋白融合(例如,一个亚基与另一个亚基融合)而与另一种蛋白缔合。融合通常通过将一种蛋白的氨基酸序列添加到另一种蛋白的氨基酸序列(例如,经由将编码每种蛋白或亚基的核苷酸序列剪接在一起)而发生。另选地,这本质上可被视为两个分子之间的结合或直接连接,诸如融合蛋白。在任何情况下,融合蛋白可在两个目标亚基之间(即,在酶和功能结构域之间或在衔接蛋白和功能结构域之间)包括接头。因此,在一些实施方案中,Cas13b效应蛋白或衔接蛋白通过与功能结构域结合而与之缔合。在其他实施方案中,Cas13b效应蛋白或衔接蛋白与功能结构域缔合,因为二者任选地经由中间接头融合在一起。
Cas13b效应蛋白复合物可以用于植物
在一些实施方案中,本发明包括一种修饰细胞或生物的方法。细胞可以是原核细胞或真核细胞。细胞可以是哺乳动物细胞。哺乳动物细胞可以是非人类灵长类动物、牛科动物、猪科动物、啮齿动物或小鼠细胞。细胞可以是非哺乳动物真核细胞,诸如家禽、鱼或虾。细胞也可以是植物细胞。植物细胞可以是作物植物,诸如木薯、玉米、高粱、小麦或水稻。植物细胞也可以是藻类、树木或蔬菜。通过本发明引入细胞的修饰可以是使得改变细胞和细胞子代用于提高生物产物诸如抗体、淀粉、醇或其他所需细胞输出的产量。通过本发明引入细胞的修饰可以是使得细胞和细胞子代包括改变所产生的生物产物的改变。系统可包含一个或多个不同的载体。在本发明的在一方面,针对在所需细胞类型、优选真核细胞、优选哺乳动物细胞或人类细胞中表达对效应蛋白进行密码子优化。可以结合作物基因组学的最新进展来使用一种或多种Cas13b系统(例如,单一的或多重化的)。此类一种或多种CRISPR系统可以用于执行高效且经济高效的植物基因或基因组或转录组探询或编辑或操作,例如用于植物基因或基因组的快速研究和/或选择和/或探询和/或比较和/或操作和/或转化;例如,以向一种或多种植物产生、鉴定、开发、优化或赋予一种或多种性状或特征,或者以转化植物基因组。因此,可以改善植物即具有性状或特征的新组合的新植物或者具有增强性状的新植物的产生。此类一种或多种CRISPR系统可以在定点整合(SDI)或基因编辑(GE)或任何近反向育种(NRB)或反向育种(RB)技术中用于植物。因此,本文中对动物细胞的提及也可作必要的变通后应用于植物细胞,除非另有明显说明;并且,本文中脱靶效应减少的酶和采用此类酶的系统可以用于植物应用,包括本文中提到的那些应用。提供了通过效应蛋白(Cas13b)和合适的指导物(crRNA)修饰的工程化植物及其子代。这些植物可包括抗病或抗旱作物,诸如小麦、大麦、水稻、大豆或玉米;经修饰以去除或降低自花授粉能力(但替代地可以任选地杂交)的植物;以及过敏原性食物,诸如花生和坚果,其中已经通过效应蛋白和合适的指导物进行靶向而使免疫原性蛋白失能、被毁坏或被破坏。使用经典CRIPSR-Cas系统的任何方面都可适用于是Cas蛋白不可知论的CRISPR系统,例如Cas13b效应蛋白系统。
治疗性治疗
根据本公开,本发明的系统无需过度实验即可应用于以前的RNA切割技术领域,包括治疗、测定和其他应用,因为本申请为有根据地对系统进行工程化提供了基础。本发明提供了对由RNA、毒性RNA和/或突变RNA(诸如剪接缺陷或截短)的过量表达引起的疾病的治疗性治疗。毒性RNA的表达可能与核内含物的形成以及脑、心脏或骨骼肌中迟发性退行性变化有关。在充分研究的实例强直性肌营养不良中,毒性RNA的主要致病作用似乎是隔离结合蛋白并破坏对可变剪接的调控(Hum.Mol.Genet.(2006)15(增刊2):R162-R169)。遗传学家对强直性肌营养不良[肌营养不良性肌强直症(DM)]特别感兴趣,因为它会产生极为广泛的临床特征。部分列出内容包括肌肉萎缩、白内障、胰岛素抵抗、睾丸萎缩、心脏传导减慢、皮肤肿瘤以及对认知的影响。DM的经典形式现在称为1型DM(DM1),是由DMPK(一种编码胞质蛋白激酶的基因)的3'-非翻译区(UTR)中CTG重复序列的扩增引起的。
先天免疫系统主要通过识别感染细胞内的病毒核酸(称为DNA或RNA感测)来检测病毒感染。体外RNA感测测定可以用于检测特定的RNA底物。RNA靶向效应蛋白可以例如用于活细胞中基于RNA的感测。应用的实例是通过感测例如疾病特异性RNA进行诊断。本发明的RNA靶向效应蛋白(Cas13b)还可以用于抗病毒活性,特别是抗RNA病毒。可以使用对所选的病毒RNA序列具有选择性的合适向导RNA来将效应蛋白(Cas13b)靶向病毒RNA。具体地,效应蛋白可以是裂解RNA诸如单链RNA的活性核酸酶。考虑了本发明的酶系统靶向RNA诸如上述RNA的治疗剂量为约0.1至约2mg/kg,可在监测到应答的情况下相继施用该剂量,并且如果需要的话可重复该剂量,最高为每名患者约7至10剂。有利地,在治疗方案期间从每名患者收集样品,以确定治疗的有效性。例如,可分离并定量RNA样品以确定表达是降低还是改善。这种诊断在本领域技术人员的能力范围内。
全转录组敲低筛选
本文所述的CRISPR效应蛋白复合物可以用于执行高效且经济高效的功能转录筛选。此类筛选可以利用基于CRISPR效应蛋白的全转录组文库。此类筛选和文库可以用于确定基因的功能、基因所涉及的细胞途径以及基因表达的任何改变如何导致特定的生物学过程。本发明的一个优点是CRISPR系统避免了脱靶结合及其产生的副作用。这是通过使用被布置成对靶RNA具有高度序列特异性的系统来实现的。在本发明的优选实施方案中,CRISPR效应蛋白复合物是Cas13b效应蛋白复合物。
在本发明的实施方案中,全转录组文库可包含多个Cas13b向导RNA,如本文所述,所述向导RNA包含能够靶向真核细胞群体中多个基因座中的多个靶序列的指导序列。细胞群体可以是胚胎干(ES)细胞群体。基因座中的靶序列可以是非编码序列。非编码序列可以是内含子、调空序列、剪接位点、3'UTR、5'UTR或聚腺苷酸化信号。可通过所述靶向改变一种或多种基因产物的基因功能。靶向可导致基因功能的敲除。基因产物的靶向可包含一个以上的向导RNA。基因产物可被2、3、4、5、6、7、8、9或10个向导RNA靶向,优选地每个基因被3至4个向导RNA靶向。可通过利用Cas13b效应子蛋白复合物产生的交错双链断裂或者通过利用类似于在CRISPR-Cas9系统中使用的方法来使脱靶修饰最小化(参见例如DNA targetingspecificity of RNA-guided Cas9 nucleases.Hsu,P.,Scott,D.,Weinstein,J.,Ran,FA.,Konermann,S.,Agarwala,V.,Li,Y.,Fine,E.,Wu,X.,Shalem,O.,Cradick,TJ.,Marraffini,LA.,Bao,G.,&Zhang,F.Nat Biotechnol doi:10.1038/nbt.2647(2013),该文献通过引用并入本文)。靶向可以具有约100个或更多个序列。靶向可以具有约1000个或更多个序列。靶向可以具有约20,000个或更多个序列。靶向可以具有整个基因组。靶向可以具有集中于相关或期望途径的一组靶序列。该途径可以是免疫途径。该途径可以是细胞分裂途径。
本发明的一个方面包括全转录组文库,其可包含多个cas13b向导RNA,所述向导RNA可包含能够靶向多个基因座中的多个靶序列的指导序列,其中所述靶向导致基因功能的敲低。该文库可能包含靶向生物体基因组中每个基因的向导RNA。
在本发明的一些实施方案中,生物或受试者是真核生物(包括哺乳动物,包括人类)或非人类真核生物或非人类动物或非人类哺乳动物。在一些实施方案中,生物或受试者是非人类动物,并且可以是节肢动物例如昆虫,或者可以是线虫。在本发明的一些方法中,生物或受试者是植物。在本发明的一些方法中,生物或受试者是哺乳动物或非人类哺乳动物。非人类哺乳动物可以是例如啮齿动物(优选小鼠或大鼠)、有蹄类动物或灵长类动物。在本发明的一些方法中,生物或受试者是藻类(包括微藻),或者是真菌。
基因功能的敲低可包括:将一个或多个载体的载体系统引入细胞群中的每个细胞中,所述一个或多个载体包含工程化的非天然存在的Cas13b效应蛋白系统,该效应蛋白系统包含I.Cas13b效应蛋白以及II.一种或多种向导RNA,其中组分I和II可相同或在系统的不同载体上;将组分I和II整合到每个细胞中,其中指导序列靶向每个细胞中的独特基因,其中Cas13b效应蛋白可操作连接到调控元件,其中当转录时,包含指导序列的向导RNA指导Cas13b效应蛋白系统与独特基因的基因组基因座中的靶序列进行序列特异性结合;诱导Cas13b效应蛋白裂解基因组基因座;以及在细胞群的每个细胞中的多个独特基因中确认不同的敲低事件,从而产生基因敲低细胞文库。本发明包括细胞群是真核细胞群体,并且在一个优选的实施方案中,细胞群是胚胎干(ES)细胞群。
一个或多个载体可以是质粒载体。载体可以是包含Cas13b效应蛋白、sgRNA和任选的进入靶细胞的选择性标记的单个载体。不受理论的束缚,通过单个载体同时递送Cas13b效应蛋白和sgRNA的能力使得可以应用于任何目标细胞类型,而无需首先产生表达Cas13b效应蛋白的细胞系。调控元件可以是诱导型启动子。诱导型启动子可以是强力霉素诱导型启动子。在本发明的一些方法中,指导序列的表达受T7启动子的控制并且由T7聚合酶的表达驱动。可通过全转录组测序来确认不同的敲低事件。敲低事件可在100个或更多个独特基因中实现。敲低事件可在1000个或更多个独特基因中实现。敲低事件可在20,000个或更多个独特基因中实现。敲低事件可在整个转录组中实现。基因功能的敲低可在特定生理途径或条件下起作用的多个独特基因中实现。该途径或条件可以是免疫途径或条件。该途径或条件可以是细胞分裂途径或条件。
本发明还提供了包含本文提及的全转录组文库的试剂盒。试剂盒可包括单个容器,该单个容器包含含有本发明的文库的载体或质粒。试剂盒还可包括面板,该面板包含独特Cas13b效应蛋白系统向导RNA的选择,所述向导RNA包含来自本发明的文库的指导序列,其中该选择指示特定的生理条件。本发明包括靶向的是约100个或更多个序列、约1000个或更多个序列或者约20,000个或更多个序列或者整个转录组。此外,一组靶序列可集中于相关或期望途径,诸如免疫途径或细胞分裂。
在本发明的在另一方面,Cas13b效应蛋白可包含一个或多个突变,并且可用作与或不与功能结构域融合的通用RNA结合蛋白。突变可以是人工引入的突变或者功能获得或丧失突变。如本文所述已经表征了这些突变。在本发明的在一方面,功能结构域可以是转录激活结构域,其可以是VP64。在本发明的其他方面,功能结构域可以是转录阻遏结构域,其可以是KRAB或SID4X。本发明的其他方面涉及与结构域融合的突变Cas13b效应蛋白,这些结构域包括但不限于转录激活子、阻遏子、重组酶、转座酶、组蛋白重塑剂、脱甲基酶、DNA甲基转移酶、隐花色素、光诱导/控制结构域或化学诱导/控制结构域。本发明的一些方法可以包括诱导靶基因的表达。在一个实施方案中,通过靶向真核细胞群中多个基因组基因座中的多个靶序列来诱导表达是通过使用功能结构域进行的。
在利用Cas13b效应蛋白复合物的本发明的实践中有用的是在CRISPR-Cas9系统中使用的方法,并且参考以下文献:
Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells.Shalem,O.,Sanjana,NE.,Hartenian,E.,Shi,X.,Scott,DA.,Mikkelson,T.,Heckl,D.,Ebert,BL.,Root,DE.,Doench,JG.,Zhang,F.Science.12月12日(2013)[印刷版前的电子版];以最终编辑形式出版为:Science.2014年1月3日;343(6166):84–87。
Shalem等人提出了一种在全基因组规模内探询基因功能的新方法。他们的研究表明,利用64,751个独特的指导序列递送靶向18,080个基因的基因组规模CRISPR-Cas9基因敲除(GeCKO)文库,可以在人类细胞中进行阴性和阳性选择筛选。首先,作者展示了使用GeCKO文库来鉴定癌症和多能干细胞中细胞存活所必需的基因。接下来,在黑素瘤模型中,作者筛选了其丢失与对维莫非尼(一种抑制突变蛋白激酶BRAF的治疗剂)的抗性有关的基因。他们的研究表明,排名最高的候选基因包括先前验证的基因NF1和MED12,以及新型命中基因NF2、CUL3、TADA2B和TADA1。作者观察到靶向相同基因的独立向导RNA之间的高度一致性以及高比率的命中确认,从而证明了用Cas9进行基因组规模筛选的前景。
还参考了美国专利公开号US20140357530和PCT专利公开WO2014093701,这些专利据此通过引用并入本文。
功能改变和筛选
在另一方面,本发明提供了一种功能评估和基因筛选的方法。本发明的CRISPR系统精确地递送功能结构域、通过精确地改变目标特定基因座上的甲基化位点来激活或阻遏基因或者改变表观遗传状态这一用途可以与一种或多种向导RNA一起应用于单个细胞或细胞群或者与文库一起应用于离体或体内细胞池中的基因组,包括施用或表达包含多个向导RNA(sgRNA)的文库,并且其中筛选还包括Cas13b效应蛋白的用途,其中将包含Cas13b效应蛋白的CRISPR复合物修饰为包含异源功能结构域。在一方面,本发明提供了一种用于筛选基因组/转录组的方法,所述方法包括向宿主施用文库或在宿主体内表达文库。在一方面,本发明提供了本文讨论的方法,所述方法还包括施用于宿主或在宿主中表达的激活子。在一方面,本发明提供了本文讨论的方法,其中激活子附接到Cas13b效应蛋白。在一方面,本发明提供了本文讨论的方法,其中激活子附接到Cas13b效应蛋白的N端或C端。在一方面,本发明提供了本文讨论的方法,其中激活子附接到sgRNA环。在一方面,本发明提供了本文讨论的方法,所述方法还包括施用于宿主或在宿主中表达的阻遏子。在一方面,本发明提供了本文讨论的方法,其中筛选包括影响和检测基因激活、基因抑制或基因座中的裂解。
在一方面,本发明提供了有效的在靶活性,并使脱靶活性最小化。在一方面,本发明提供了Cas13b效应蛋白的有效在靶裂解,并使Cas13b效应蛋白的脱靶裂解最小化。在一方面,本发明提供了Cas13b效应蛋白在基因座处的指导特异性结合,而没有DNA裂解。因此,在一方面,本发明提供了靶特异性基因调控。在一方面,本发明提供了Cas13b效应蛋白在基因座处的指导特异性结合,而没有DNA裂解。因此,在一方面,本发明提供了使用单个Cas13b效应蛋白在一个基因座处的裂解和在不同基因座处的基因调控。在一方面,本发明提供了使用一种或多种Cas13b效应蛋白和/或酶对多个靶标的正交激活和/或抑制和/或裂解。
在一方面,本发明提供了本文讨论的方法,其中宿主是真核细胞。在一方面,本发明提供了本文讨论的方法,其中宿主是哺乳动物细胞。在一方面,本发明提供了本文讨论的方法,其中宿主是非人类真核生物。在一方面,本发明提供了本文讨论的方法,其中非人类真核生物是非人类哺乳动物。在一方面,本发明提供了本文讨论的方法,其中非人类哺乳动物是小鼠。在一方面,本发明提供了本文讨论的方法,其包括递送Cas13b效应蛋白复合物或其一种或多种组分或编码其的一种或多种核酸分子,其中所述一种或多种核酸分子可操作地连接到一个或多个调控序列并在体内表达。在一方面,本发明提供了本文讨论的方法,其中体内表达是经由慢病毒、腺病毒或AAV进行的。在一方面,本发明提供了本文讨论的方法,其中递送是经由颗粒、纳米颗粒、脂质或细胞穿透肽(CPP)进行的。
在一方面,本发明提供了包含Cas13b效应蛋白的一对CRISPR复合物,每个复合物包含:向导RNA(sgRNA),所述向导RNA包含能够与细胞中目标基因组基因座中的靶序列杂交的指导序列,其中通过插入与一个或多个衔接蛋白结合的一个或多个不同的RNA序列来对每个sgRNA的至少一个环进行修饰,并且其中衔接蛋白与一个或多个功能结构域缔合,其中每个Cas13b效应蛋白复合物的每个sgRNA包含具有DNA裂解活性的功能结构域;
在一方面,本发明提供了一种用于在目标基因座中切割靶序列的方法,所述方法包括将Cas13b效应蛋白复合物或其一种或多种组分或编码其的一种或多种核酸分子递送到细胞,其中所述一种或多种核酸分子可操作地连接到一个或多个调控序列并在体内表达。在一方面,本发明提供了本文讨论的方法,其中递送是经由慢病毒、腺病毒或AAV进行的。
在一方面,本发明提供了本文讨论的文库、方法或复合物,其中将sgRNA修饰为具有至少一个非编码功能环,例如其中至少一个非编码功能环是阻遏性的;例如,其中至少一个非编码功能环包括Alu。
在一方面,本发明提供了一种用于改变或修饰基因产物的表达的方法。所述方法可包括将包含Cas13b效应蛋白以及靶向RNA分子的向导RNA的工程化的非天然存在的CRISPR系统引入含有并表达编码基因产物的DNA分子的细胞中,由此向导RNA靶向编码基因产物的RNA靶分子并且Cas13b效应蛋白裂解编码基因产物的RNA分子,由此改变基因产物的表达;并且其中Cas13b效应蛋白和向导RNA并非天然一起存在。本发明包括包含与正向重复序列连接的指导序列的向导RNA。本发明还包括针对在真核细胞中表达而进行密码子优化的Cas13b效应蛋白。在一个优选的实施方案中,真核细胞是哺乳动物细胞,并且在一个更优选的实施方案中,哺乳动物细胞是人类细胞。在本发明的另一个实施方案中,基因产物的表达降低。
在一些实施方案中,一个或多个功能结构域与Cas13b效应蛋白缔合。在一些实施方案中,一个或多个功能结构域与衔接蛋白缔合,例如与Konnerman等人(Nature 517,583-588,2015年1月29日)的经修饰的指导物一起使用。在一些实施方案中,一个或多个功能结构域与死亡sgRNA(dRNA)缔合。在一些实施方案中,具有活性Cas13b效应蛋白的dRNA复合物通过基因座上的功能结构域指导基因调控,而sgRNA通过其他基因座处的活性Cas13b效应蛋白指导DNA裂解,例如如Dahlman等人‘Orthogonal gene control with acatalytically active Cas9 nuclease,’Nature Biotechnology 33,第1159-1161页(2015年11月)在CRISPR-Cas9系统中类似描述的。在一些实施方案中,选择dRNA以与脱靶调控相比最大化目标基因座的调控的选择性。在一些实施方案中,选择dRNA以最大化靶基因调控并最小化靶裂解。
出于以下讨论的目的,提及功能结构域可能是与Cas13b效应蛋白缔合的功能结构域或与衔接蛋白缔合的功能结构域。
在一些实施方案中,一个或多个功能结构域是NLS(核定位序列)或NES(核输出信号)。在一些实施方案中,一个或多个功能结构域是转录激活结构域,其包含VP64、p65、MyoD1、HSF1、RTA、SET7/9和组蛋白乙酰转移酶。本文关于与CRISPR酶缔合的结构域提及其他激活(或激活子)结构域包括任何已知的转录激活结构域,特别是VP64、p65、MyoD1、HSF1、RTA、SET7/9或组蛋白乙酰转移酶。
在一些实施方案中,一个或多个功能结构域是转录阻遏子结构域。在一些实施方案中,转录阻遏子结构域是KRAB结构域。在一些实施方案中,转录阻遏子结构域是NuE结构域、NcoR结构域、SID结构域或SID4X结构域。
在一些实施方案中,一个或多个功能结构域具有一种或多种活性,包括翻译激活活性、翻译阻遏活性、甲基化酶活性、脱甲基酶活性、转录激活活性、转录阻遏活性、转录释放因子活性、组蛋白修饰活性、RNA裂解活性、DNA裂解活性、DNA整合活性或核酸结合活性。
在一些实施方案中,DNA裂解活性是由于核酸酶。在一些实施方案中,核酸酶包含Fok1核酸酶。参见“Dimeric CRISPR RNA-guided FokI nucleases for highly specificgenome editing”,Shengdar Q.Tsai,Nicolas Wyvekens,Cyd Khayter,JenniferA.Foden,Vishal Thapar,Deepak Reyon,Mathew J.Goodwin,Martin J.Aryee,J.KeithJoung Nature Biotechnology 32(6):569-77(2014),其涉及二聚体RNA引导的FokI核酸酶,该核酸酶识别延伸序列并且可以在人类细胞中高效编辑内源基因。
在一些实施方案中,一个或多个功能结构域附接到Cas13b效应蛋白,使得在与sgRNA和靶标结合时,该功能结构域处于允许该功能结构域以其属性功能起作用的空间取向。
在一些实施方案中,一个或多个功能结构域附接到衔接蛋白,使得Cas13b效应蛋白与sgRNA和靶标结合时,该功能结构域处于允许该功能结构域以其属性功能起作用的空间取向。
在一方面,本发明提供了本文讨论的组合物,其中一个或多个功能结构域经由本文讨论的接头、任选地为GlySer接头附接到Cas13b效应蛋白或衔接蛋白。
还优选的是靶向诸如参与翻译、稳定性等的内源(调控)控制元件。靶向已知控制元件可以用于激活或阻遏目标基因。在另一方面,靶向推定控制元件可以用作验证此类元件(通过测量目标基因的翻译)或检测新型控制元件的手段。另外,靶向推定控制元件在理解疾病的遗传原因的情况下可能有用。与疾病表型相关的许多突变和常见SNP变异都位于编码区之外。利用本文所述的激活或阻遏系统靶向此类区后可以读出以下各项的转录:a)一组推定靶标(例如,最接近控制元件的一组基因),或者b)通过例如RNAseq或微阵列读出的全转录组。这将允许鉴定涉及疾病表型的可能候选基因。此类候选基因可用作新型药物靶标。
本文提到了组蛋白乙酰转移酶(HAT)抑制剂。然而,在一些实施方案中,一种替代方案是一个或多个功能结构域包含乙酰转移酶、优选组蛋白乙酰转移酶。这些在表观基因组学领域中例如在探询表观基因组的方法中是有用的。探询表观基因组的方法可包括例如靶向表观基因组序列。靶向表观基因组序列可包括针对表观基因组靶序列的指导序列。在一些实施方案中,表观基因组靶序列可包括启动子、沉默子或增强子序列。
使用与本文所述的Cas13b效应蛋白、优选死亡Cas13b效应蛋白、更优选死亡FnCas13b效应蛋白连接的功能结构域来靶向表观基因组序列可以用于激活或阻遏启动子、沉默子或增强子。
乙酰转移酶的实例是已知的,但是在一些实施方案中可包括组蛋白乙酰转移酶。在一些实施方案中,组蛋白乙酰转移酶可包含人类乙酰转移酶p300的催化核心(Gerbasch和Reddy,Nature Biotech,2015年4月6日)。
在一些优选的实施方案中,功能结构域与死亡Cas13b效应蛋白连接以靶向并激活表观基因组序列,诸如启动子或增强子。还可提供针对此类启动子或增强子的一种或多种指导物,以指导CRISPR酶与此类启动子或增强子结合。
在某些实施方案中,本发明的RNA靶向效应蛋白可以用于干扰DNA/染色质结构的共转录修饰、RNA引导的DNA甲基化或RNA引导的DNA/染色质的沉默/激活。RNA引导的DNA甲基化(RdDM)是最早在植物中发现的表观遗传过程。在RdDM中,双链RNA(dsRNA)被加工成21-24个核苷酸的小干扰RNA(siRNA),并指导同源DNA基因座的甲基化。除RNA分子外,RdDM的建立还涉及大量蛋白质,如Argonautes、DNA甲基转移酶、染色质重塑复合物以及植物特异性PolIV和PolV。所有这些共同作用以在胞嘧啶的5'位置添加甲基基团。小RNA可以通过将含Argonaute的复合物指导至互补的新生(非编码)RNA转录物来修饰染色质结构并沉默转录。随后介导染色质修饰复合物(包括组蛋白和DNA甲基转移酶)的募集。本发明的RNA靶向效应蛋白可用于靶向此类小RNA,并干扰这些小RNA与新生非编码转录物之间的相互作用。
术语“与……缔合”此处用来指功能结构域缔合到Cas13b效应蛋白或衔接蛋白。它用来表示一个分子如何例如在衔接蛋白和功能结构域之间或在Cas13b效应蛋白和功能结构域之间与另一个分子“缔合”。在这种蛋白-蛋白相互作用的情况下,可以抗体识别表位的方式从识别的角度看待这种缔合。另选地,一种蛋白可经由与另一种蛋白融合(例如,一个亚基与另一个亚基融合)而与另一种蛋白缔合。融合通常通过将一种蛋白的氨基酸序列添加到另一种蛋白的氨基酸序列(例如,经由将编码每种蛋白或亚基的核苷酸序列剪接在一起)而发生。另选地,这本质上可被视为两个分子之间的结合或直接连接,诸如融合蛋白。在任何情况下,融合蛋白可在两个目标亚基之间(即,在酶和功能结构域之间或在衔接蛋白和功能结构域之间)包括接头。因此,在一些实施方案中,Cas13b效应蛋白或衔接蛋白通过与功能结构域结合而与之缔合。在其他实施方案中,Cas13b效应蛋白或衔接蛋白与功能结构域缔合,因为二者任选地经由中间接头融合在一起。
饱和诱变
本文所述的一种或多种Cas13b效应蛋白系统可以用于与细胞表型结合进行基因组基因座的饱和或深层扫描诱变,例如用于确定基因表达、药物抗性和疾病逆转所需的功能元件的关键最小特征和离散脆弱性。所谓饱和或深层扫描诱变,是指在基因组基因座内切割每个或基本上每个RNA碱基。可将Cas13b效应蛋白向导RNA的文库引入细胞群中。可引入该文库,使得每个细胞接收单个向导RNA(sgRNA)。在如本文所述通过转导病毒载体引入该文库的情况下,使用低感染复数(MOI)。该文库可包括靶向基因组基因座中原间隔邻近基序(PAM)序列上游的每个序列的sgRNA。对于基因组基因座内的每1000个碱基对,该文库可在PAM序列上游包括至少100个非重叠基因组序列。该文库可包括靶向至少一种不同PAM序列上游的序列的sgRNA。Cas13b效应蛋白系统可包括一种以上的Cas13b蛋白。可使用本文所述的任何Cas13b效应蛋白,包括识别不同PAM序列的同源物或工程化Cas13b效应蛋白。sgRNA脱靶位点的频率可小于500。可产生脱靶得分以选择具有最低脱靶位点的sgRNA。可通过在单次实验中使用靶向同一位点的sgRNA来确定被确定与在sgRNA靶位点处进行切割相关的任何表型。还可通过使用本文所述的经修饰的Cas13b效应蛋白以及靶向目标基因组位点的两种sgRNA来进行靶位点的验证。不受理论的束缚,如果在验证实验中观察到表型的变化,则靶位点是真正的命中点。
用于饱和或深层扫描诱变的一种或多种Cas13b效应蛋白系统可以用于细胞群中。一种或多种Cas13b效应蛋白系统可以用于真核细胞中,包括但不限于哺乳动物和植物细胞。细胞群体可以是原核细胞。真核细胞群可以是胚胎干(ES)细胞群、神经元细胞群、上皮细胞群、免疫细胞群、内分泌细胞群、肌细胞群、红细胞群、淋巴细胞群、植物细胞群或酵母细胞群。
在一方面,本发明提供了一种筛选与表型改变相关的功能元件的方法。可将文库引入被调适为包含Cas13b效应蛋白的细胞群中。可基于表型将细胞分为至少两组。表型可以是基因的表达、细胞生长或细胞存活。确定每组中存在的向导RNA的相对表示,由此通过每组中存在的向导RNA的表示来确定与表型的变化相关的基因组位点。表型的改变可以是目标基因表达的改变。可上调、下调或敲除目标基因。可将细胞分为高表达组和低表达组。细胞群可包括用于确定表型的报告物构建体。报告物构建体可包括可检测标记。可通过使用可检测标记对细胞进行分类。
在另一方面,本发明提供了一种筛选与对化学化合物的抗性相关的基因座的方法。化学化合物可以是药物或农药。可将文库引入被调适为包含Cas13b效应蛋白的细胞群中,其中细胞群中的每个细胞包含不超过一种的向导RNA;用化学化合物处理细胞群;并且在与较早时间点相比在较晚时间点用化学化合物处理之后确定向导RNA的表示,由此通过富集向导RNA来确定与对化学化合物的抗性相关的基因组位点。可通过深度测序方法确定sgRNA的表示。
在利用Cas13b效应蛋白复合物的本发明的实践中有用的是在CRISPR-Cas9系统中使用的方法,并且参考以下文章:标题为“BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis”,Canver,M.C.,Smith,E.C.,Sher,F.,Pinello,L.,Sanjana,N.E.,Shalem,O.,Chen,D.D.,Schupp,P.G.,Vinjamur,D.S.,Garcia,S.P.,Luc,S.,Kurita,R.,Nakamura,Y.,Fujiwara,Y.,Maeda,T.,Yuan,G.,Zhang,F.,Orkin,S.H.和Bauer,D.E.DOI:10.1038/nature15521,2015年9月16日在线发布,该文章通过引用并入本文,并如下简要讨论:
Canver等人提出了对人类和小鼠BCL11A红系增强子进行原位饱和诱变的新型池化CRISPR-Cas9向导RNA文库,这些增强子先前被鉴定为与胎儿血红蛋白(HbF)水平相关的增强子并且其小鼠直系同源物是红系BCL11A表达所必需的。这种方法揭示了这些增强子的关键最小特征和离散脆弱性。通过编辑原代人类祖细胞并进行小鼠转基因,作者验证了BCL11A红系增强子是HbF再诱导的靶标。作者生成了详细的增强子图,可指导治疗性基因组编辑。
使用Cas13b系统来修饰细胞或生物的方法
在一些实施方案中,本发明包括一种修饰细胞或生物的方法。细胞可以是原核细胞或真核细胞。细胞可以是哺乳动物细胞。哺乳动物细胞可以是非人类灵长类动物、牛科动物、猪科动物、啮齿动物或小鼠细胞。细胞可以是非哺乳动物真核细胞,诸如家禽、鱼或虾。细胞也可以是植物细胞。植物细胞可以是作物植物,诸如木薯、玉米、高粱、小麦或水稻。植物细胞也可以是藻类、树木或蔬菜。通过本发明引入细胞的修饰可以是使得改变细胞和细胞子代用于提高生物产物诸如抗体、淀粉、醇或其他所需细胞输出的产量。通过本发明引入细胞的修饰可以是使得细胞和细胞子代包括改变所产生的生物产物的改变。
系统可包含一个或多个不同的载体。在本发明的在一方面,针对在所需细胞类型、优选真核细胞、优选哺乳动物细胞或人类细胞中表达对效应蛋白进行密码子优化。
包装细胞通常用于形成能够感染宿主细胞的病毒颗粒。此类细胞包括包装腺病毒的293细胞以及包装逆转录病毒的ψ2细胞或PA317细胞。基因疗法中使用的病毒载体通常是通过产生将核酸载体包装成病毒颗粒的细胞系而产生的。载体通常包含包装且随后整合到宿主中所需的最小病毒序列,其他病毒序列被要表达的一种或多种多核苷酸的表达盒替换。缺失的病毒功能通常由包装细胞系反式地提供。例如,基因疗法中使用的AAV载体通常仅具有来自AAV基因组的ITR序列,这些序列是包装且整合到宿主基因组中所需的。将病毒DNA包装在细胞系中,该细胞系包含编码辅助质粒的其他AAV基因即rep和cap,但缺少ITR序列。该细胞系也可被作为辅助病毒的腺病毒感染。辅助病毒促进AAV载体复制和AAV基因从辅助质粒表达。由于缺少ITR序列,因此没有大量包装辅助质粒。可以通过例如腺病毒比AAV更敏感的热处理来减少腺病毒的污染。用于将核酸递送到细胞的其他方法是本领域技术人员已知的。参见例如US20030087817,其通过引用并入本文。
在一些实施方案中,用本文所述的一个或多个载体瞬时或非瞬时转染宿主细胞。在一些实施方案中,当细胞天然存在于受试者中时将其转染。在一些实施方案中,转染的细胞取自受试者。在一些实施方案中,细胞来源于取自受试者的细胞,诸如细胞系。用于组织培养的各种细胞系是本领域已知的。细胞系的实例包括但不限于C8161、CCRF-CEM、MOLT、mIMCD-3、NHDF、HeLa-S3、Huh1、Huh4、Huh7、HUVEC、HASMC、HEKn、HEKa、MiaPaCell、Panc1、PC-3、TF1、CTLL-2、C1R、Rat6、CV1、RPTE、A10、T24、J82、A375、ARH-77、Calu1、SW480、SW620、SKOV3、SK-UT、CaCo2、P388D1、SEM-K2、WEHI-231、HB56、TIB55、Jurkat、J45.01、LRMB、Bcl-1、BC-3、IC21、DLD2、Raw264.7、NRK、NRK-52E、MRC5、MEF、Hep G2、HeLa B、HeLa T4、COS、COS-1、COS-6、COS-M6A、BS-C-1猴肾上皮、BALB/3T3小鼠胚胎成纤维细胞、3T3 Swiss、3T3-L1、132-d5人类胎儿成纤维细胞;10.1小鼠成纤维细胞、293-T、3T3、721、9L、A2780、A2780ADR、A2780cis、A172、A20、A253、A431、A-549、ALC、B16、B35、BCP-1细胞、BEAS-2B、bEnd.3、BHK-21、BR 293、BxPC3、C3H-10T1/2、C6/36、Cal-27、CHO、CHO-7、CHO-IR、CHO-K1、CHO-K2、CHO-T、CHO Dhfr-/-、COR-L23、COR-L23/CPR、COR-L23/5010、COR-L23/R23、COS-7、COV-434、CMLT1、CMT、CT26、D17、DH82、DU145、DuCaP、EL4、EM2、EM3、EMT6/AR1、EMT6/AR10.0、FM3、H1299、H69、HB54、HB55、HCA2、HEK-293、HeLa、Hepa1c1c7、HL-60、HMEC、HT-29、Jurkat、JY细胞、K562细胞、Ku812、KCL22、KG1、KYO1、LNCap、Ma-Mel 1-48、MC-38、MCF-7、MCF-10A、MDA-MB-231、MDA-MB-468、MDA-MB-435、MDCK II、MDCK II、MOR/0.2R、MONO-MAC 6、MTD-1A、MyEnd、NCI-H69/CPR、NCI-H69/LX10、NCI-H69/LX20、NCI-H69/LX4、NIH-3T3、NALM-1、NW-145、OPCN/OPCT细胞系、Peer、PNT-1A/PNT 2、RenCa、RIN-5F、RMA/RMAS、Saos-2细胞、Sf-9、SkBr3、T2、T-47D、T84、THP1细胞系、U373、U87、U937、VCaP、Vero细胞、WM39、WT-49、X63、YAC-1、YAR以及它们的转基因变体。细胞系可从本领域技术人员已知的多种来源获得(参见例如美国模式培养物集存库(ATCC)(Manassus,Va.))。在一些实施方案中,用本文所述的一个或多个载体转染的细胞用于建立包含一个或多个载体来源的序列的新细胞系。在一些实施方案中,用本文所述的核酸靶向系统的组分瞬时转染(诸如通过一个或多个载体瞬时转染,或用RNA转染)并且通过核酸靶向复合体的活性进行修饰的细胞用于建立包含以下细胞的新细胞系:所述细胞含有所述修饰但缺少任何其他外源序列。在一些实施方案中,用本文所述的一个或多个载体瞬时或非瞬时转染的细胞或者来源于此类细胞的细胞系用于评估一种或多种测试化合物。
在一些实施方案中,本文所述的一个或多个载体用于产生非人类转基因动物或转基因植物。在一些实施方案中,转基因动物是哺乳动物,诸如小鼠、大鼠或兔。在某些实施方案中,生物或受试者是植物。在某些实施方案中,生物或受试者或植物是藻类。用于产生转基因植物和动物的方法是本领域已知的,一般以诸如本文所述的细胞转染方法开始。
在一方面,本发明提供了修饰真核细胞中的靶多核苷酸的方法。在一些实施方案中,所述方法包括允许核酸靶向复合物与靶多核苷酸结合以实现所述靶多核苷酸的裂解,从而修饰靶多核苷酸,其中核酸靶向复合物包含与向导RNA复合的核酸靶向效应蛋白,该向导RNA与所述靶多核苷酸内的靶序列杂交。
在一方面,本发明提供了一种修饰多核苷酸在真核细胞中的表达的方法。在一些实施方案中,所述方法包括允许核酸靶向复合物与多核苷酸结合,使得所述结合导致所述多核苷酸的表达增加或减少;其中核酸靶向复合物包含与向导RNA复合的核酸靶向效应蛋白,该向导RNA与所述多核苷酸内的靶序列杂交。
Cas13b效应蛋白复合物可以用于植物
可以结合作物基因组学的最新进展来使用Cas13b效应蛋白(例如,单个或多重)。本文所述的系统可以用于执行高效且经济高效的植物基因或基因组探询或编辑或操纵,例如用于植物基因或基因组的快速研究和/或选择和/或探询和/或比较和/或操作和/或转化;例如,以为植物产生、鉴定、开发、优化或赋予性状或特征,或者以转化植物基因组。因此,可以改善植物即具有性状或特征的新组合的新植物或者具有增强性状的新植物的产生。Cas13b效应蛋白系统可以在定点整合(SDI)或基因编辑(GE)或任何近反向育种(NRB)或反向育种(RB)技术中用于植物。利用本文所述的Cas13b效应蛋白系统的各方面可类似于在植物中使用CRISPR-Cas(例如,CRISPR-Cas9)系统,并且提到了亚利桑那大学(Universityof Arizona)的网站“CRISPR-PLANT”(http://www.genome.arizona.edu/crispr/)(由宾州州立大学(Penn State)和AGI提供支持)。本发明的实施方案可以在植物中或者在先前已经使用过RNAi或类似的基因组编辑技术的情况下可以用于基因组编辑;参见例如Nekrasov,“Plant genome editing made easy:targeted mutagenesis in model and crop plantsusing the CRISPR-Cas system,”Plant Methods 2013,9:39(doi:10.1186/1746-4811-9-39);Brooks,“Efficient gene editing in tomato in the first generation usingthe CRISPR-Cas9 system,”Plant Physiology September 2014第114.247577页;Shan,“Targeted genome modification of crop plants using a CRISPR-Cas system,”Nature Biotechnology 31,686-688(2013);Feng,“Efficient genome editing inplants using a CRISPR/Cas system,”Cell Research(2013)23:1229–1232.doi:10.1038/cr.2013.114;2013年8月20日在线发布;Xie,“RNA-guided genome editing inplants using a CRISPR-Cas system,”Mol Plant.2013年11月;6(6):1975-83.doi:10.1093/mp/sst119.2013年8月17日的电子版;Xu,“Gene targeting using theAgrobacterium tumefaciens-mediated CRISPR-Cas system in rice,”Rice 2014,7:5(2014);Zhou等人,“Exploiting SNPs for biallelic CRISPR mutations in theoutcrossing woody perennial Populus reveals 4-coumarate:CoA ligasespecificity and Redundancy,”New Phytologist(2015)(论坛)1-4(仅可从www.newphytologist.com在线获取);Caliando等人,“Targeted DNA degradation usinga CRISPR device stably carried in the host genome,NATURE COMMUNICATIONS 6:6989,DOI:10.1038/ncomms7989,www.nature.com/naturecommunications DOI:10.1038/ncomms7989;美国专利号6,603,061“Agrobacterium-Mediated Plant TransformationMethod”;美国专利号7,868,149“Plant Genome Sequences and Uses Thereof”以及美国2009/0100536“Transgenic Plants with Enhanced Agronomic Traits”,这些文献中每一篇的全部内容和公开内容全文通过引用并入本文。在本发明的实践中,Morrell等人“Cropgenomics:advances and applications,”Nat Rev Genet.2011年12月29日13(2):85-96(通过引用并入本文)的内容和公开内容包括关于其中的实施方案可如何用于植物。因此,本文中对动物细胞的提及也可作必要的变通后应用于植物细胞,除非另有明显说明;并且,本文中脱靶效应减少的酶和采用此类酶的系统可以用于植物应用,包括本文中提到的那些应用。
Sugano等人(Plant Cell Physiol,2014年3月;55(3):475-81.doi:10.1093/pcp/pcu014.2014年1月18日的电子版)报道了CRISPR-Cas9在地钱(Marchantia polymorphaL.)中应用于靶向诱变,地钱已经成为研究陆地植物进化的模型物种。鉴定并克隆了地钱的U6启动子以表达gRNA。gRNA的靶序列被设计成破坏地钱中编码生长素应答因子1(ARF1)的基因。使用农杆菌介导的转化,Sugano等人在地钱的配子体世代中分离出稳定的突变体。使用花椰菜花叶病毒35S或地钱EF1α启动子来表达Cas9实现了基于CRISPR-Cas9的体内定点诱变。显示出生长素抗性表型的分离突变体个体不是嵌合的。此外,通过无性繁殖T1植物产生了稳定的突变体。使用基于CRIPSR/Cas9的靶向诱变轻松建立了多个arf1等位基因。本发明的Cas13b系统可以用于调控相同基因以及其他基因,并且像表达控制系统诸如RNAi和siRNA一样,本发明的方法可以是可诱导的和可逆的。
Kabadi等人(Nucleic Acids Res.2014年10月29日;42(19):e147.doi:10.1093/nar/gku749.2014年8月13日的电子版)开发了一种单一慢病毒系统来表达Cas9变体、报告基因以及来自独立RNA聚合酶III启动子的多达四个sgRNA,这些启动子通过便利的GoldenGate克隆方法掺入载体中。每个sgRNA都有效表达,并且可以在永生和原代人类细胞中介导多重基因编辑和持续转录激活。本发明可以用于调控Kabadi的植物基因。
Xing等人(BMC Plant Biology 2014,14:327)基于pGreen或pCAMBIA主链开发了一种CRISPR-Cas9双元载体组,以及gRNA。除BsaI外,该工具包不需要任何限制酶即可在一个克隆步骤中高效生成具有经玉米密码子优化的Cas9以及一个或多个gRNA的最终构建体。使用玉米原生质体、转基因玉米品系和转基因拟南芥品系对该工具包进行了验证,表明其具有高效性和高特异性。更重要的是,使用该工具包,在T1代转基因幼苗中检测到了三个拟南芥基因的靶向突变。此外,该多基因突变可以被下一代遗传。(向导RNA)模块载体组作为植物中多重基因组编辑的工具包。本发明的Cas13b系统和蛋白质可用于靶向Xing靶向的基因。
本发明的Cas13b CRISPR系统可用于植物病毒的检测。Gambino等人(Phytopathology.2006年11月;96(11):1223-9.doi:10.1094/PHYTO-96-1223)依靠扩增和多重PCR同时检测九种葡萄病毒。本发明的Cas13b系统和蛋白质可类似地用于检测宿主中的多个靶标。此外,本发明的系统可以用于同时敲低有价值的栽培种中病毒基因的表达,并且通过靶向表达的病毒RNA来防止激活或进一步感染。
Murray等人(Proc Biol Sci.2013年6月26日;280(1765):20130965.doi:10.1098/rspb.2013.0965;2013年8月22日发布)分析了12种植物RNA病毒来研究进化速率,并发现了可能由于不同宿主基因型或物种之间的移码而发生偶发性选择的证据。本发明的Cas13b系统和蛋白质可用于靶向宿主中的此类病毒或对其免疫。例如,本发明的系统可以用于阻断病毒RNA表达从而阻断复制。而且,本发明可以用于靶向核酸以进行裂解,以及靶向表达或激活。此外,本发明的系统可以被多重化,以命中同一病毒的多个靶标或多个分离物。
Ma等人(Mol Plant.2015年8月3日;8(8):1274-84.doi:10.1016/j.molp.2015.04.007)报道了一种可靠的CRISPR-Cas9载体系统,其利用经植物密码子优化的Cas9基因在单子叶植物和双子叶植物中方便高效地进行多重基因组编辑。Ma等人设计了基于PCR的程序来快速产生多个sgRNA表达盒,可通过Golden Gate连接或Gibson Assembly在一轮克隆中将这些表达盒组装到双元CRISPR-Cas9载体中。利用该系统,Ma等人对水稻中的46个靶位点进行了编辑,平均突变率为85.4%,主要处于双等位基因和纯合子状态。Ma等人通过同时靶向基因家族的多个(多达八个)成员、生物合成途径中的多个基因或单个基因中的多个位点,提供了T0水稻和T1拟南芥植物中功能丧失基因突变的实例。类似地,本发明的Cas13b系统可以同时不同地靶向多个基因的表达。
Lowder等人(Plant Physiol.2015年8月21日,pii:pp.00636.2015)也开发了一种CRISPR-Cas9工具箱,其可对植物中的表达基因、沉默基因或非编码基因进行多重基因组编辑和转录调控。该工具箱为研究人员提供了使用Golden Gate和Gateway克隆方法快速有效地组装单子叶植物和双子叶植物的功能性CRISPR-Cas9 T-DNA构建体的方案和试剂。该工具箱具有一整套功能,包括多重基因编辑以及植物内源基因的转录激活或阻遏。基于T-DNA的转化技术是现代植物生物技术、遗传学、分子生物学和生理学的基础。因此,我们开发了一种将Cas9(野生型切口酶或dCas9)和gRNA组装到目标T-DNA目的载体中的方法。该组装方法基于Golden Gate组装和MultiSite Gateway重组。组装需要三个模块。第一个模块是Cas9进入载体,其包含无启动子的Cas9或其侧接attL1和attR5位点的衍生基因。第二个模块是gRNA进入载体,其包含侧接attL5和attL2位点的进入gRNA表达盒。第三个模块包括含attR1-attR2的目的T-DNA载体,其提供选择的启动子以便Cas9表达。Lowder等人的工具箱可应用于本发明的Cas13b效应蛋白系统。
生物诸如酵母和微藻等被广泛用于合成生物学。Stovicek等人(Metab.Eng.Comm.,2015;2:13)描述了对工业酵母例如酿酒酵母(Saccharomycescerevisae)进行基因组编辑,以有效产生用于工业生产的可靠菌株。Stovicek使用针对酵母进行密码子优化的CRISPR-Cas9系统来同时破坏内源基因的两个等位基因并敲入异源基因。Cas9和gRNA从基于基因组或游离2μ的载体位置表达。作者还表明,通过优化Cas9和gRNA表达水平可以提高基因破坏效率。Hlavová等人(Biotechnol.Adv.2015)讨论了使用诸如CRISPR的技术来靶向核基因和叶绿体基因进行插入诱变和筛选,从而开发微藻物种或菌株。相同的质粒和载体可以应用于本发明的Cas13b系统。
Petersen(“Towards precisely glycol engineered plants,”Plant BiotechDenmark Annual meeting 2015,Copenhagen,Denmark)开发了一种使用CRISPR/Cas9工程化拟南芥基因组变化(例如糖工程化拟南芥以产生具有所需翻译后修饰的蛋白质和产物)的方法。Hebelstrup等人(Front Plant Sci.2015年4月23日;6:247)概述了植物淀粉生物工程,提供了表达淀粉修饰酶并直接产生通常通过工业化学和/或物理处理淀粉而制成的产品的农作物。Petersen和Hebelstrup的方法可应用于本发明的Cas13b效应蛋白系统。
Kurth等人,J Virol.2012年6月;86(11):6002-9.doi:10.1128/JVI.00436-12.2012年3月21日的电子版)开发了一种基于RNA病毒的载体,用于将所需的性状引入葡萄中,而无需对基因组进行遗传修饰。该载体能够通过病毒诱导的基因沉默来调控内源基因的表达。本发明的Cas13b系统和蛋白质可以用于沉默基因和蛋白质,而无需对基因组进行遗传修饰。
在一个实施方案中,植物可以是豆类。本发明可利用本文公开的CRISPR-Cas系统来探索和修饰例如但不限于大豆、豌豆和花生。Curtin等人提供了一种用于豆类功能基因组学的工具箱。(参见Curtin等人,“A genome engineering toolbox for legumeFunctional genomics,”International Plant and Animal Genome Conference XXII2014)。Curtin利用CRISPR的遗传转化敲除/敲低了毛状根和整个植物系统中的单拷贝和重复豆类基因。选择一些靶基因(例如,八氢番茄红素脱氢酶)以便探索和优化敲除/敲低系统的特征,而其他靶基因是通过与拟南芥Dicer样基因的大豆同源性或通过苜蓿中结瘤的全基因组关联研究来鉴定的。本发明的Cas13b系统和蛋白质可以用于敲除/敲低系统。
花生过敏和对豆类过敏通常是一个真正严重的健康问题。本发明的Cas13b效应蛋白系统可以用于鉴定编码此类豆类的致敏蛋白的基因,然后编辑或沉默这些基因。不限于此类基因和蛋白质,Nicolaou等人鉴定了花生、大豆、扁豆、豌豆、羽扇豆、青豆和绿豆中的致敏蛋白。参见Nicolaou等人,Current Opinion in Allergy and Clinical Immunology2011;11(3):222)。
在一个有利的实施方案中,植物可以是树木。本发明还可将本文公开的CRISPRCas系统用于草本系统(参见例如Belhaj等人,Plant Methods 9:39以及Harrison等人,Genes&Development 28:1859-1872)。在一个特别有利的实施方案中,本发明的CRISPR Cas系统可靶向树木中的单核苷酸多态性(SNP)(参见例如Zhou等人,New Phytologist,第208卷,第2期,第298-301页,2015年10月)。在Zhou等人的研究中,作者使用4-香豆酸酯:CoA连接酶(4CL)基因家族作为案例研究,将CRISPR Cas系统应用于多年生木本杨树中,并针对两个靶向的4CL基因实现了100%的突变效率,检查到每个转化体均携带有双等位基因修饰。在Zhou等人的研究中,CRISPR-Cas9系统对单核苷酸多态性(SNP)高度敏感,因为由于靶序列中的SNP而废除了对第三个4CL基因的裂解。这些方法可应用于本发明的Cas13b效应蛋白系统。
Zhou等人(New Phytologist,第208卷,第2期,第298-301页,2015年10月)的方法可如下应用于本发明。靶向分别与木质素和类黄酮生物合成相关的两个4CL基因4CL1和4CL2以进行CRISPR-Cas9编辑。通常用于转化的杨树tremula×alba克隆717-1B4与基因组测序的毛果杨(Populus trichocarpa)不同。因此,利用自身717RNA-Seq数据对根据参考基因组设计的4CL1和4CL2 gRNA进行探询,以确保不存在可能限制Cas效率的SNP。还包括为4CL5(4CL1的基因组副本)设计的第三gRNA。对应的717序列在PAM附近/之内的每个等位基因中都具有一个SNP,预计这两种情况都将消除4CL5-gRNA的靶向作用。所有三个gRNA靶位点均位于第一个外显子内。对于717转化,gRNA在双元载体中的CaMV 35S启动子的控制下与经人类密码子优化的Cas一起由苜蓿U6.6启动子表达。仅利用仅有Cas的载体进行的转化可以用作对照。对随机选择的4CL1和4CL2品系进行扩增子测序。然后处理数据,并在所有情况下确认双等位基因突变。这些方法可应用于本发明的Cas13b效应蛋白系统。
在植物中,病原体通常具有宿主特异性。例如,尖孢镰刀菌番茄专化型(Fusariumoxysporum f.sp.lycopersici)会引起番茄枯萎病,但只侵害番茄,而香石竹尖镰孢禾柄锈菌小麦专化型(F.oxysporum f.dianthii Puccinia graminis f.sp.tritici)只侵害小麦。植物具有抵抗大多数病原体的现有和诱导防御能力。跨植物世代的突变和重组事件会导致产生易感性的遗传变异,特别是当病原体的繁殖频率高于植物时。在植物中可能存在非宿主抗性,例如宿主和病原体不相容。还可能存在水平抗性,例如对病原体所有种族的部分抗性,通常由许多基因控制;以及垂直抗性,例如对病原体某些种族而不是其他种族的完全抗性,通常由几个基因控制。在基因对基因水平上,植物和病原体一起进化,并且一者的遗传变化会平衡另一者的变化。因此,利用自然变异,育种者针对产率、质量、均匀性、耐性、抗性将最有用的基因进行结合。抗性基因的来源包括天然或外来品种、祖传品种、野生植物亲缘种和诱导的突变,例如用诱变剂处理植物材料。使用本发明,为植物育种者提供了诱导突变的新工具。因此,本领域技术人员可以分析抗性基因来源的基因组,并且可以在具有所需特征或性状的品种中采用本发明比以前的诱变剂更精确地诱导抗性基因的产生,从而加快和改善植物育种程序。
除了本文和上文另外讨论的植物外,还提供了通过效应蛋白和合适的指导物修饰的工程化植物及其子代。这些植物可包括抗病或抗旱作物,诸如小麦、大麦、水稻、大豆或玉米;经修饰以去除或降低自花授粉能力(但替代地可以任选地杂交)的植物;以及过敏原性食物,诸如花生和坚果,其中已经通过效应蛋白和合适的指导物进行靶向而使免疫原性蛋白失能、被毁坏或被破坏。
治疗性治疗
根据本公开,本发明的系统无需过度实验即可应用于以前的RNA切割技术领域,包括治疗、测定和其他应用,因为本申请为有根据地对系统进行工程化提供了基础。本发明提供了对由RNA、毒性RNA和/或突变RNA(诸如剪接缺陷或截短)的过量表达引起的疾病的治疗性治疗。毒性RNA的表达可能与核内含物的形成以及脑、心脏或骨骼肌中迟发性退行性变化有关。在充分研究的实例强直性肌营养不良中,毒性RNA的主要致病作用似乎是隔离结合蛋白并破坏对可变剪接的调控(Hum.Mol.Genet.(2006)15(增刊2):R162-R169)。遗传学家对强直性肌营养不良[肌营养不良性肌强直症(DM)]特别感兴趣,因为它会产生极为广泛的临床特征。部分列出内容包括肌肉萎缩、白内障、胰岛素抵抗、睾丸萎缩、心脏传导减慢、皮肤肿瘤以及对认知的影响。DM的经典形式现在称为1型DM(DM1),是由DMPK(一种编码胞质蛋白激酶的基因)的3'-非翻译区(UTR)中CTG重复序列的扩增引起的。
下表列出了被证明在DM1骨骼肌、心脏或脑中具有错误调控的可变剪接的外显子列表。
Figure BDA0002313867470002191
Figure BDA0002313867470002201
Figure BDA0002313867470002211
本发明的酶可靶向过量表达的RNA或毒性RNA,诸如DMPK基因或者例如上表中DM1骨骼肌、心脏或脑中任何错误调控的可变剪接。
本发明的酶还可靶向影响引起疾病的RNA依赖性功能的反式作用突变(在Cell,2009年2月20日;136(4):777-793中概述),如下表所示。
Figure BDA0002313867470002221
本发明的酶还可用于治疗各种tau蛋白病,包括原发性和继发性tau蛋白病,例如原发性年龄相关性tau蛋白病(PART)/神经原纤维缠结型老年性痴呆(其中NFT类似于AD,但没有斑块)、拳击员痴呆(慢性创伤性脑病变)、进行性核上性麻痹、皮质基底节变性、与第17号染色体联锁的额颞叶痴呆和帕金森症、lytico-Bodig病(关岛帕金森痴呆复征)、神经节神经胶质瘤和神经节细胞瘤、脑膜血管瘤病、脑炎后帕金森綜合征、亚急性硬化性全脑炎以及铅毒性脑病、结节性硬化症、哈-斯二氏病(Hallervorden-Spatz disease)和脂褐质沉积症、阿尔茨海默病。本发明的酶还可靶向破坏引起剪接缺陷和疾病的顺式作用剪接代码的突变(在Cell,2009年2月20日;136(4):777-793中概述)。运动神经元退行性疾病SMA由SMN1基因的缺失引起。其余的SMN2基因在外显子7中具有C->T取代,该取代使外显子剪接增强子(ESE)失活,并且产生外显子剪接沉默子(ESS),从而导致外显子7跳跃并得到截短的蛋白(SMNΔ7)。肌营养不良蛋白基因的外显子31中的T->A取代同时产生提前终止密码子(STOP)和ESS,从而导致外显子31跳跃。这种突变会导致轻度DMD,因为缺少外显子31的mRNA会产生部分功能性蛋白。编码tau蛋白的MAPT基因的外显子10内部和下游的突变会影响剪接调控元件,并破坏包括或不包括外显子10的mRNA的正常1:1比率。这导致含有四个或三个微管结合结构域(分别为4R-tau和3R-tau)的tau蛋白之间的平衡被干扰,从而引起神经病理障碍FTDP-17。所示的实例是N279K突变,该突变会增强ESE功能,从而促进外显子10的包括并使平衡朝向增加的4R-tau转移。CFTR基因外显子9的3'剪接位点内的多态性(UG)m(U)n片段会影响外显子9的包括程度和全长功能蛋白的水平,从而改变由CFTR基因中其他位置的突变引起的囊性纤维化(CF)的严重性。
先天免疫系统主要通过识别感染细胞内的病毒核酸(称为DNA或RNA感测)来检测病毒感染。体外RNA感测测定可以用于检测特定的RNA底物。RNA靶向效应蛋白可以例如用于活细胞中基于RNA的感测。应用的实例是通过感测例如疾病特异性RNA进行诊断。
本发明的RNA靶向效应蛋白还可以用于抗病毒活性,特别是抗RNA病毒。可以使用对所选的病毒RNA序列具有选择性的合适向导RNA来将效应蛋白靶向病毒RNA。具体地,效应蛋白可以是裂解RNA诸如单链RNA的活性核酸酶。因此,提供了本发明的RNA靶向效应蛋白作为抗病毒剂的用途。
考虑了本发明的酶系统靶向RNA诸如上述RNA的治疗剂量为约0.1至约2mg/kg,可在监测到应答的情况下相继施用该剂量,并且如果需要的话可重复该剂量,最高为每名患者约7至10剂。有利地,在治疗方案期间从每名患者收集样品,以确定治疗的有效性。例如,可分离并定量RNA样品以确定表达是降低还是改善。这种诊断在本领域技术人员的能力范围内。
转录物检测方法
本发明的效应蛋白和系统可用于特异性检测细胞或其他样品中的RNA。在存在目标RNA靶标的情况下,指导序列依赖性Cas13b核酸酶活性可能伴随着对附带靶标的非特异性RNAse活性。为了利用RNase活性,所需要的只是可以可检测地裂解的报告底物。例如,报告分子可以包含RNA,一端用荧光报告分子(荧光剂)标记,并且另一端用猝灭剂标记。在不存在Cas13b RNase活性的情况下,猝灭剂的物理接近将来自荧光剂的荧光衰减到低水平。当Cas13b靶特异性裂解通过目标RNA靶标和合适的向导RNA的存在被激活时,含RNA的报告分子被非特异性裂解,并且荧光剂和猝灭剂在空间上分开。这导致荧光剂在被适当波长的光激发时发出可检测的信号。
在一方面,本发明涉及一种(靶)RNA检测系统,其包含:RNA靶向效应物;被设计成与对应RNA靶标结合的一种或多种向导RNA;以及基于RNA的裂解诱导型报告物构建体。在另一方面,本发明涉及一种用于样品中的(靶)RNA检测的方法,其包括将RNA靶向效应物、被设计成与所述(靶)RNA结合的一种或多种向导RNA以及基于RNA的裂解诱导型报告物构建体加入所述样品中。在另一方面,本发明涉及一种包含本文定义的(靶)RNA检测系统的试剂盒或装置,或者一种包含至少RNA靶向效应物和基于RNA的裂解诱导型报告物构建体的试剂盒或装置。在另一方面,本发明涉及本文定义的RNA靶向系统或者试剂盒或装置用于(靶)RNA检测的用途。在某些实施方案中,RNA靶向效应物是RNA引导的RNAse。在某些实施方案中,RNA靶向效应物是CRISPR效应物。在某些实施方案中,RNA靶向效应物是2类CRISPR效应物。在某些实施方案中,RNA靶向效应物是2类VI-B型CRISPR效应物。在一个优选的实施方案中,RNA靶向效应物是Cas13b。在某些实施方案中,RNA靶向效应物、优选Cas13b来源于本文其他地方所述的物种。应当理解,被设计成与本文所述的所述(靶)RNA结合的向导RNA能够与RNA靶向效应物形成复合物,并且其中所述复合物中的向导RNA能够与靶RNA分子结合,由此裂解靶RNA,如本文其他地方所述。应当理解,向导RNA通常包含指导序列和正向重复序列,如本文其他地方所述。在某些实施方案中,一种或多种向导RNA被设计成与诊断疾病状态的一种或多种靶分子结合。在某些实施方案中,疾病状态是感染,诸如病毒、细菌、真菌或寄生虫感染。在某些实施方案中,疾病状态的特征在于异常(靶)RNA表达。在某些实施方案中,疾病状态是癌症。在某些实施方案中,疾病状态是自身免疫疾病。基于RNA的裂解诱导型报告物构建体包含RNA,并且裂解RNA可获得可检测的读数,即在裂解RNA时产生可检测的信号。在某些实施方案中,基于RNA的裂解诱导型报告物构建体包含荧光染料和猝灭剂。技术人员将理解,可使用不同类型的荧光染料和对应的猝灭剂。技术人员将容易设想可能适用于本发明的RNA裂解报告物构建体的其他类型的诱导报告物系统。
在一种示例性测定方法中,将Cas13b效应物、目标靶特异性向导RNA和报告分子添加到细胞样品中。荧光增加表明存在目标RNA靶标。在另一种示例性方法中,提供了一种检测阵列。阵列的每个位置均提供有Cas13b效应物、报告分子和目标靶特异性向导RNA。取决于要进行的测定,阵列的每个位置处的目标靶特异性向导RNA可以相同、不同或是它们的组合。例如,当需要检测单个来源样品中的一个或多个靶标时,可能提供不同的目标靶特异性向导RNA。例如,当需要检测多个样品的同一靶标时,可能在每个位置处提供相同的目标靶特异性向导RNA。
如本文所用,“掩蔽构建体”是指可以被本文所述的激活的CRISPR系统效应蛋白裂解或以其他方式失活的分子。在某些示例实施方案中,掩蔽构建体是基于RNA的掩蔽构建体。掩蔽构建体可防止产生或检测到阳性可检测信号。阳性可检测信号可以是可以使用光学、荧光、化学发光、电化学方法或本领域已知的其他检测方法检测的任何信号。掩蔽构建体可防止可检测阳性信号的产生或掩蔽可检测阳性信号的存在,直到去除掩蔽构建体或以其他方式使掩蔽构建体沉默。术语“阳性可检测信号”用于与在存在掩蔽构建体的情况下可检测的其他可检测信号区分开。例如,在某些实施方案中,当存在掩蔽剂时可检测到第一信号(即阴性可检测信号),然后在检测到靶分子并且通过激活的CRISPR效应蛋白裂解掩蔽剂或使掩蔽剂失活时将其转换为第二信号(例如阳性可检测信号)。
在某些示例实施方案中,掩蔽构建体可抑制基因产物的产生。基因产物可由加入样品中的报告物构建体编码。掩蔽构建体可以是参与RNA干扰途径的干扰RNA,诸如shRHN或siRNA。掩蔽构建体还可包含微RNA(miRNA)。当存在时,掩蔽构建体抑制基因产物的表达。基因产物可以是荧光蛋白或其他RNA转录物,或者可通过标记的探针或抗体但针对掩蔽构建体的存在检测的蛋白。激活效应蛋白后,裂解掩蔽构建体或以其他方式使掩蔽构建体沉默,从而允许表达和检测基因产物作为阳性可检测信号。
在某些示例实施方案中,掩蔽构建体可隔离产生可检测阳性信号所需的一种或多种试剂,使得从掩蔽构建体中释放一种或多种试剂产生可检测阳性信号。一种或多种试剂可结合产生比色信号、化学发光信号、荧光信号或任何其他可检测信号,并且可包含已知适合于该目的的任何试剂。在某些示例实施方案中,一种或多种试剂被与一种或多种试剂结合的RNA适配体隔离。当检测到靶分子并激活效应蛋白时,一种或多种试剂被释放。在某些示例实施方案中,一种或多种试剂是蛋白质,诸如酶,其能够促进以下可检测信号诸如比色信号、化学发光信号或荧光信号的产生:其被抑制或隔离,使得蛋白质不能通过一种或多种RNA适配体与蛋白质结合而产生可检测信号。激活本文公开的效应蛋白后,RNA适配体被裂解或降解至不再抑制该蛋白产生可检测信号的能力的程度。
在一个实施方案中,凝血酶被用作具有抑制性适配体的信号放大酶,例如具有以下序列:GGGAACAAAGCUGAAGUACUUACCC。当该适配体被裂解时,凝血酶变得具有活性,并且将裂解肽比色底物(例如参见www.sigmaaldrich.com/catalog/product/sigma/t3068?lang=en&region=US)或荧光底物(例如参见www.sigmaaldrich.com/catalog/product/sigma/b9385?lang=en&region=US)。比色底物对硝基苯胺(pNA)与凝血酶的肽底物共价连接。在被凝血酶裂解后,pNA被释放并且变为黄色,肉眼容易看见。荧光底物以相似的原理工作,并且在被凝血酶裂解后释放7-氨基-4-甲基香豆素,这是一种可以使用荧光检测器检测的蓝色荧光团。凝血酶的替代物包括辣根过氧化物酶(HRP)、β-半乳糖苷酶和小牛碱性磷酸酶(CAP),它们可以类似地用于产生比色或荧光信号,并且被抑制性适配体抑制。
在某些示例实施方案中,掩蔽构建体可以单独的离散体积(在下文中进一步定义)固定在固体底物上,并隔离单一试剂。例如,试剂可以是包含染料的珠。当被固定试剂隔离时,各个珠太扩散而不能产生可检测信号,但在从掩蔽构建体释放后能够例如通过聚集或简单增加溶液浓度而产生可检测信号。在某些示例实施方案中,固定掩蔽剂是基于RNA的适配体,其可以在检测到靶分子时被激活的效应蛋白裂解。
在某些其他示例实施方案中,掩蔽构建体与溶液中的固定试剂结合,从而阻断试剂与溶液中游离的单独的标记结合伴侣结合的能力。因此,在将洗涤步骤应用于样品时,可以在不存在靶分子的情况下将标记的结合伴侣从样品中洗出。但是,如果效应蛋白被激活,则将掩蔽构建体裂解至足以干扰掩蔽构建体与试剂结合的能力的程度,从而允许标记的结合伴侣与固定试剂结合。因此,标记的结合伴侣在洗涤步骤后保留,表明样品中存在靶分子。在某些方面,与固定试剂结合的掩蔽构建体是RNA适配体。固定试剂可以是蛋白质,并且标记的结合伴侣可以是标记的抗体。另选地,固定试剂可以是链霉亲和素,并且标记的结合伴侣可以是标记的生物素。在以上实施方案中使用的结合伴侣上的标记可以是本领域已知的任何可检测标记。另外,可根据这里描述的总体设计使用其他已知的结合伴侣。
在某些示例实施方案中,掩蔽构建体可包含核酶。核酶是具有催化特性的RNA分子。由于天然和工程化核酶均包含RNA或由RNA组成,因此其可被本文公开的效应蛋白靶向。可选择或工程化核酶以催化产生阴性可检测信号或阻止产生阳性对照信号的反应。通过激活的效应蛋白分子使核酶失活后,去除了产生阴性对照信号或防止产生阳性可检测信号的反应,从而允许检测阳性可检测信号。在一个示例实施方案中,核酶可催化比色反应,从而使溶液显现为第一种颜色。当使核酶失活时,溶液则变成第二种颜色,第二种颜色是可检测阳性信号。可以如何使用核酶催化比色反应的实例在Zhao等人“Signal amplification ofglucosamine-6-phosphate based on ribozyme glmS,”Biosens Bioelectron.2014;16:337-42中描述,并且提供了可以如何修改这种系统以在本文公开的实施方案的上下文中工作的实例。另选地,核酶(当存在时)可以产生例如RNA转录物的裂解产物。因此,检测阳性可检测信号可包括检测仅在不存在核酶的情况下产生的未裂解的RNA转录物。
在一个示例实施方案中,掩蔽构建体包含检测剂,其根据检测剂是聚集还是分散在溶液中而改变颜色。例如,某些纳米颗粒诸如胶体金在从聚集体移动成分散颗粒时会从可见的紫色转变为红色。因此,在某些示例实施方案中,此类检测剂可通过一个或多个桥接分子保持为聚集体。桥接分子的至少一部分包含RNA。激活本文公开的效应蛋白后,桥接分子的RNA部分被裂解,从而使检测剂分散并产生对应的颜色变化。在某些示例实施方案中,桥接分子是RNA分子。在某些示例实施方案中,检测剂是胶体金属。胶体金属材料可包括不溶于水的金属颗粒或者分散在液体、水溶胶或金属溶胶中的金属化合物。胶体金属可选自元素周期表的IA、IB、IIB和IIIB族金属,以及过渡金属、尤其是VIII族的过渡金属。优选的金属包括金、银、铝、钌、锌、铁、镍和钙。其他合适的金属还包括所有不同氧化态的以下金属:锂、钠、镁、钾、钪、钛、钒、铬、锰、钴、铜、镓、锶、铌、钼、钯、铟、锡、钨、铼、铂和钆。金属优选地以来源于适当金属化合物的离子形式提供,例如Al3+、Ru3+、Zn2+、Fe3+、Ni2+和Ca2+离子。
在某些其他示例实施方案中,掩蔽构建体可包含RNA寡核苷酸,其上附接有可检测标记和该可检测标记的掩蔽剂。这种可检测标记/掩蔽剂对的实例是荧光团和荧光团的猝灭剂。荧光团的猝灭可能由于在荧光团与另一荧光团或非荧光分子之间形成非荧光复合物而发生。这种机制被称为基态复合物形成、静态猝灭或接触猝灭。因此,RNA寡核苷酸可被设计成使得荧光团和猝灭剂足够接近以发生接触猝灭。荧光团及其同源猝灭剂是本领域已知的,并且可以由本领域普通技术人员针对该目的选择。在本发明的上下文中,特定的荧光团/猝灭剂对不是关键的,只是荧光团/猝灭剂对的选择能确保荧光团的掩蔽。在激活本文公开的效应蛋白后,RNA寡核苷酸被裂解,从而切断了荧光团与维持接触猝灭作用所需的猝灭剂之间的接近。因此,荧光团的检测可用于确定样品中靶分子的存在。
在一个示例实施方案中,掩蔽构建体可包括量子点。量子点可以具有附接到表面的多个接头分子。接头分子的至少一部分包含RNA。接头分子的一端附接到量子点,并沿着接头的长度或在接头的末端附接到一个或多个猝灭剂,使得猝灭剂保持足够接近以使量子点猝灭。接头可以是分支的。如上所述,量子点/猝灭剂对不是关键的,只是量子点/猝灭剂对的选择能确保荧光团的掩蔽。量子点及其同源猝灭剂是本领域已知的,并且可以由本领域普通技术人员针对该目的选择。激活本文公开的效应蛋白后,接头分子的RNA部分被裂解,从而消除了量子点与维持猝灭作用所需的一种或多种猝灭剂之间的接近。在一个实施方案中,量子点是链霉亲和素缀合的,诸如
Figure BDA0002313867470002311
625链霉亲和素缀合(www.thermofisher.com/order/catalog/product/A10196)。RNA经由生物素接头附接并且募集猝灭分子,其序列为/5Biosg/UCUCGUACGUUC/3IAbRQSp/或/5Biosg/UCUCGUACGUUCUCUCGUACGUUC/3IAbRQSp/,其中/5Biosg/是生物素标签,/3IAbRQSp/是Iowa黑色猝灭剂。裂解时,猝灭剂将被释放,并且量子点将发出可见的荧光。
以类似的方式,荧光能量转移(FRET)可用于产生可检测阳性信号。FRET是来自能量激发荧光团(即“供体荧光团”)的光子将另一个分子(即“受体”)中电子的能态升高到激发单重态的较高振动水平的非辐射过程。供体荧光团返回基态而没有发射该荧光团的荧光特征。受体可以是另一个荧光团或非荧光分子。如果受体是荧光团,则转移的能量作为该荧光团的荧光特征而发射。如果受体是非荧光分子,则吸收的能量作为热量损失。因此,在本文公开的实施方案的上下文中,将荧光团/猝灭剂对替换为附接到寡核苷酸分子的供体荧光团/受体对。掩蔽构建体完整时会生成第一信号(阴性可检测信号),该信号通过从受体发射的荧光或热量检测。在激活本文公开的效应蛋白后,RNA寡核苷酸被裂解并且FRET被破坏,使得现在检测到的是供体荧光团的荧光(阳性可检测信号)。
用于检测RNAse的比色读数的一种模式基于嵌入染料,所嵌入的染料响应于将长RNA裂解成短核苷酸而改变其吸光度。存在几种具有这些特性的现有染料。来源于Wagner(1983)的Pyronine-Y将与RNA复合并形成在572nm处具有吸光度的复合物;RNA的裂解导致吸光度损失和颜色变化。Greiner-Stoeffele(1996)以类似的方式使用亚甲蓝,688nm处的吸光度在具有RNAse活性时发生变化。
比色读数的另一种模式涉及在裂解时改变颜色的核酸底物。Witmer(1991)利用合成的核糖核苷酸底物U-3'-BCIP,该底物在裂解后释放报告基团,从而在650nm处产生吸光度。
脱氨酶功能化的CRISPR/Cas13
在本发明的某些方面和实施方案中,本文所述的Cas13蛋白(包括例如Cas13a、Cas13b或Cas13c,包括任何同源物,诸如本文其他地方所述的同源物),包括任何Cas13蛋白变体(诸如功能变体、突变体(包括但不限于无催化活性的突变体)、(功能)结构域或截短物(包括断裂Cas13)、本文所述的Cas13融合蛋白(例如,包括NLS或NES序列或者本文其他地方所述的任何其他融合蛋白等)可与脱氨酶或其功能片段诸如其有催化活性的片段共价或非共价缔合或融合。脱氨酶可以是腺苷脱氨酶或胞苷脱氨酶,优选地该脱氨酶是RNA特异性脱氨酶。本文所述的脱氨酶可以是截短的或突变的脱氨酶。应当理解,每当在本文中提及腺苷脱氨酶时,类似的考虑也适用于胞苷脱氨酶(并且代替使腺嘌呤脱氨,使胞苷脱氨)。
在某些方面和实施方案中,本发明涉及编码此类Cas13-脱氨酶融合蛋白(或在非共价键的情况下单独编码Cas13和脱氨酶)的可有利地被密码子优化的多核酸,以及用于繁殖和/或表达诸如原核或真核繁殖或表达的载体和载体系统。示例性多核酸和载体在本文其他地方描述。
在某些方面和实施方案中,本发明涉及包含上述蛋白和/或多核苷酸或者载体或载体系统的宿主细胞(或其子代)、器官或生物(或其子代)。示例性宿主细胞/器官/生物以及表达系统在本文其他地方描述。
在某些方面和实施方案中,本发明涉及包含此类蛋白、多核酸、载体或载体系统、宿主细胞、器官或生物的系统、复合物或组合物(包括试剂盒),诸如药物组合物。示例性系统、复合物或组合物诸如药物组合物在本文其他地方描述。应当理解,此类系统、复合物或组合物还可包括本文其他地方所述的向导RNA,包括任何变体向导RNA(诸如陪同、受保护、死亡指导物等,包括包含适配体的指导物)。
在某些方面和实施方案中,本发明涉及使用此类蛋白、多核酸、载体或载体系统、宿主细胞、器官、生物、系统、复合物或组合物的用途或方法。示例性方法和用途在本文其他地方描述。在特定的实施方案中,这些用途和方法涉及修饰目标靶RNA序列中的腺嘌呤或胞苷。在特定的实施方案中,这些用途或方法是治疗性或预防性的,同样如本文其他地方所述。有利地,这些用途和方法可涉及靶向的碱基编辑。在一方面,本文所述的本发明提供了用于修饰靶基因座处的腺苷残基的方法,目的是治疗和/或预防由或可能由G至A或C至T点突变或致病性单核苷酸多态性(SNP)引起的患病病症。ClinVar数据库中报告了与影响脑和中枢神经系统的各种疾病相关的致病性G至A或C至T突变/SNP。根据本发明,可以靶向任何突变/SNP。
一般来讲,本文公开的系统包含靶向组分和碱基编辑组分。靶向组分的作用是将碱基编辑组分特异性靶向其中一个或多个核苷酸将被编辑的靶核苷酸序列。然后,碱基编辑组分可催化化学反应,以将靶序列中的第一核苷酸转化为第二核苷酸。例如,碱基编辑器可催化腺嘌呤的转化,使得其被细胞的转录或翻译装置读取为鸟嘌呤,反之亦然。同样,碱基编辑组分可催化胞苷转化为尿嘧啶,反之亦然。在某些示例实施方案中,可通过以已知碱基编辑器诸如腺嘌呤脱氨酶或胞嘧啶脱氨酶开始来得到基础编辑器,并且可使用诸如定向进化的方法对其进行修饰以得到新的功能。定向进化技术是本领域已知的,并且可包括WO2015/184016“High-Throughput Assembly of Genetic Permuatations”中描述的定向技术。
在一方面,本发明涉及一种(融合)蛋白或蛋白复合物或者编码其的多核苷酸(包括载体和载体系统),其包含(a)无催化活性的(死亡)Cas13蛋白;以及(b)(腺苷)脱氨酶蛋白或其催化结构域;其中所述(腺苷)脱氨酶蛋白或其催化结构域与所述死亡Cas13蛋白共价或非共价连接,或者被调适为在递送后与其连接。在某些实施方案中,(融合)蛋白或蛋白复合物可以与指导分子结合或被调适为与指导分子结合,该指导分子包含与正向重复序列连接的指导序列;其中指导分子与所述死亡Cas13蛋白形成复合物并指导所述复合物结合所述目标靶RNA序列,其中所述指导序列能够与包含所述腺嘌呤的靶序列杂交以形成RNA双链体,其中所述指导序列在对应于所述腺嘌呤的位置上包含非配对胞嘧啶,从而导致在形成的RNA双链体中产生A-C错配;其中所述(腺苷)脱氨酶蛋白或其催化结构域使所述RNA双链体中的所述腺嘌呤脱氨。
在一方面,本发明涉及一种组合物、复合物或系统,其包含:(a)无催化活性的(死亡)Cas13蛋白;(b)包含与正向重复序列连接的指导序列的指导分子;以及(c)(腺苷)脱氨酶蛋白或其催化结构域;其中所述(腺苷)脱氨酶蛋白或其催化结构域与所述死亡Cas13蛋白或所述指导分子共价或非共价连接,或者被调适为在递送后与其连接;其中指导分子与所述死亡Cas13蛋白形成复合物并指导所述复合物结合所述目标靶RNA序列,其中所述指导序列能够与包含所述腺嘌呤的靶序列杂交以形成RNA双链体,其中所述指导序列在对应于所述腺嘌呤的位置上包含非配对胞嘧啶,从而导致在形成的RNA双链体中产生A-C错配;其中所述(腺苷)脱氨酶蛋白或其催化结构域使所述RNA双链体中的所述腺嘌呤脱氨。本发明还涉及一种适合修饰目标靶基因座中的腺嘌呤的工程化的非天然存在的(载体)系统,其包含:指导分子,其包含指导序列或编码指导分子的核苷酸序列;CRISPR-Cas蛋白或编码CRISPR-Cas蛋白的一个或多个核苷酸序列;(腺苷)脱氨酶蛋白或其催化结构域,或编码其的一个或多个核苷酸序列;其中(腺苷)脱氨酶蛋白或其催化结构域与CRISPR-Cas蛋白或指导分子共价或非共价连接,或者被调适为在递送后与其连接;其中指导序列能够与目标RNA多核苷酸内包含腺嘌呤的靶序列杂交,但是在对应于腺嘌呤的位置包含胞嘧啶。
在一方面,本发明涉及一种适合修饰目标靶基因座中的腺嘌呤的工程化的非天然存在的载体系统,其包含一个或多个载体,所述一个或多个载体包含:(a)第一调控元件,其可操作地连接到编码包含所述指导序列的所述指导分子的核苷酸序列,(b)第二调控元件,其可操作地连接到编码所述无催化活性的Cas13蛋白的核苷酸序列;以及(c)编码(腺苷)脱氨酶蛋白或其催化结构域的核苷酸序列,其受所述第一调控元件或第二调控元件的控制或可操作地连接到第三调控元件;其中如果所述编码(腺苷)脱氨酶蛋白或其催化结构域的核苷酸序列可操作地连接到第三调控元件,则所述(腺苷)脱氨酶蛋白或其催化结构域被调适为在表达后连接到所述指导分子或所述Cas13蛋白;其中组分(a)、(b)和(c)位于系统的相同或不同载体上。
在一方面,本发明涉及一种修饰目标靶RNA序列中的腺嘌呤的方法。在特定的实施方案中,所述方法包括向所述靶RNA递送:(a)无催化活性的(死亡)Cas13蛋白;(b)包含与正向重复序列连接的指导序列的指导分子;以及(c)(腺苷)脱氨酶蛋白或其催化结构域;其中所述(腺苷)脱氨酶蛋白或其催化结构域与所述死亡Cas13蛋白或所述指导分子共价或非共价连接,或者被调适为在递送后与其连接;其中指导分子与所述死亡Cas13蛋白形成复合物并指导所述复合物结合所述目标靶RNA序列,其中所述指导序列能够与包含所述腺嘌呤的靶序列杂交以形成RNA双链体,其中所述指导序列在对应于所述腺嘌呤的位置上包含非配对胞嘧啶,从而导致在形成的RNA双链体中产生A-C错配;其中所述(腺苷)脱氨酶蛋白或其催化结构域使所述RNA双链体中的所述腺嘌呤脱氨。
本发明还涉及一种用于细胞疗法的方法,其包括向有此需要的患者施用本文所述的经修饰的细胞,其中经修饰的细胞的存在可以治疗患者的疾病。在一个实施方案中,用于细胞疗法的经修饰的细胞是能够识别和/或攻击肿瘤细胞的CAR-T细胞。在另一个实施方案中,用于细胞疗法的经修饰的细胞是干细胞,诸如神经干细胞、间充质干细胞、造血干细胞或iPSC细胞。
本发明还涉及一种用于敲除或敲低不需要的基因活性的方法,其中使基因的转录物处的A脱氨导致功能丧失。例如,在一个实施方案中,通过脱氨酶功能化的CRISPR系统进行的靶向脱氨可以引起无义突变,从而导致在内源基因中产生提前终止密码子。这可能会改变内源基因的表达,并且可能使得经编辑的细胞具有所需性状。在另一个实施方案中,通过脱氨酶功能化的CRISPR系统进行的靶向脱氨可以引起非保守的错义突变,从而导致在内源基因中产生不同氨基酸残基的密码子。这可能会改变所表达的内源基因的功能,并且还可能使得编辑后的细胞具有所需性状。
本文所述的脱氨酶功能化的CRISPR系统可以用于靶向RNA多核苷酸序列内的特定腺嘌呤以进行脱氨。例如,指导分子可以与CRISPR-Cas蛋白形成复合物,并指导该复合物结合目标RNA多核苷酸中的靶RNA序列。因为指导序列被设计成具有非配对C,所以在指导序列和靶序列之间形成的RNA双链体包含A-C错配,该错配指导(腺苷)脱氨酶接触与非配对C相对的A并使脱氨,从而将其转化为肌苷(I)。由于肌苷(I)碱基在细胞过程中与C配对并具有类似G的功能,因此本文所述的A的靶向脱氨可用于校正不需要的G-A和C-T突变,以及获得所需的A-G和T-C突变。
在某些示例实施方案中,Cas13蛋白是Cas13a、Cas13b或Cas13c。
(腺苷)脱氨酶蛋白或其催化结构域可与所述死亡Cas13蛋白的N端或C端融合。在某些示例实施方案中,(腺苷)脱氨酶蛋白或其催化结构域通过接头与所述死亡Cas13蛋白融合。接头可以是(GGGGS)3-11、GSG5或LEPGEKPYKCPECGKSFSQSGALTRHQRTHTR。
在某些示例实施方案中,(腺苷)脱氨酶蛋白或其催化结构域与衔接蛋白连接,并且所述指导分子或所述死亡Cas13蛋白包含能够与所述衔接蛋白结合的适配体序列。适配体序列可选自MS2、PP7、Qβ、F2、GA、fr、JP501、M12、R17、BZ13、JP34、JP500、KU1、M11、MX1、TW18、VK、SP、FI、ID2、NL95、TW19、AP205、φCb5、φCb8r、φCb12r、φCb23r、7s和PRR1。
在某些示例实施方案中,将(腺苷)脱氨酶蛋白或其催化结构域插入到所述死亡Cas13蛋白的内部环中。在某些示例实施方案中,Cas13a蛋白在两个HEPN结构域中、特别是在源自瓦氏纤毛菌(Leptotrichia wadei)的Cas 13a蛋白的位置R474和R1046或者与Cas13a直系同源物的与其对应的氨基酸位置处包含一个或多个突变。
在某些示例实施方案中,Cas 13蛋白是Cas13b蛋白,并且Cas13b在源自动物溃疡伯杰菌ATCC 43767的Cas13b蛋白的位置R116、H121、R1177、H1182中的一个或多个或者Cas13b直系同源物的与其对应的氨基酸位置中包含一个或多个突变。在某些其他示例实施方案中,突变是源自动物溃疡伯杰菌ATCC 43767的Cas13b蛋白的R116A、H121A、R1177A、H1182A中的一个或多个或者Cas13b直系同源物的与其对应的氨基酸位置。
在某些示例实施方案中,指导序列具有能够与所述靶序列形成所述RNA双链体的约29-53nt的长度。在某些其他示例实施方案中,指导序列具有能够与所述靶序列形成所述RNA双链体的约40-50nt的长度。在某些示例实施方案中,所述非配对C与所述指导序列的5'端之间的距离为20-30个核苷酸。
在某些示例实施方案中,(腺苷)脱氨酶蛋白或其催化结构域是人类、头足类或果蝇(腺苷)脱氨酶蛋白或其催化结构域。在某些示例实施方案中,对(腺苷)脱氨酶蛋白或其催化结构域进行了修饰以在hADAR2-D氨基酸序列的谷氨酸488处或在同源ADAR蛋白中的对应位置处包含突变。在某些示例实施方案中,谷氨酸残基可在位置488处,或者同源ADAR蛋白中的对应位置被谷氨酰胺残基替换(E488Q)。
在某些其他示例实施方案中,(腺苷)脱氨酶蛋白或其催化结构域是包含突变E488Q的突变的hADAR2d或包含突变E1008Q的突变的hADAR1d。
在某些示例实施方案中,指导序列包含一个以上对应于靶RNA序列中不同腺苷位点的错配,或者其中使用两个指导分子,每个指导分子包含一个对应于靶RNA序列中不同腺苷位点的错配。
在某些示例实施方案中,Cas13蛋白以及任选地所述(腺苷)脱氨酶蛋白或其催化结构域包含一个或多个异源核定位信号(NLS)。
在某些示例实施方案中,所述方法还包括确定目标靶序列并选择最有效地使存在于靶序列中的所述腺嘌呤脱氨的脱氨(腺苷)脱氨酶蛋白或其催化结构域。
目标靶RNA序列可在细胞内。细胞可以是真核细胞、非人类动物细胞、人类细胞、植物细胞。目标靶基因座可在动物或植物内。
目标靶RNA序列可在体外RNA多核苷酸中包含。
可将本文所述系统的组分作为核糖核蛋白复合物或者作为一种或多种多核苷酸分子,或者如本文其他地方所述的任何其他递送方法包括病毒或非病毒递送方法递送到所述细胞。一种或多种多核苷酸分子可包含编码这些组分的一种或多种mRNA分子。一种或多种多核苷酸分子可包含在一个或多个载体内。一种或多种多核苷酸分子还可包含可操作地被构造成表达所述Cas13蛋白、所述指导分子以及所述脱氨酶蛋白或其催化结构域的一个或多个调控元件,任选地其中所述一个或多个调控元件包含诱导型启动子。可经由颗粒、囊泡或者一个或多个病毒载体来递送一种或多种多核苷酸分子或所述核糖核蛋白复合物。颗粒可包含脂质、糖、金属或蛋白质。颗粒可包含脂质纳米颗粒。囊泡可包含外泌体或脂质体。一个或多个病毒载体可包含一种或多种腺病毒、一种或多种慢病毒或者一种或多种腺相关病毒。
本文公开的方法可用于通过操纵一个或多个靶RNA序列来修饰细胞、细胞系或生物。
在某些示例实施方案中,使所述目标靶RNA中的所述腺嘌呤脱氨可以治疗由含有致病性G→A或C→T点突变的转录物引起的疾病。
这些方法可用于治疗或防治疾病,或者以其他方式诸如特别是通过使用脱氨酶功能化的CRISPR系统进行靶向脱氨来减轻疾病或疾病的严重性,其中使A脱氨可以治疗由含有致病性G→A或C→T点突变的转录物引起的疾病。在某些示例实施方案中,疾病选自Meier-Gorlin综合征、Seckel综合征4、Joubert综合征5、Leber先天性黑蒙症10;2型腓骨肌萎缩病;2型腓骨肌萎缩病;2C型Usher综合征;脊髓小脑失调症28;脊髓小脑失调症28;脊髓小脑失调症28;长QT综合征2;
Figure BDA0002313867470002391
综合征;遗传性果糖尿症;遗传性果糖尿症;神经母细胞瘤;神经母细胞瘤;Kallmann综合征1;Kallmann综合征1;Kallmann综合征1;异染性脑白质营养不良、Rett综合征、10型肌萎缩性脊髓侧索硬化症、李弗劳明综合征。疾病可以是提前终止疾病。
本文公开的方法可用于进行影响生物繁殖力的修饰。修饰可影响所述靶RNA序列的剪接。修饰可在转录物中引入突变,该突变引入氨基酸变化并引起癌细胞中新抗原的表达。
在某些示例实施方案中,靶RNA可以是微RNA或包含在微RNA中。在某些示例实施方案中,使所述目标靶RNA中的所述腺嘌呤脱氨引起基因的功能获得或功能丧失。在某些示例实施方案中,基因是癌细胞表达的基因。
在另一方面,本发明包括使用本文公开的方法获得的经修饰的细胞或其后代,其中与未经历所述方法的对应细胞相比,所述细胞包含次黄嘌呤或鸟嘌呤代替所述目标靶RNA中的所述腺嘌呤。经修饰的细胞或其后代可以是真核细胞、动物细胞、人类细胞、治疗T细胞、产生抗体的B细胞、植物细胞。
在另一方面,本发明包括包含所述经修饰的细胞或其后代的非人类动物。经修饰可以是植物细胞。
在另一方面,本发明包括一种用于细胞疗法的方法,其包括向有此需要的患者施用本文公开的经修饰的细胞,其中所述经修饰的细胞的存在可以治疗患者的疾病。
在另一方面,本发明涉及一种适合修饰目标靶基因座中的腺嘌呤的工程化的非天然存在的系统,其包含A)指导分子,其包含与正向重复序列连接的指导序列,或编码所述指导分子的核苷酸序列;B)无催化活性的Cas13蛋白,或编码所述无催化活性的Cas13蛋白的核苷酸序列;C)(腺苷)脱氨酶蛋白或其催化结构域,或编码所述(腺苷)脱氨酶蛋白或其催化结构域的核苷酸序列;其中所述(腺苷)脱氨酶蛋白或其催化结构域与所述Cas13蛋白或所述指导分子共价或非共价连接,或者被调适为在递送后与其连接;其中所述指导序列能够与包含腺嘌呤的靶RNA序列杂交以形成RNA双链体,其中所述指导序列在对应于所述腺嘌呤的位置上包含非配对胞嘧啶,从而导致在形成的RNA双链体中产生A-C错配。
在另一方面,本发明涉及一种适合修饰目标靶基因座中的腺嘌呤的工程化的非天然存在的载体系统,其包含a)、b)和ca的核苷酸序列。
在另一方面,本发明涉及一种工程化的非天然存在的载体系统,其包含一个或多个载体,所述一个或多个载体包含:第一调控元件,其可操作地连接到编码包含所述指导序列的所述指导分子的核苷酸序列;第二调控元件,其可操作地连接到编码所述无催化活性的Cas13蛋白的核苷酸序列;以及编码(腺苷)脱氨酶蛋白或其催化结构域的核苷酸序列,其受所述第一调控元件或第二调控元件的控制或可操作地连接到第三调控元件;其中如果所述编码(腺苷)脱氨酶蛋白或其催化结构域的核苷酸序列可操作地连接到第三调控元件,则所述(腺苷)脱氨酶蛋白或其催化结构域被调适为在表达后连接到所述指导分子或所述Cas13蛋白;其中组分A)、B)和C)位于系统的相同或不同载体上。
在另一方面,本发明涉及包含本文公开的系统的体外或离体宿主细胞或其后代或者细胞系或其后代。宿主细胞或其后代可以是真核细胞、动物细胞、人类细胞或植物细胞。
在一方面,本发明提供了用于对RNA中、更特别是目标RNA序列中的腺嘌呤进行靶向脱氨的方法。根据本发明的方法,通过可以特异性结合靶序列的CRISPR-Cas复合物将(腺苷)脱氨酶(AD)蛋白特异性募集到目标RNA序列中的相关腺嘌呤上。为了实现这一点,可以将(腺苷)脱氨酶蛋白与CRISPR-Cas酶共价连接或作为单独的蛋白提供,但是对其进行调整以便确保将其募集到CRISPR-Cas复合物中。
在本发明的方法的特定实施方案中,通过将(腺苷)脱氨酶或其催化结构域与作为Cas13蛋白的CRISPR-Cas蛋白融合来确保将(腺苷)脱氨酶募集到靶基因座上。由两种单独的蛋白质产生融合蛋白的方法是本领域已知的,通常涉及使用间隔物或接头。可以将Cas13蛋白在其N末端或C末端与(腺苷)脱氨酶蛋白或其催化结构域融合。在特定的实施方案中,CRISPR-Cas蛋白是无活性或死亡的Cas13蛋白,并且与脱氨酶蛋白的N端或其催化结构域连接。
本文所用的术语“腺苷脱氨酶”或“腺苷脱氨酶蛋白”是指如下所示能够催化将腺嘌呤(或分子的腺嘌呤部分)转化为次黄嘌呤(或分子的次黄嘌呤部分)的水解脱氨反应的蛋白质、多肽或者蛋白质或多肽的一个或多个功能结构域。在一些实施方案中,含腺嘌呤的分子是腺苷(A),而含次黄嘌呤的分子是肌苷(I)。含腺嘌呤的分子可以是脱氧核糖核酸(DNA)或核糖核酸(RNA)。
根据本公开,可以与本公开结合使用的腺苷脱氨酶包括但不限于被称为作用于RNA的腺苷脱氨酶的酶家族成员(ADAR)、被称为作用于tRNA的腺苷脱氨酶的酶家族成员(ADAT),以及其他含腺苷脱氨酶结构域的家族成员(ADAD)。根据本公开,腺苷脱氨酶能够靶向RNA/DNA和RNA双链体中的腺嘌呤。实际上,Zheng等人(Nucleic Acids Res.2017,45(6):3369-3377)证明ADAR可以对RNA/DNA和RNA/RNA双链体进行腺嘌呤到肌苷的编辑反应。在特定的实施方案中,对腺苷脱氨酶进行了修饰以增加其编辑RNA/DNA和RNA双链体中的DNA的能力,如下文详述。
在一些实施方案中,腺苷脱氨酶来源于一种或多种后生动物物种,包括但不限于哺乳动物、鸟类、青蛙、鱿鱼、鱼、蝇和蠕虫。在一些实施方案中,腺苷脱氨酶是人类、鱿鱼或果蝇腺苷脱氨酶。
在一些实施方案中,腺苷脱氨酶是人类ADAR,包括hADAR1、hADAR2、hADAR3。在一些实施方案中,腺苷脱氨酶是秀丽隐杆线虫ADAR蛋白,包括ADR-1和ADR-2。在一些实施方案中,腺苷脱氨酶是果蝇ADAR蛋白,包括dAdar。在一些实施方案中,腺苷脱氨酶是长鳍鱿鱼(Loligo pealeii)ADAR蛋白,包括sqADAR2a和sqADAR2b。在一些实施方案中,腺苷脱氨酶是人类ADAT蛋白。在一些实施方案中,腺苷脱氨酶是果蝇ADAT蛋白。在一些实施方案中,腺苷脱氨酶是人类ADAD蛋白,包括TENR(hADAD1)和TENRL(hADAD2)。
在一些实施方案中,腺苷脱氨酶蛋白识别双链核酸底物中的一个或多个靶腺苷残基并将其转化为肌苷残基。在一些实施方案中,双链核酸底物是RNA-DNA杂合双链体。在一些实施方案中,腺苷脱氨酶蛋白识别双链底物上的结合窗口。在一些实施方案中,结合窗口含有至少一个靶腺苷残基。在一些实施方案中,结合窗口在约3bp至约100bp的范围内。在一些实施方案中,结合窗口在约5bp至约50bp的范围内。在一些实施方案中,结合窗口在约10bp至约30bp的范围内。在一些实施方案中,结合窗口为约1bp、2bp、3bp、5bp、7bp、10bp、15bp、20bp、25bp、30bp、40bp、45bp、50bp、55bp、60bp、65bp、70bp、75bp、80bp、85bp、90bp、95bp或100bp。
在一些实施方案中,腺苷脱氨酶蛋白包含一个或多个脱氨酶结构域。不受理论的束缚,考虑了脱氨酶结构域起识别双链核酸底物中包含的一个或多个靶腺苷(A)残基并将其转化为肌苷(I)残基的作用。在一些实施方案中,脱氨酶结构域包含活性中心。在一些实施方案中,活性中心包含锌离子。在一些实施方案中,在A到I编辑过程中,靶腺苷残基处的碱基配对被破坏,并且靶腺苷残基被“翻转”出双螺旋,变得可被腺苷脱氨酶接近。在一些实施方案中,活性中心内或附近的氨基酸残基与靶腺苷残基5'的一个或多个核苷酸相互作用。在一些实施方案中,活性中心内或附近的氨基酸残基与靶腺苷残基3'的一个或多个核苷酸相互作用。在一些实施方案中,活性中心内或附近的氨基酸残基还与相反链上与靶腺苷残基互补的核苷酸相互作用。在一些实施方案中,氨基酸残基与核苷酸的2'羟基形成氢键。
在一些实施方案中,腺苷脱氨酶包含人类ADAR2全蛋白(hADAR2)或其脱氨酶结构域(hADAR2-D)。在一些实施方案中,腺苷脱氨酶是与hADAR2或hADAR2-D同源的ADAR家族成员。
具体地,在一些实施方案中,同源ADAR蛋白是人类ADAR1(hADAR1)或其脱氨酶结构域(hADAR1-D)。在一些实施方案中,hADAR1-D的甘氨酸1007对应于甘氨酸487hADAR2-D,并且hADAR1-D的谷氨酸1008对应于hADAR2-D的谷氨酸488。
在一些实施方案中,腺苷脱氨酶包含hADAR2-D的野生型氨基酸序列。在一些实施方案中,腺苷脱氨酶在hADAR2-D序列中包含一个或多个突变,使得根据特定需要改变编辑效率和/或hADAR2-D的底物编辑偏好。
hADAR1和hADAR2蛋白的某些突变在Kuttan等人,Proc Natl Acad Sci USA.(2012)109(48):E3295-304;Want等人,ACS Chem Biol.(2015)10(11):2512-9;以及Zheng等人,Nucleic Acids Res.(2017)45(6):3369-337中进行了描述,这些文献中的每一项全文通过引用并入本文。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的甘氨酸336处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置336处的甘氨酸残基被天冬氨酸残基替换(G336D)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的甘氨酸487处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置487处的甘氨酸残基被具有相对小的侧链的非极性氨基酸残基替换。例如,在一些实施方案中,位置487处的甘氨酸残基被丙氨酸残基替换(G487A)。在一些实施方案中,位置487处的甘氨酸残基被缬氨酸残基替换(G487V)。在一些实施方案中,位置487处的甘氨酸残基被具有相对大的侧链的氨基酸残基替换。在一些实施方案中,位置487处的甘氨酸残基被精氨酸残基替换(G487R)。在一些实施方案中,位置487处的甘氨酸残基被赖氨酸残基替换(G487K)。在一些实施方案中,位置487处的甘氨酸残基被色氨酸残基替换(G487W)。在一些实施方案中,位置487处的甘氨酸残基被酪氨酸残基替换(G487Y)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的谷氨酸488处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置488处的谷氨酸残基被谷氨酰胺残基替换(E488Q)。在一些实施方案中,位置488处的谷氨酸残基被组氨酸残基替换(E488H)。在一些实施方案中,位置488处的谷氨酸残基被精氨酸残基替换(E488R)。在一些实施方案中,位置488处的谷氨酸残基被赖氨酸残基替换(E488K)。在一些实施方案中,位置488处的谷氨酸残基被天冬酰胺残基替换(E488N)。在一些实施方案中,位置488处的谷氨酸残基被丙氨酸残基替换(E488A)。在一些实施方案中,位置488处的谷氨酸残基被蛋氨酸残基替换(E488M)。在一些实施方案中,位置488处的谷氨酸残基被丝氨酸残基替换(E488S)。在一些实施方案中,位置488处的谷氨酸残基被苯丙氨酸残基替换(E488F)。在一些实施方案中,位置488处的谷氨酸残基被赖氨酸残基替换(E488L)。在一些实施方案中,位置488处的谷氨酸残基被色氨酸残基替换(E488W)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的苏氨酸490处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置490处的苏氨酸残基被半胱氨酸残基替换(T490C)。在一些实施方案中,位置490处的苏氨酸残基被丝氨酸残基替换(T490S)。在一些实施方案中,位置490处的苏氨酸残基被丙氨酸残基替换(T490A)。在一些实施方案中,位置490处的苏氨酸残基被苯丙氨酸残基替换(T490F)。在一些实施方案中,位置490处的苏氨酸残基被酪氨酸残基替换(T490Y)。在一些实施方案中,位置490处的苏氨酸残基被丝氨酸残基替换(T490R)。在一些实施方案中,位置490处的苏氨酸残基被丙氨酸残基替换(T490K)。在一些实施方案中,位置490处的苏氨酸残基被苯丙氨酸残基替换(T490P)。在一些实施方案中,位置490处的苏氨酸残基被酪氨酸残基替换(T490E)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的缬氨酸493处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置493处的缬氨酸残基被丙氨酸残基替换(V493A)。在一些实施方案中,位置493处的缬氨酸残基被丝氨酸残基替换(V493S)。在一些实施方案中,位置493处的缬氨酸残基被苏氨酸残基替换(V493T)。在一些实施方案中,位置493处的缬氨酸残基被精氨酸残基替换(V493R)。在一些实施方案中,位置493处的缬氨酸残基被天冬氨酸残基替换(V493D)。在一些实施方案中,位置493处的缬氨酸残基被脯氨酸残基替换(V493P)。在一些实施方案中,位置493处的缬氨酸残基被甘氨酸残基替换(V493G)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的丙氨酸589处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置589处的丙氨酸残基被缬氨酸残基替换(A589V)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的天冬酰胺597处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置597处的天冬酰胺残基被赖氨酸残基替换(N597K)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置597处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置597处的天冬酰胺残基被精氨酸残基替换(N597R)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置597处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置597处的天冬酰胺残基被丙氨酸残基替换(N597A)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置597处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置597处的天冬酰胺残基被谷氨酸残基替换(N597E)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置597处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置597处的天冬酰胺残基被组氨酸残基替换(N597H)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置597处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置597处的天冬酰胺残基被甘氨酸残基替换(N597G)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置597处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置597处的天冬酰胺残基被酪氨酸残基替换(N597Y)。在一些实施方案中,位置597处的天冬酰胺残基被苯丙氨酸残基替换(N597F)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的丝氨酸599处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置599处的丝氨酸残基被苏氨酸残基替换(S599T)。
在一些实施方案中,腺苷脱氨酶在hADAR2-D氨基酸序列的天冬酰胺613处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置613处的天冬酰胺残基被赖氨酸残基替换(N613K)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置613处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置613处的天冬酰胺残基被精氨酸残基替换(N613R)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置613处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置613处的天冬酰胺残基被丙氨酸残基替换(N613A)。在一些实施方案中,腺苷脱氨酶在氨基酸序列的位置613处包含突变,该位置在野生型序列中具有天冬酰胺残基。在一些实施方案中,位置613处的天冬酰胺残基被谷氨酸残基替换(N613E)。
在一些实施方案中,为了提高编辑效率,腺苷脱氨酶可包含基于hADAR2-D的氨基酸序列位置的一个或多个以下突变:G336D、G487A、G487V、E488Q、E488H、E488R、E488N、E488A、E488S、E488M、T490C、T490S、V493T、V493S、V493A、V493R、V493D、V493P、V493G、N597K、N597R、N597A、N597E、N597H、N597G、N597Y、A589V、S599T、N613K、N613R、N613A、N613E,以及同源ADAR蛋白中与上述突变相对应的突变。
在一些实施方案中,为了降低编辑效率,腺苷脱氨酶可包含基于hADAR2-D的氨基酸序列位置的一个或多个以下突变:E488F、E488L、E488W、T490A、T490F、T490Y、T490R、T490K、T490P、T490E、N597F,以及同源ADAR蛋白中与上述突变相对应的突变。在特定的实施方案中,可能感兴趣的是使用效率降低的腺苷脱氨酶来减少脱靶效应。
在某些实施方案中,通过gRNA的化学修饰来实现编辑的改善和脱靶修饰的减少。如Vogel等人(2014),Angew Chem Int Ed,53:6267-6271,doi:10.1002/anie.201402634(全文通过引用并入本文)中例示的经化学修饰的gRNA降低了脱靶活性并提高了在靶效率。2'-O-甲基和硫代磷酸酯修饰的向导RNA一般可提高细胞中的编辑效率。
众所周知,ADAR对经编辑的A的任一侧上的相邻核苷酸表现出偏好(www.nature.com/nsmb/journal/v23/n5/full/nsmb.3203.html,Matthews等人(2017),Nature Structural Mol Biol,23(5):426-433,其全文通过引用并入本文)。因此,在某些实施方案中,选择gRNA、靶标和/或ADAR针对基序偏好进行优化。
已经在体外证实,有意错配可以编辑非优选的基序(https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku272;Schneider等人(2014),Nucleic AcidRes,42(10):e87);Fukuda等人(2017),Scienticic Reports,7,doi:10.1038/srep41478,这些文献全文通过引用并入本文)。因此,在某些实施方案中,为了提高非优选的5'或3'相邻碱基上的RNA编辑效率,引入了相邻碱基中的有意错配。
结果表明,ADAR脱氨酶结构域的靶向窗口中与C相对的A比其他碱基优先被编辑。另外,在靶向碱基的几个碱基内与U配对的A碱基表现出较低的Cas13b-ADAR融合物编辑水平,这表明该酶可以灵活地编辑多个A,参见例如图18。这两个观察结果表明,可以通过错配要用C编辑的所有A来指定Cas13b-ADAR融合物的活性窗口中的多个A进行编辑。因此,在某些实施例中,活性窗口中的多个A:C错配被设计成形成多个A:I编辑。在某些实施方案中,为了抑制活性窗口中潜在的脱靶编辑,将非靶A与A或G配对。
术语“编辑特异性”和“编辑偏好”在本文可互换使用,是指双链底物中特定腺苷位点处的A到I编辑的程度。在一些实施方案中,底物编辑偏好由靶腺苷残基的5'最近邻部和/或3'最近邻部确定。在一些实施方案中,腺苷脱氨酶对底物的5'最近邻部具有偏好,顺序为U>A>C>G(“>”表示偏好更大)。在一些实施方案中,腺苷脱氨酶对底物的3'最近邻部具有偏好,顺序为G>C~A>U(“>”表示偏好更大;
Figure BDA0002313867470002491
表示偏好类似)。在一些实施方案中,腺苷脱氨酶对底物的3'最近邻部具有偏好,顺序为G>C>U~A(“>”表示偏好更大;
Figure BDA0002313867470002492
表示偏好类似)。在一些实施方案中,腺苷脱氨酶对底物的3'最近邻部具有偏好,顺序为G>C>A>U(“>”表示偏好更大)。在一些实施方案中,腺苷脱氨酶对底物的3'最近邻部具有偏好,顺序为C~G~A>U(“>”表示偏好更大;
Figure BDA0002313867470002493
表示偏好类似)。在一些实施方案中,腺苷脱氨酶对含有靶腺苷残基的三联体序列具有偏好,顺序为TAG>AAG>CAC>AAT>GAA>GAC(“>”表示偏好更大),中心A为靶腺苷残基。
在一些实施方案中,腺苷脱氨酶的底物编辑偏好受腺苷脱氨酶蛋白中是否存在核酸结合结构域的影响。在一些实施方案中,为了修改底物编辑偏好,将脱氨酶结构域与双链RNA结合结构域(dsRBD)或双链RNA结合基序(dsRBM)连接。在一些实施方案中,dsRBD或dsRBM可来源于ADAR蛋白,诸如hADAR1或hADAR2。在一些实施方案中,使用包含至少一个dsRBD和脱氨酶结构域的全长ADAR蛋白。在一些实施方案中,一个或多个dsRBM或dsRBD在脱氨酶结构域的N端。在其他实施方案中,一个或多个dsRBM或dsRBD在脱氨酶结构域的C端。
在一些实施方案中,腺苷脱氨酶的底物编辑偏好受酶活性中心附近或其内的氨基酸残基的影响。在一些实施方案中,为了修改底物编辑偏好,腺苷脱氨酶可包含基于hADAR2-D的氨基酸序列位置的一个或多个以下突变:G336D、G487R、G487K、G487W、G487Y、E488Q、E488N、T490A、V493A、V493T、V493S、N597K、N597R、A589V、S599T、N613K、N613R,以及同源ADAR蛋白中与上述突变相对应的突变。
具体地,在一些实施方案中,为了降低编辑特异性,腺苷脱氨酶可以包含基于hADAR2-D的氨基酸序列位置的一个或多个以下突变:E488Q、V493A、N597K、N613K,以及同源ADAR蛋白中与上述突变相对应的突变。在一些实施方案中,为了增加编辑特异性,腺苷脱氨酶可以包含突变T490A。
在一些实施方案中,为了减少脱靶效应,腺苷脱氨酶包含基于hADAR2-D的氨基酸序列位置的以下位置处的一个或多个突变:R348、V351、T375、K376、E396、C451、R455、N473、R474、K475、R477、R481、S486、E488、T490、S495、R510,以及同源ADAR蛋白中与上述突变相对应的突变。在一些实施方案中,腺苷脱氨酶在E488处以及选自R348、V351、T375、K376、E396、C451、R455、N473、R474、K475、R477、R481、S486、T490、S495、R510的一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在T375处以及任选地在一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在N473处以及任选地在一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在V351处以及任选地在一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在E488和T375处以及任选地在一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在E488和N473处以及任选地在一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在E488和V351处以及任选地在一个或多个其他位置处包含突变。在一些实施方案中,腺苷脱氨酶在E488处以及T375、N473和V351中的一个或多个处包含突变。
在一些实施方案中,为了减少脱靶效应,腺苷脱氨酶包含基于hADAR2-D的氨基酸序列位置的选自以下的一个或多个突变:R348E、V351L、T375G、T375S、R455G、R455S、R455E、N473D、R474E、K475Q、R477E、R481E、S486T、E488Q、T490A、T490S、S495T和R510E,以及同源ADAR蛋白中与上述突变相对应的突变。在一些实施方案中,腺苷脱氨酶包含突变E488Q以及选自R348E、V351L、T375G、T375S、R455G、R455S、R455E、N473D、R474E、K475Q、R477E、R481E、S486T、T490A、T490S、S495T和R510E的一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变T375G或T375S,以及任选地一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变N473D,以及任选地一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变V351L,以及任选地一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变E488Q和T375G或T375G,以及任选地一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变E488Q和N473D,以及任选地一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变E488Q和V351L,以及任选地一个或多个其他突变。在一些实施方案中,腺苷脱氨酶包含突变E488Q以及T375G/S、N473D和V351L中的一个或多个。
在一些实施方案中,为了增加对具有直接5'G的靶腺苷(A)(诸如包含三联体序列GAC、中心A为靶腺苷残基的底物)的编辑偏好,腺苷脱氨酶可以包含基于hADAR2-D的氨基酸序列位置的一个或多个以下突变:G336D、E488Q、E488N、V493T、V493S、V493A、A589V、N597K、N597R、S599T、N613K、N613R,以及同源ADAR蛋白中与上述突变相对应的突变。
具体地,在一些实施方案中,腺苷脱氨酶包含突变E488Q或同源ADAR蛋白中用于编辑包含以下三联体序列的底物的对应突变:GAC、GAA、GAU、GAG、CAU、AAU、UAC,中心A为靶腺苷残基。
在一些实施方案中,腺苷脱氨酶包含hADAR1-D的野生型氨基酸序列。在一些实施方案中,腺苷脱氨酶在hADAR1-D序列中包含一个或多个突变,使得根据特定需要改变编辑效率和/或hADAR1-D的底物编辑偏好。
在一些实施方案中,腺苷脱氨酶在hADAR1-D氨基酸序列的甘氨酸1007处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置1007处的甘氨酸残基被具有相对小的侧链的非极性氨基酸残基替换。例如,在一些实施方案中,位置1007处的甘氨酸残基被丙氨酸残基替换(G1007A)。在一些实施方案中,位置1007处的甘氨酸残基被缬氨酸残基替换(G1007V)。在一些实施方案中,位置1007处的甘氨酸残基被具有相对大的侧链的氨基酸残基替换。在一些实施方案中,位置1007处的甘氨酸残基被精氨酸残基替换(G1007R)。在一些实施方案中,位置1007处的甘氨酸残基被赖氨酸残基替换(G1007K)。在一些实施方案中,位置1007处的甘氨酸残基被色氨酸残基替换(G1007W)。在一些实施方案中,位置1007处的甘氨酸残基被酪氨酸残基替换(G1007Y)。另外,在其他实施方案中,位置1007处的甘氨酸残基被亮氨酸残基替换(G1007L)。在其他实施方案中,位置1007处的甘氨酸残基被苏氨酸残基替换(G1007T)。在其他实施方案中,位置1007处的甘氨酸残基被丝氨酸残基替换(G1007S)。
在一些实施方案中,腺苷脱氨酶在hADAR1-D氨基酸序列的谷氨酸1008处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,位置1008处的谷氨酸残基被具有相对大的侧链的极性氨基酸残基替换。在一些实施方案中,位置1008处的谷氨酸残基被谷氨酰胺残基替换(E1008Q)。在一些实施方案中,位置1008处的谷氨酸残基被组氨酸残基替换(E1008H)。在一些实施方案中,位置1008处的谷氨酸残基被精氨酸残基替换(E1008R)。在一些实施方案中,位置1008处的谷氨酸残基被赖氨酸残基替换(E1008K)。在一些实施方案中,位置1008处的谷氨酸残基被非极性或较小极性氨基酸残基替换。在一些实施方案中,位置1008处的谷氨酸残基被苯丙氨酸残基替换(E1008F)。在一些实施方案中,位置1008处的谷氨酸残基被色氨酸残基替换(E1008W)。在一些实施方案中,位置1008处的谷氨酸残基被甘氨酸残基替换(E1008G)。在一些实施方案中,位置1008处的谷氨酸残基被异亮氨酸残基替换(E1008I)。在一些实施方案中,位置1008处的谷氨酸残基被缬氨酸残基替换(E1008V)。在一些实施方案中,位置1008处的谷氨酸残基被脯氨酸残基替换(E1008P)。在一些实施方案中,位置1008处的谷氨酸残基被丝氨酸残基替换(E1008S)。在其他实施方案中,位置1008处的谷氨酸残基被天冬酰胺残基替换(E1008N)。在其他实施方案中,位置1008处的谷氨酸残基被丙氨酸残基替换(E1008A)。在其他实施方案中,位置1008处的谷氨酸残基被蛋氨酸残基替换(E1008M)。在一些实施方案中,位置1008处的谷氨酸残基被亮氨酸残基替换(E1008L)。
在一些实施方案中,为了提高编辑效率,腺苷脱氨酶可包含基于hADAR1-D的氨基酸序列位置的一个或多个以下突变:E1007S、E1007A、E1007V、E1008Q、E1008R、E1008H、E1008M、E1008N、E1008K,以及同源ADAR蛋白中与上述突变相对应的突变。
在一些实施方案中,为了降低编辑效率,腺苷脱氨酶可包含基于hADAR1-D的氨基酸序列位置的一个或多个以下突变:E1007R、E1007K、E1007Y、E1007L、E1007T、E1008G、E1008I、E1008P、E1008V、E1008F、E1008W、E1008S、E1008N、E1008K,以及同源ADAR蛋白中与上述突变相对应的突变。
在一些实施方案中,腺苷脱氨酶的底物编辑偏好、效率和/或选择性受酶活性中心附近或其内的氨基酸残基的影响。在一些实施方案中,腺苷脱氨酶在hADAR1-D序列中的谷氨酸1008位置处或在同源ADAR蛋白中的对应位置处包含突变。在一些实施方案中,突变是E1008R,或同源ADAR蛋白中的对应突变。在一些实施方案中,E1008R突变体对在相反链上具有错配的G残基的靶腺苷残基具有增加的编辑效率。
在一些实施方案中,腺苷脱氨酶蛋白还包含或连接到一个或多个双链RNA(dsRNA)结合基序(dsRBM)或结构域(dsRBD),以识别并结合到双链核酸底物。在一些实施方案中,腺苷脱氨酶与双链底物之间的相互作用由一种或多种其他蛋白因子(包括CRISPR/CAS蛋白因子)介导。在一些实施方案中,腺苷脱氨酶与双链底物之间的相互作用还由一种或多种核酸组分(包括向导RNA)介导。
在某些示例实施方案中,定向进化可用于设计经修饰的ADAR蛋白,该蛋白除了能够将腺嘌呤脱氨为次黄嘌呤外,还能够催化另外的反应。例如
根据本发明,腺苷脱氨酶的底物是在指导分子与其DNA靶标结合时形成的RNA/DNAn RNA双链体,该双链体然后与CRISPR-Cas酶形成CRISPR-Cas复合物。RNA/DNA或DNA/RNAn RNA双链体在本文中也称为“RNA/DNA杂合体”、“DNA/RNA杂合体”或“双链底物”。指导分子和CRISPR-Cas酶的具体特征在下面详述。
本文所用的术语“编辑选择性”是指由腺苷脱氨酶编辑的双链底物上所有位点的分数。不受理论的束缚,考虑了腺苷脱氨酶的编辑选择性受双链底物的长度和二级结构(诸如碱基错配、凸起和/或内部环的存在)的影响。
在一些实施方案中,当底物是长于50bp的完全碱基配对的双链体时,腺苷脱氨酶可能能够使双链体内的多个腺苷残基(例如,所有腺苷残基的50%)脱氨。在一些实施方案中,当底物短于50bp时,腺苷脱氨酶的编辑选择性受靶腺苷位点处存在错配的影响。具体地,在一些实施方案中,在相反链上具有错配的胞苷(C)残基的腺苷(A)残基被高效脱氨。在一些实施方案中,在相反链上具有错配的鸟苷(G)残基的腺苷(A)残基被跳过而不进行编辑。
关于CRISPR-Cas系统、其组分以及此类组分的递送的一般信息,包括方法、材料、递送媒介物、载体、颗粒、AAV及其制备和使用,包括数量和制剂方面,均可用于本发明的实践中,参考以下文献:美国专利号8,999,641、8,993,233、8,945,839、8,932,814、8,906,616、8,895,308、8,889,418、8,889,356、8,871,445、8,865,406、8,795,965、8,771,945和8,697,359;美国专利公开US 2014-0310830(美国申请序列号14/105,031)、US 2014-0287938A1(美国申请序列号14/213,991)、US 2014-0273234 A1(美国申请序列号14/293,674)、US2014-0273232 A1(美国申请序列号14/290,575)、US 2014-0273231(美国申请序列号14/259,420)、US 2014-0256046 A1(美国申请序列号14/226,274)、US 2014-0248702 A1(美国申请序列号14/258,458)、US 2014-0242700 A1(美国申请序列号14/222,930)、US 2014-0242699 A1(美国申请序列号14/183,512)、US 2014-0242664 A1(美国申请序列号14/104,990)、US 2014-0234972 A1(美国申请序列号14/183,471)、US 2014-0227787 A1(美国申请序列号14/256,912)、US 2014-0189896 A1(美国申请序列号14/105,035)、US 2014-0186958(美国申请序列号14/105,017)、US 2014-0186919 A1(美国申请序列号14/104,977)、US 2014-0186843 A1(美国申请序列号14/104,900)、US 2014-0179770 A1(美国申请序列号14/104,837)以及US 2014-0179006 A1(美国申请序列号14/183,486)、US 2014-0170753(美国申请序列号14/183,429);欧洲专利EP 2 784 162 B1和EP 2 771 468 B1;欧洲专利申请EP 2 771 468(EP13818570.7)、EP 2 764 103(EP13824232.6)和EP 2 784 162(EP14170383.5);以及PCT专利公开PCT专利公开WO 2014/093661(PCT/US2013/074743)、WO2014/093694(PCT/US2013/074790)、WO 2014/093595(PCT/US2013/074611)、WO 2014/093718(PCT/US2013/074825)、WO 2014/093709(PCT/US2013/074812)、WO 2014/093622(PCT/US2013/074667)、WO 2014/093635(PCT/US2013/074691)、WO 2014/093655(PCT/US2013/074736)、WO 2014/093712(PCT/US2013/074819)、WO 2014/093701(PCT/US2013/074800)、WO 2014/018423(PCT/US2013/051418)、WO 2014/204723(PCT/US2014/041790)、WO 2014/204724(PCT/US2014/041800)、WO 2014/204725(PCT/US2014/041803)、WO 2014/204726(PCT/US2014/041804)、WO 2014/204727(PCT/US2014/041806)、WO 2014/204728(PCT/US2014/041808)、WO 2014/204729(PCT/US2014/041809)。还参考分别提交于2013年1月30日、2013年3月15日、2013年3月28日、2013年4月20日、2013年5月6日和2013年5月28日的美国临时专利申请61/758,468、61/802,174、61/806,375、61/814,263、61/819,803和61/828,130。还参考提交于2013年6月17日的美国临时专利申请61/836,123。另外参考各自提交于2013年6月17日的美国临时专利申请61/835,931、61/835,936、61/836,127、61/836,101、61/836,080和61/835,973。进一步参考提交于2013年8月5日的美国临时专利申请61/862,468和61/862,355;提交于2013年8月28日的61/871,301;提交于2013年9月25日的61/960,777以及提交于2013年10月28日的61/961,980。还参考各自提交于2014年6月10日(6/10/14)的PCT专利申请号:PCT/US2014/041803、PCT/US2014/041800、PCT/US2014/041809、PCT/US2014/041804和PCT/US2014/041806;提交于2014年6月11日的PCT/US2014/041808;以及提交于2014年10月28日的PCT/US2014/62558,以及各自提交于2013年12月12日的美国临时专利申请序列号:61/915,150、61/915,301、61/915,267和61/915,260;提交于2013年1月29日和2013年2月25日的61/757,972和61/768,959;提交于2013年6月17日的61/835,936、61/836,127、61/836,101、61/836,080、61/835,973和61/835,931;均提交于2014年6月11日的62/010,888和62/010,879;各自提交于2014年6月10日的62/010,329和62/010,441;各自提交于2014年2月12日的61/939,228和61/939,242;提交于2014年4月15日的61/980,012;提交于2014年8月17日的62/038,358;各自提交于2014年9月25日的62/054,490、62/055,484、62/055,460和62/055,487;以及提交于2014年10月27日的62/069,243。还参考提交于2014年9月25日的美国临时专利申请号62/055,484、62/055,460和62/055,487;提交于2014年4月15日的美国临时专利申请61/980,012;以及提交于2014年2月12日的美国临时专利申请61/939,242。参考提交于2014年6月10日的PCT申请,特别指定美国时,申请号为PCT/US14/41806。参考提交于2014年1月22日的美国临时专利申请61/930,214。参考各自提交于2013年12月12日的美国临时专利申请61/915,251、61/915,260和61/915,267。参考提交于2014年4月15日的美国临时专利申请USSN 61/980,012。参考提交于2014年6月10日的PCT申请,特别指定美国时,申请号为PCT/US14/41806。参考提交于2014年1月22日的美国临时专利申请61/930,214。参考各自提交于2013年12月12日的美国临时专利申请61/915,251、61/915,260和61/915,267。
还提到了提交于2014年12月12日的美国申请62/091,455,“PROTECTED GUIDERNAS(PGRNAS)”;提交于2014年12月24日的美国申请62/096,708,“PROTECTED GUIDE RNAS(PGRNAS)”;提交于2014年12月12日的美国申请62/091,462,“DEAD GUIDES FOR CRISPRTRANSCRIPTION FACTORS”;提交于2014/12/23的美国申请62/096,324,“DEAD GUIDES FORCRISPR TRANSCRIPTION FACTORS”;提交于2014年12月12日的美国申请62/091,456,“ESCORTED AND FUNCTIONALIZED GUIDES FOR CRISPR-CAS SYSTEMS”;提交于2014年12月12日的美国申请62/091,461,“DELIVERY,USE AND THERAPEUTIC APPLICATIONS OF THECRISPR-CAS SYSTEMS AND COMPOSITIONS FOR GENOME EDITING AS TO HEMATOPOETICSTEM CELLS(HSCs)”;提交于2014年12月19日的美国申请62/094,903,“UNBIASEDIDENTIFICATION OF DOUBLE-STRAND BREAKS AND GENOMIC REARRANGEMENT BY GENOME-WISE INSERT CAPTURE SEQUENCING”;提交于2014年12月24日的美国申请62/096,761,“ENGINEERING OF SYSTEMS,METHODS AND OPTIMIZED ENZYME AND GUIDE SCAFFOLDS FORSEQUENCE MANIPULATION”;提交于2014年12月30日的美国申请62/098,059,“RNA-TARGETING SYSTEM”;提交于2014年12月24日的美国申请62/096,656,“CRISPR HAVING ORASSOCIATED WITH DESTABILIZATION DOMAINS”;提交于2014年12月24日的美国申请62/096,697,“CRISPR HAVING OR ASSOCIATED WITH AAV”;提交于2014年12月30日的美国申请62/098,158,“ENGINEERED CRISPR COMPLEX INSERTIONAL TARGETING SYSTEMS”;提交于2015年4月22日的美国申请62/151,052,“CELLULAR TARGETING FOR EXTRACELLULAREXOSOMAL REPORTING”;提交于2014年9月24日的美国申请62/054,490,“DELIVERY,USE ANDTHERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FORTARGETING DISORDERS AND DISEASES USING PARTICLE DELIVERY COMPONENTS”;提交于2014年9月25日的美国申请62/055,484,“SYSTEMS,METHODS AND COMPOSITIONS FORSEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS”;提交于2014年12月4日的美国申请62/087,537,“SYSTEMS,METHODS AND COMPOSITIONS FORSEQUENCE MANIPULATION WITH OPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS”;提交于2014年9月24日的美国申请62/054,651,“DELIVERY,USE AND THERAPEUTIC APPLICATIONSOF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FOR MODELING COMPETITION OFMULTIPLE CANCER MUTATIONS IN VIVO”;提交于2014年10月23日的美国申请62/067,886,“DELIVERY,USE AND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS ANDCOMPOSITIONS FOR MODELING COMPETITION OF MULTIPLE CANCER MUTATIONS IN VIVO”;提交于2014年9月24日的美国申请62/054,675,“DELIVERY,USE AND THERAPEUTICAPPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS IN NEURONAL CELLS/TISSUES”;提交于2014年9月24日的美国申请62/054,528,“DELIVERY,USE ANDTHERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS IN IMMUNEDISEASES OR DISORDERS”;提交于2014年9月25日的美国申请62/055,454,“DELIVERY,USEAND THERAPEUTIC APPLICATIONS OF THE CRISPR-CAS SYSTEMS AND COMPOSITIONS FORTARGETING DISORDERS AND DISEASES USING CELL PENETRATION PEPTIDES(CPP)”;提交于2014年9月25日的美国申请62/055,460,“MULTIFUNCTIONAL-CRISPR COMPLEXES AND/OROPTIMIZED ENZYME LINKED FUNCTIONAL-CRISPR COMPLEXES”;提交于2014年12月4日的美国申请62/087,475,“FUNCTIONAL SCREENING WITH OPTIMIZED FUNCTIONAL CRISPR-CASSYSTEMS”;提交于2014年9月25日的美国申请62/055,487,“FUNCTIONAL SCREENING WITHOPTIMIZED FUNCTIONAL CRISPR-CAS SYSTEMS”;提交于2014年12月4日的美国申请62/087,546,“MULTIFUNCTIONAL CRISPR COMPLEXES AND/OR OPTIMIZED ENZYME LINKEDFUNCTIONAL-CRISPR COMPLEXES”;以及提交于2014年12月30日的美国申请62/098,285,“CRISPR MEDIATED IN VIVO MODELING AND GENETIC SCREENING OF TUMOR GROWTH ANDMETASTASIS”。
这些专利、专利公开和申请中的每一者,以及在其中或在其审查期间引用的所有文献(“申请引用文献”)以及在这些申请引用文献中引用或参考的所有文献,连同针对在其中提及或其中通过引用并入本文的任何文献中的任何产品的任何说明书、说明、产品规格和产品表据此通过引用并入本文,并且可在本发明的实践中采用。所有文献(例如,这些专利、专利公开和申请以及申请引用文献)均通过引用并入本文,其程度如同每个单独的文献被确切且单独地指明通过引用并入。
同样关于CRISPR-Cas系统的一般信息,提到了以下文献(同样据此通过引用并入本文):
Figure BDA0002313867470002591
Multiplex genome engineering using CRISPR/Cas systems.Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,Hsu,P.D.,Wu,X.,Jiang,W.,Marraffini,L.A.,&Zhang,F.Science,2月15日;339(6121):819-23(2013);
Figure BDA0002313867470002601
RNA-guided editing of bacterial genomes using CRISPR-Cassystems.Jiang W.,Bikard D.,Cox D.,Zhang F,Marraffini LA.Nat Biotechnol,3月;31(3):233-9(2013);
Figure BDA0002313867470002602
One-Step Generation of Mice Carrying Mutations in Multiple Genes byCRISPR/Cas-Mediated Genome Engineering.Wang H.,Yang H.,Shivalila CS.,DawlatyMM.,Cheng AW.,Zhang F.,Jaenisch R.Cell,5月9日;153(4):910-8(2013);
Optical control of mammalian endogenous transcription andepigenetic states.Konermann S,Brigham MD,Trevino AE,Hsu PD,Heidenreich M,CongL,Platt RJ,Scott DA,Church GM,Zhang F.Nature.8月22日;500(7463):472-6.doi:10.1038/Nature12466.电子版,2013年8月23日(2013);
Figure BDA0002313867470002604
Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced GenomeEditing Specificity.Ran,FA.,Hsu,PD.,Lin,CY.,Gootenberg,JS.,Konermann,S.,Trevino,AE.,Scott,DA.,Inoue,A.,Matoba,S.,Zhang,Y.,&Zhang,F.Cell,8月28日.pii:S0092-8674(13)01015-5(2013-A);
Figure BDA0002313867470002605
DNA targeting specificity of RNA-guided Cas9 nucleases.Hsu,P.,Scott,D.,Weinstein,J.,Ran,FA.,Konermann,S.,Agarwala,V.,Li,Y.,Fine,E.,Wu,X.,Shalem,O.,Cradick,TJ.,Marraffini,LA.,Bao,G.,&Zhang,F.Nat Biotechnol doi:10.1038/nbt.2647(2013);
Genome engineering using the CRISPR-Cas9 system.Ran,FA.,Hsu,PD.,Wright,J.,Agarwala,V.,Scott,DA.,Zhang,F.Nature Protocols,11月;8(11):2281-308(2013-B);
Figure BDA0002313867470002611
Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells.Shalem,O.,Sanjana,NE.,Hartenian,E.,Shi,X.,Scott,DA.,Mikkelson,T.,Heckl,D.,Ebert,BL.,Root,DE.,Doench,JG.,Zhang,F.Science,12月12日(2013)。[印刷版前的电子版];
Crystal structure of cas9 in complex with guide RNA and targetDNA.Nishimasu,H.,Ran,FA.,Hsu,PD.,Konermann,S.,Shehata,SI.,Dohmae,N.,Ishitani,R.,Zhang,F.,Nureki,O.Cell,2月27日,156(5):935-49(2014);
Figure BDA0002313867470002613
Genome-wide binding of the CRISPR endonuclease Cas9 in mammaliancells.Wu X.,Scott DA.,Kriz AJ.,Chiu AC.,Hsu PD.,Dadon DB.,Cheng AW.,TrevinoAE.,Konermann S.,Chen S.,Jaenisch R.,Zhang F.,Sharp PA.Nat Biotechnol.4月20日.doi:10.1038/nbt.2889(2014);
Figure BDA0002313867470002614
CRISPR-Cas9 Knockin Mice for Genome Editing and CancerModeling.Platt RJ,Chen S,Zhou Y,Yim MJ,Swiech L,Kempton HR,Dahlman JE,ParnasO,Eisenhaure TM,Jovanovic M,Graham DB,Jhunjhunwala S,Heidenreich M,Xavier RJ,Langer R,Anderson DG,Hacohen N,Regev A,Feng G,Sharp PA,Zhang F.Cell 159(2):440-455DOI:10.1016/j.cell.2014.09.014(2014);
Figure BDA0002313867470002615
Development and Applications of CRISPR-Cas9 for Genome Engineering,Hsu PD,Lander ES,Zhang F.,Cell.6月5日;157(6):1262-78(2014);
Genetic screens in human cells using the CRISPR/Cas9 system,Wang T,Wei JJ,Sabatini DM,Lander ES.,Science.1月3日;343(6166):80–84.doi:10.1126/science.1246981(2014);
Figure BDA0002313867470002621
Rational design of highly active sgRNAs for CRISPR-Cas9-mediatedgene inactivation,Doench JG,Hartenian E,Graham DB,Tothova Z,Hegde M,Smith I,Sullender M,Ebert BL,Xavier RJ,Root DE.,(2014年9月3日在线发布)NatBiotechnol.12月;32(12):1262-7(2014);
Figure BDA0002313867470002622
In vivo interrogation of gene function in the mammalian brain usingCRISPR-Cas9,Swiech L,Heidenreich M,Banerjee A,Habib N,Li Y,Trombetta J,Sur M,Zhang F.,(2014年10月19日在线发布)Nat Biotechnol.1月;33(1):102-6(2015);
Figure BDA0002313867470002623
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex,Konermann S,Brigham MD,Trevino AE,Joung J,Abudayyeh OO,BarcenaC,Hsu PD,Habib N,Gootenberg JS,Nishimasu H,Nureki O,Zhang F.,Nature.1月29日;517(7536):583-8(2015);
Figure BDA0002313867470002624
A split-Cas9 architecture for inducible genome editing andtranscription modulation,Zetsche B,Volz SE,Zhang F.,(2015年2月2日在线发布)NatBiotechnol.2月;33(2):139-42(2015);
Figure BDA0002313867470002625
Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth andMetastasis,Chen S,Sanjana NE,Zheng K,Shalem O,Lee K,Shi X,Scott DA,Song J,PanJQ,Weissleder R,Lee H,Zhang F,Sharp PA.Cell 160,1246-1260,2015年3月12日(小鼠中的多重筛选),以及
Figure BDA0002313867470002626
In vivo genome editing using Staphylococcus aureus Cas9,Ran FA,CongL,Yan WX,Scott DA,Gootenberg JS,Kriz AJ,Zetsche B,Shalem O,Wu X,Makarova KS,Koonin EV,Sharp PA,Zhang F.,(2015年4月1日在线发布),Nature.4月9日;520(7546):186-91(2015)。
Figure BDA0002313867470002631
Shalem等人,“High-throughput functional genomics using CRISPR-Cas9,”Nature Reviews Genetics 16,299-311(2015年5月)
Figure BDA0002313867470002632
Xu等人,“Sequence determinants of improved CRISPR sgRNA design,”Genome Research 25,1147-1157(2015年8月)
Figure BDA0002313867470002633
Parnas等人,“A Genome-wide CRISPR Screen in Primary Immune Cells toDissect Regulatory Networks,”Cell 162,675-686(2015年7月30日)
Ramanan等人,CRISPR/Cas9 cleavage of viral DNA efficientlysuppresses hepatitis B virus,”Scientific Reports 5:10833.doi:10.1038/srep10833(2015年6月2日)
Figure BDA0002313867470002635
Nishimasu等人,“Crystal Structure of Staphylococcus aureus Cas9,”Cell 162,1113-1126(2015年8月27日)
Figure BDA0002313867470002636
Zetsche等人(2015),“Cpf1 is a single RNA-guided endonuclease of aclass 2CRISPR-Cas system,”Cell 163,759-771(2015年10月22日)doi:10.1016/j.cell.2015.09.038.2015年9月25日的电子版
Figure BDA0002313867470002637
Shmakov等人(2015),“Discovery and Functional Characterization ofDiverse Class 2CRISPR-Cas Systems,”Molecular Cell 60,385-397(2015年11月5日)doi:10.1016/j.molcel.2015.10.008.2015年10月22日的电子版
Figure BDA0002313867470002638
Dahlman等人,“Orthogonal gene control with a catalytically activeCas9 nuclease,”Nature Biotechnology 33,1159-1161(2015年11月)
Figure BDA0002313867470002639
Gao等人,“Engineered Cpf1 Enzymes with Altered PAM Specificities,”bioRxiv 091611;doi:http://dx.doi.org/10.1101/091611,2016年12月4日的电子版
Smargon等人(2017),“Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28,”Molecular Cell 65,618-630(2017年2月16日)doi:10.1016/j.molcel.2016.12.023.2017年1月5日的电子版
上述文献中的每一者通过引用并入本文,可被认为在本发明的实践中,并如下简要讨论:
Figure BDA0002313867470002642
Cong等人基于嗜热链球菌(Streptococcus thermophilus)Cas9还有酿脓链球菌Cas9两者改造了II型CRISPR-Cas系统以用于真核细胞中,并且证实了短RNA可以指导Cas9核酸酶在人类和小鼠细胞中诱导DNA的精确裂解。他们的研究进一步表明,Cas9在转化为切口酶时可以用于促进以最小的诱变活性在真核细胞中进行同源定向修复。另外,他们的研究证实了可以将多个指导序列编码到单个CRISPR阵列中,以便能够同时编辑哺乳动物基因组内的若干内源基因组基因座位点,从而证明了RNA引导的核酸酶技术具有易编程性和广泛适用性。这种使用RNA来编程细胞内序列特异性DNA裂解的能力定义了一类新的基因组工程化工具。这些研究进一步表明,其他CRISPR基因座可能可移植到哺乳动物细胞中,并且也可以介导哺乳动物基因组裂解。重要的是,可以设想可以进一步改善CRISPR-Cas系统的若干个方面,以提高其效率和通用性。
Figure BDA0002313867470002643
Jiang等人使用与双RNA复合的成簇规律间隔短回文重复序列(CRISPR)相关的Cas9核酸内切酶在肺炎链球菌(Streptococcus pneumoniae)和大肠杆菌的基因组中引入精确的突变。该方法依赖于靶基因组位点处双RNA:Cas9指导的裂解来杀死未突变的细胞,并且避免了对选择性标记或反选择系统的需要。该研究报道了通过改变短CRISPR RNA(crRNA)的序列在编辑模板上进行单核苷酸和多核苷酸改变来重编程双RNA:Cas9特异性。该研究表明,同时使用两种crRNA可以进行多重诱变。此外,当该方法与重组工程结合使用时,在肺炎链球菌中,使用所述方法回收的细胞几乎100%含有所需的突变,并且在大肠杆菌中,回收的细胞65%含有该突变。
Wang等人(2013)使用CRISPR/Cas系统一步产生了携带多个基因突变的小鼠,这些小鼠传统上是通过在胚胎干细胞中进行连续重组和/或使具有单个突变的小鼠进行耗时杂交来多步产生的。CRISPR/Cas系统将大大加快功能冗余基因和上位基因相互作用的体内研究。
Figure BDA0002313867470002652
Konermann等人(2013)解决了本领域对能够基于CRISPR Cas9酶还有转录激活子样效应物对DNA结合结构域进行光调节和化学调节的通用和可靠技术的需要。
Figure BDA0002313867470002653
Ran等人(2013-A)描述了一种将Cas9切口酶突变体与配对的向导RNA结合以引入靶向的双链断裂的方法。这解决了以下问题:来自微生物CRISPR-Cas系统的Cas9核酸酶被指导序列靶向特定基因组基因座,这可以耐受与DNA靶标的某些错配,从而促进不希望的脱靶诱变。因为基因组中的各个切口以高保真性被修复,所以经由适当偏移的向导RNA同时形成切口对双链断裂必需的,并且可以延伸特异性识别的碱基的数目以用于标裂解。作者证实了使用配对的切口形成可以使细胞系中的脱靶活性降低50至1,500倍,从而促进小鼠受精卵中的基因敲除而不牺牲在靶裂解效率。这种通用策略可实现要求高特异性的各种基因组编辑应用。
Figure BDA0002313867470002654
Hsu等人(2013)表征了人类细胞中的SpCas9靶向特异性,以告知靶位点的选择并避免脱靶效应。该研究评估了293T和293FT细胞中超过100个预测基因组脱靶基因座处的超过700个向导RNA变体和SpCas9诱导的插入缺失突变水平。作者表明,SpCas9能够以对错配的数量、位置和分布敏感的序列依赖性方式耐受不同位置处向导RNA和靶DNA之间的错配。作者进一步表明,SpCas9介导的裂解不受DNA甲基化的影响,并且可以对SpCas9和sgRNA的剂量进行滴定以最小化脱靶修饰。另外,为了促进哺乳动物基因组工程应用,作者报道提供了一种基于网络的软件工具来指导靶序列的选择和验证以及脱靶分析。
Figure BDA0002313867470002661
Ran等人(2013-B)描述了一套用于在哺乳动物细胞中经由非同源末端连接(NHEJ)或同源定向修复(HDR)进行Cas9介导的基因组编辑以及产生经修饰的细胞系以用于下游功能研究的工具。为了最小化脱靶裂解,作者进一步描述了一种使用Cas9切口酶突变体与配对的向导RNA的双切口形成策略。作者提供的方案通过实验得出用于选择靶位点、评估裂解效率和分析脱靶活性的指南。研究表明,从靶设计开始,可在短短的1-2周内完成基因修饰,并且可在2-3周内获得经修饰的克隆细胞系。
Shalem等人描述了一种在全基因组规模内探询基因功能的新方法。他们的研究表明,利用64,751个独特的指导序列递送靶向18,080个基因的基因组规模CRISPR-Cas9基因敲除(GeCKO)文库,可以在人类细胞中进行阴性和阳性选择筛选。首先,作者展示了使用GeCKO文库来鉴定癌症和多能干细胞中细胞存活所必需的基因。接下来,在黑素瘤模型中,作者筛选了其丢失与对维莫非尼(一种抑制突变蛋白激酶BRAF的治疗剂)的抗性有关的基因。他们的研究表明,排名最高的候选基因包括先前验证的基因NF1和MED12,以及新型命中基因NF2、CUL3、TADA2B和TADA1。作者观察到靶向相同基因的独立向导RNA之间的高度一致性以及高比率的命中确认,从而证明了用Cas9进行基因组规模筛选的前景。
Figure BDA0002313867470002663
Nishimasu等人报道了酿脓链球菌Cas9与sgRNA及其靶DNA复合的晶体结构,分辨率为2.5A°。该结构揭示了由靶标识别和核酸酶叶组成的双叶结构,其将sgRNA:DNA异源双链体容纳在它们界面处带正电荷的凹槽中。识别叶对于结合sgRNA和DNA是必不可少的,而核酸酶叶包含HNH和RuvC核酸酶结构域,这两个结构域被正确定位以分别裂解靶DNA的互补链和非互补链。核酸酶叶还包含负责与原间隔邻近基序(PAM)相互作用的羧基末端结构域。这种高分辨率的结构和伴随的功能分析揭示了通过Cas9进行RNA引导的DNA靶向的分子机制,从而为合理设计新的通用基因组编辑技术做好准备。
Figure BDA0002313867470002671
Wu等人确定了来自酿脓链球菌的载有单个向导RNA(sgRNA)的无催化活性的Cas9(dCas9)在小鼠胚胎干细胞(mESC)中的经标测的全基因组结合位点。作者表明,所测试的四个sgRNA中的每一个都将dCas9靶向数十个至数千个基因组位点,这些基因组位点通常以sgRNA中5个核苷酸的种子区以及NGG原间隔邻近基序(PAM)为特征。不可接近染色质减少了dCas9与具有匹配种子序列的其他位点的结合;因此70%的脱靶位点与基因相关。作者表明,对用有催化活性的Cas9转染的mESC中的295个dCas9结合位点进行靶向测序仅鉴定出一个高于背景水平突变的位点。作者提出了一种用于Cas9结合和裂解的两态模型,其中种子匹配触发结合,但裂解需要与靶DNA进行广泛配对。
Figure BDA0002313867470002672
Platt等人建立了Cre依赖性Cas9敲入小鼠。作者展示了在神经元、免疫细胞和内皮细胞中使用腺相关病毒(AAV)、慢病毒或颗粒介导的向导RNA递送进行体内和离体基因组编辑。
Figure BDA0002313867470002673
Hsu等人(2014)的综述文章总体讨论了CRISPR-Cas9从酸奶到基因组编辑(包括细胞的遗传筛选)的历史。
Figure BDA0002313867470002674
Wang等人(2014)涉及一种使用基因组规模的慢病毒单个向导RNA(sgRNA)文库且适用于阳性和阴性选择的池化功能丧失遗传筛选方法。
Doench等人创建了覆盖一组六个内源小鼠基因和三个内源人类基因的所有可能靶位点的sgRNA池,并通过抗体染色和流式细胞术定量评估了它们产生其靶基因的无效等位基因的能力。作者表明,对PAM进行优化提高了活性,并且还提供了用于设计sgRNA的在线工具。
Swiech等人证实了AAV介导的SpCas9基因组编辑可以实现脑中基因功能的反向遗传研究。
Figure BDA0002313867470002682
Konermann等人(2015)讨论了在有或没有接头的情况下将多个效应结构域(例如转录激活子、功能和表观基因组调控子)附接在指导物诸如茎或四环上的适当位置的能力。
Figure BDA0002313867470002683
Zetsche等人证实了Cas9酶可以分成两部分,因此可以控制Cas9的激活组装。
Chen等人通过证实在小鼠中进行全基因组体内CRISPR-Cas9筛选揭示了调控肺转移的基因而涉及多重筛选。
Figure BDA0002313867470002685
Ran等人(2015)涉及SaCas9及其编辑基因组的能力,并证明不能根据生化测定推断。Shalem等人(2015)描述了无催化活性的Cas9(dCas9)融合物用于综合阻遏(CRISPRi)或激活(CRISPRa)表达的方式,示出了使用Cas9进行基因组规模筛选(包括测定和池化的筛选)的进展、使基因组座位失活的敲除途径以及调节转录活性的策略。
Figure BDA0002313867470002686
Shalem等人(2015)描述了无催化活性的Cas9(dCas9)融合物用于综合阻遏(CRISPRi)或激活(CRISPRa)表达的方式,示出了使用Cas9进行基因组规模筛选(包括测定和池化的筛选)的进展、使基因组座位失活的敲除途径以及调节转录活性的策略。
Figure BDA0002313867470002687
Xu等人(2015)评估了在基于CRISPR的筛选中有助于单个向导RNA(sgRNA)效率的DNA序列特征。作者探索了CRISPR/Cas9敲除的效率和裂解位点处的核苷酸偏好。作者还发现,CRISPRi/a的序列偏好与CRISPR/Cas9敲除的序列偏好明显不同。
Figure BDA0002313867470002688
Parnas等人(2015)将全基因组池化CRISPR-Cas9文库引入树突细胞(DC)中,以鉴定控制细菌脂多糖(LPS)诱导肿瘤坏死因子(Tnf)这一过程的基因。对Tlr4信号转导的已知调控子以及先前未知的候选物进行鉴定,并将其分为三个功能模块,这些模块对LPS的规范响应具有不同影响。
Figure BDA0002313867470002691
Ramanan等人(2015)证明了感染细胞中存在对病毒游离DNA(cccDNA)的裂解。HBV基因组在感染肝细胞的核中以3.2kb双链游离DNA形式(被称为共价闭状DNA(cccDNA))存在,这种DNA是HBV生命周期中的关键组分,其复制不受当前疗法的抑制。作者表明,特异性靶向HBV高度保守区的sgRNA可以可靠地抑制病毒复制并耗竭cccDNA。
Figure BDA0002313867470002692
Nishimasu等人(2015)报道了SaCas9与单个向导RNA(sgRNA)及其双链DNA靶标复合的晶体结构,其中包含5'-TTGAAT-3'PAM和5'-TTGGGT-3'PAM。SaCas9与SpCas9的结构比较突出显示了结构保守性和差异性,解释了它们不同的PAM特异性和直系同源sgRNA识别。
Figure BDA0002313867470002693
Zetsche等人(2015)报道了对Cpf1(一种推定的2类CRISPR效应物)的表征。结果证实Cpf1可以介导具有与Cas9不同的特征的可靠DNA干扰。鉴定这种干扰机制可拓宽我们对CRISPR-Cas系统的理解,并推进其基因组编辑应用。
Figure BDA0002313867470002694
Shmakov等人(2015)报道了对三个不同的2类CRISPR-Cas系统的表征。两个鉴定系统C2c1和C2c3的效应物包含与Cpf1远缘相关的RuvC样核酸内切酶结构域。第三个系统Cas13b包含具有两个预测的HEPN RNase结构域的效应物。
Figure BDA0002313867470002695
Gao等人(2016)报道了使用结构指导的饱和诱变筛选来增加Cpf1的靶向范围。利用突变S542R/K607R和S542R/K548V/N552R改造了AsCpf1变体,这两种突变可以在体外和人类细胞中用增强的活性分别裂解具有TYCV/CCCC和TATV PAM的靶位点。
而且,“Dimeric CRISPR RNA-guided FokI nucleases for highly specificgenome editing”,Shengdar Q.Tsai,Nicolas Wyvekens,Cyd Khayter,JenniferA.Foden,Vishal Thapar,Deepak Reyon,Mathew J.Goodwin,Martin J.Aryee,J.KeithJoung Nature Biotechnology 32(6):569-77(2014)涉及二聚体RNA引导的FokI核酸酶,该核酸酶识别延伸序列并且可以在人类细胞中高效编辑内源基因。
另外,提到了标题为“DELIVERY,USE AND THERAPEUTIC APPLICATIONS OF THECRISPR-CAS SYSTEMS AND COMPOSITIONS FOR TARGETING DISORDERS AND DISEASESUSING PARTICLE DELIVERY COMPONENTS”的PCT申请PCT/US14/70057,代理人参考号为47627.99.2060和BI-2013/107(要求以下一项或多项或者所有美国临时专利申请的优先权:提交于2014年9月24日的62/054,490;提交于2014年6月10日的62/010,441;以及各自提交于2013年12月12日的61/915,118、61/915,215和61/915,148)(“颗粒递送PCT”),该申请通过引用并入本文,其内容关于:制备含sgRNA和Cas9蛋白的颗粒的方法,所述方法包括将包含sgRNA和Cas9蛋白(以及任选的HDR模板)的混合物与包含表面活性剂、磷脂、可生物降解的聚合物、脂蛋白和醇或者基本上由这些物质组成或由这些物质组成的混合物混合;以及来自该过程的颗粒。例如,其中有利地在无菌、无核酸酶的缓冲液例如1X PBS中在合适的温度例如15-30C、例如20-25C、例如室温下将Cas9蛋白和sgRNA以合适的摩尔比例如3:1至1:3或2:1至1:2或1:1混合在一起合适的时间例如15-45分钟、诸如30分钟。单独地,将颗粒组分(诸如或包含:表面活性剂,例如阳离子脂质,例如1,2-二油酰基-3-三甲基铵-丙烷(DOTAP);磷脂,例如二肉豆蔻酰基磷脂酰胆碱(DMPC);可生物降解的聚合物,诸如乙二醇聚合物或PEG;以及脂蛋白,诸如低密度脂蛋白,例如胆固醇)溶解在醇中,有利地溶解在C1-6烷基醇(诸如甲醇、乙醇、异丙醇,例如100%乙醇)中。将两种溶液混合在一起形成含有Cas9-sgRNA复合物的颗粒。因此,在将整个复合物配制成颗粒之前,可将sgRNA与Cas9蛋白预复合。可利用已知可以促进将核酸递送到细胞中的不同摩尔比的不同组分(例如,1,2-二油酰基-3-三甲基铵-丙烷(DOTAP)、1,2-二十四酰基-sn-甘油-3-磷酸胆碱(DMPC)、聚乙二醇(PEG)和胆固醇)来进行配制。例如DOTAP:DMPC:PEG:胆固醇摩尔比可以是DOTAP 100、DMPC0、PEG 0、胆固醇0;或DOTAP 90、DMPC 0、PEG 10、胆固醇0;或DOTAP 90、DMPC 0、PEG 5、胆固醇5;DOTAP 100、DMPC 0、PEG 0、胆固醇0。因此,该申请包括将sgRNA、Cas9蛋白和形成颗粒的组分混合在一起;以及来自这种混合的颗粒。本发明的各方面可以涉及颗粒;例如,使用类似于颗粒递送PCT的过程(例如通过将如本发明中包含sgRNA和/或Cas9的混合物与例如如颗粒递送PCT形成颗粒的组分混合以形成颗粒,以及来自这种混合的颗粒)得到的颗粒(或者,当然,如本发明中涉及sgRNA和/或Cas9的其他颗粒)。
实施例
实施例1:Cas13b直系同源物
下表1所示的Cas13b蛋白有利地由针对在哺乳动物细胞中的表达而进行密码子优化的构建体产生。以下序列以及蛋白序列的登录号也在图1中给出。表2提供了Cas13b直系同源物的PFS基序。
Figure BDA0002313867470002711
Figure BDA0002313867470002721
Figure BDA0002313867470002731
Figure BDA0002313867470002741
Figure BDA0002313867470002751
Figure BDA0002313867470002761
Figure BDA0002313867470002771
Figure BDA0002313867470002791
Figure BDA0002313867470002801
Figure BDA0002313867470002821
Figure BDA0002313867470002841
Figure BDA0002313867470002851
Figure BDA0002313867470002861
Figure BDA0002313867470002871
Figure BDA0002313867470002881
Figure BDA0002313867470002891
Figure BDA0002313867470002901
Figure BDA0002313867470002902
Figure BDA0002313867470002911
实施例2:Cas13b在哺乳动物细胞中的活性
使用标准lipofectamine 2000方案将HEK293T细胞与以下质粒一起转染:
(a)Cas13b(或对照C2c2)哺乳动物表达质粒,在基因C端带有1X核输出序列标签。
(b)crRNA表达质粒,每个质粒相对于Gaussia荧光素酶表达靶向crRNA或者表达非靶向crRNA。
(c)荧光素酶报告质粒,从两个单独的启动子表达Gaussia和Cypridinia荧光素酶。
Gaussia荧光素酶针对敲低,而cypridinia荧光素酶的水平用于控制转染效率。使用瓦氏纤毛菌C2c2来与C2c2直系同源物进行比较。
在相应的指导物中使用以下间隔序列:
Figure BDA0002313867470002912
Figure BDA0002313867470002921
在图2提供了不同Cas13b直系同源物的结果。将直系同源物分类为低/无活性、中、高或金。“金”直系同源物利用所测试的大多数指导物提供了大于80%的荧光素酶活性敲低。“高”直系同源物利用所测试的大多数指导物提供了小于50%的荧光素酶活性敲低。“中”直系同源物利用所测试的大多数指导物提供了约50%的荧光素酶活性敲低。“低/无”直系同源物利用所测试的所有指导物提供了小于80%的荧光素酶活性敲低。
图3示出了使用指导物2(GGGCATTGGCTTCCATCTCTTTGAGCACCT)和非靶向指导物(GCAGGGTTTTCCCAGTCACGACGTTGTAAA)作为对照测试的几种直系同源物的活性的标准化比较数据。可以看出,Cas13b直系同源物14、15、19和20(来自口腔卟啉单胞菌、普雷沃菌属P5-125、牙龈卟啉单胞菌和卟啉单胞菌属COT-052OH4946)在哺乳动物细胞中特别活跃。
图4示出了使用几种荧光素酶靶向指导物和非靶向对照指导物对两个最有效的直系同源物14和15与C2c2/Cas13a进行比较的归一化数据。可以看出,Cas13b直系同源物14和15(来自口腔卟啉单胞菌和普雷沃菌属P5-125)始终比瓦氏纤毛菌C2c2在哺乳动物细胞中更活跃。
实施例3
高效精确的核酸编辑在治疗遗传性疾病方面具有广阔的前景,尤其是在RNA水平上,可以挽救与疾病相关的转录物,从而产生功能性蛋白产物。VI型CRISPR-Cas系统含有可编程的单效应物RNA引导的RNase Cas13。这里,我们简要描述了VI型系统的多样性,以设计出能够可靠敲低的Cas13直系同源物,并通过使用无催化活性的Cas13(dCas13)将腺苷脱氨酶活性指导至哺乳动物细胞中的转录物来证明RNA编辑。通过将ADAR2脱氨酶结构域融合到dCas13上并工程化向导RNA以形成最佳RNA双链体底物,我们实现了特定单腺苷到肌苷的靶向编辑(在翻译过程中被读出为鸟苷),效率通常为20-40%,甚至高达89%。该系统称为可编程的腺嘌呤到肌苷置换的RNA编辑(REPAIR),可以被进一步工程化以实现高特异性。工程化的变体REPAIRv2显示出特异性提高170倍以上,同时仍保持可靠的在靶腺嘌呤到肌苷编辑。我们使用REPAIRv2编辑含有已知致病突变的全长转录物,并形成适合包装在腺相关病毒(AAV)载体中的功能性截短型式。REPAIR提供了一个有前景的RNA编辑平台,在研究、治疗和生物技术领域具有广泛的适用性。精确的核酸编辑技术对于研究细胞功能和作为新型疗法具有重要的价值。尽管当前的编辑工具诸如Cas9核酸酶可以实现对基因组基因座的可编程修饰,但是由于插入或缺失或需要供体模板进行精确编辑,编辑物通常是异源的。碱基编辑器诸如dCas9-APOBEC融合物允许在不产生双链断裂的情况下进行编辑,但由于胞苷脱氨酶活性的性质(在靶标窗口中编辑任何胞苷)可能缺乏精确性。此外,对原间隔邻近基序(PAM)的要求限制了可能的编辑位点的数量。这里,我们描述了使用来自VI型原核成簇规律间隔短回文重复序列(CRISPR)自适应免疫系统的RNA引导的RNA靶向Cas13酶来开发一种精确灵活的RNA碱基编辑工具。
精确的核酸编辑技术对于研究细胞功能和作为新型疗法具有重要的价值。当前的基于可编辑核酸酶的编辑工具诸如原核成簇规律间隔短回文重复序列(CRISPR)相关的核酸酶Cas9(1-4)或Cpf1(5)已广泛用于介导靶DNA裂解,该靶DNA裂解继而驱动通过非同源末端连接(NHEJ)进行靶基因破坏或通过模板依赖性同源定向修复(HDR)进行精确基因编辑(6)。NHEJ利用在分裂细胞和有丝分裂后细胞中均活跃的宿主装置,并通过产生可以导致蛋白质编码基因移码的插入或缺失(插入缺失)突变的混合物来提供有效的基因破坏。相比之下,HDR由其表达在很大程度上受限于复制细胞的宿主装置介导。因此,开发有丝分裂后细胞中基因编辑能力仍然是主要挑战。最近,DNA碱基编辑器诸如使用无催化活性的Cas9(dCas9)将胞苷脱氨酶活性靶向特定的基因组靶标以在靶标窗口内实现胞嘧啶向胸腺嘧啶的转化,允许在不产生DNA双链断裂的情况下进行编辑并显著减少了插入缺失的形成(7,8)。但是,由于Cas9在编辑位点需要一个原间隔邻近基序(PAM),DNA碱基编辑的靶向范围受到限制(9)。这里,我们描述了使用VI型CRISPR相关的RNA引导的RNase Cas13来开发一种精确灵活的RNA碱基编辑技术(10-13)。
Cas13酶具有两个介导精确RNA裂解的高等真核生物和原核生物核苷酸结合(HEPN)内切RNase结构域(10,11)。迄今为止,已鉴定出三个Cas13蛋白家族:Cas13a(以前称为C2c2)、Cas13b和Cas13c(12,13)。我们最近报道了Cas13a酶可以用作核酸检测的工具(14)以及哺乳动物和植物细胞RNA敲低和转录物追踪的工具(15)。Cas13酶具有RNA引导的性质使它们成为用于RNA结合和干扰应用的有吸引力的工具。
作用于RNA(ADAR)酶家族的腺苷脱氨酶通过将腺苷水解脱氨成肌苷来介导转录物的内源编辑,肌苷是一种在翻译和剪接中的功能相当于鸟苷的核碱基(16)。有两个功能性的人类ADAR直系同源物ADAR1和ADAR2,它们由N端双链RNA结合结构域和C端催化脱氨结构域组成。ADAR1和ADAR2的内源靶位点具有相当高的双链同一性,并且催化结构域需要双链体化区才能在体外和体内进行有效编辑(17,18)。尽管ADAR蛋白具有可能限制靶向的潜在灵活性的优选编辑基序,但高活性突变体诸如ADAR(E488Q)(19)可放宽序列限制并提高腺苷到肌苷的编辑率。ADAR优先使RNA双链体中与胞苷碱基相对的腺苷脱氨(20),从而为精确的碱基编辑提供有前景的机会。尽管先前的方法已经通过RNA指导物设计了靶向ADAR融合(21-24),但尚未报道这些方法的特异性,并且它们各自的靶向机制依赖于RNA-RNA杂交而不需要蛋白质伴侣的帮助,这可增强靶标的识别和严格性。
这里,我们分析了整个Cas13酶家族在哺乳动物细胞中的RNA敲低活性,并鉴定出来自普雷沃菌属P5-125的Cas13b直系同源物(PspCas13b)对于哺乳动物细胞应用是最有效和最特异的。然后,我们将ADAR2脱氨酶结构域(ADARDD)与无催化活性的PspCas13b融合,并证实了对报告物和内源转录物的可编程的腺嘌呤到肌苷置换的RNA编辑(REPAIR)以及与疾病相关的突变。最后,我们采用合理的诱变方案来提高dCas13b-ADAR2DD融合物的特异性,以产生特异性增加170倍以上的REPAIRv2。
细菌构建体的设计和克隆
在Lac启动子的控制下,将经哺乳动物密码子优化的Cas13b构建体克隆到耐氯霉素的pACYC184载体中。然后,在pJ23119启动子的控制下,将由BsaI限制性位点分开的两个对应的正向重复(DR)序列插入Cas13b下游。最后,使用T4 PNK(New England Biolabs)将用于靶向间隔序列的寡核苷酸磷酸化,将其退火并使用T7连接酶(Enzymatics)连接到经BsaI消化的载体中,以生成靶向Cas13b载体。
细菌PFS筛选
通过使用NEB Gibson Assembly(New England Biolabs),在氨苄青霉素抗性基因bla的起始密码子下游插入含有Cas13b靶标且具有由靶位点分开的2个5'随机核苷酸和4个3'随机核苷酸的PCR产物,从而克隆出用于PFS筛选的氨苄青霉素抗性质粒。然后将100ng抗氨苄青霉素的靶质粒与65-100ng抗氯霉素的Cas13b细菌靶向质粒电穿孔到Endura电感受态细胞中。将质粒加入细胞中,在冰上孵育15分钟,使用制造商方案进行电穿孔,然后将950uL回收培养基加入细胞中,然后在37C下生长一小时。将生长物接种到氯霉素和氨苄青霉素双重选择平板上。将生长物的连续稀释液用于估计cfu/ng DNA。接种后16小时,将细胞从平板上刮下,并使用Qiagen Plasmid Plus Maxi Kit(Qiagen)收集尚存的质粒DNA。通过PCR扩增尚存的Cas13b靶序列及其侧接区,并使用Illumina NextSeq进行测序。为了评估PFS偏好,提取原始库中包含随机核苷酸的位置,并使用自定义python脚本提取两个生物复制中都存在的相对于仅载体条件而言耗竭的序列。然后,将Cas13b条件下PFS丰度与仅载体条件相比的比率的-log2用于计算优选基序。具体地,将-log2(样品/载体)耗竭率高于特定阈值的所有序列都用于生成序列基序的weblogo(weblogo.berkeley.edu)。表7列出了用于为每个Cas13b直系同源物生成weblogo的特定耗竭率值。
用于RNA干扰的哺乳动物构建体的设计和克隆
为了生成用于在哺乳动物细胞中测试Cas13直系同源物的载体,对经哺乳动物密码子优化的Cas13a、Cas13b和Cas13c基因进行PCR扩增,并在EF1α启动子的控制下将这些基因golden-gate克隆到包含双重NLS序列和C端msfGFP的哺乳动物表达载体中。为了进一步优化,在EF1α启动子的控制下将Cas13直系同源物golden gate克隆到包含不同的C端定位标签的目的载体中。
通过使用NEB Gibson Assembly(New England Biolabs)PCR扩增编码Gaussia和Cypridinia荧光素酶的DNA、EF1α和CMV启动子和组件,克隆出双荧光素酶报告基因。
为了表达Cas13a、Cas13b或Cas13c直系同源物的哺乳动物向导RNA,合成了具有golden-gate受体位点的对应正向重复序列,并经由限制性消化克隆在U6表达下对其进行克隆。然后通过golden gate克隆将各个指导物克隆到每个直系同源物的对应表达主链中。
用于Cas13干扰特异性的池化错配文库的克隆
通过PCR创建池化错配文库靶位点。将在靶标内每个位置处包含94%正确碱基和2%每个错误碱基的混合物的G-荧光素酶中包含半简并靶序列的寡核苷酸用作一个引物,并将G-荧光素酶的非靶向区的寡核苷酸用作PCR反应中的第二个引物。然后使用NEBGibson assembly(New England Biolabs)将错配文库靶标克隆到双荧光素酶报告基因中代替野生型G-荧光素酶。
用于RNA编辑的哺乳动物构建体的设计和克隆
通过在HEPN结构域的催化位点进行两个组氨酸到丙氨酸突变(H133A/H1058A)使PspCas13b失去催化活性(dPspCas13b)。合成人类ADAR1和ADAR2的脱氨酶结构域并进行PCR扩增以将其gibson克隆到pcDNA-CMV载体主链中,并通过GS或GSGGGGS接头使其在C端与dPspCas13b融合。对于测试不同接头的实验,我们在dPspCas13b和ADAR2dd之间克隆了以下其他接头:GGGGSGGGGSGGGGS、EAAAK、GGSGGSGGSGGSGGSGGS和SGSETPGTSESATPES(XTEN)。通过将适当的突变体gibson克隆到dPspCas13b-GSGGGGS主链中来产生特异性突变体。
通过在用于敲低实验的荧光素酶报告载体中产生W85X突变(TGG>TAG)来产生用于测量RNA编辑活性的荧光素酶报告载体。该报告载体将功能性Gluc表达为归一化对照,但是由于添加了预先终止位点而导致有Cluc缺陷。为了测试ADAR编辑基序偏好,我们克隆了Cluc的第85位密码子(XAX)处腺苷周围的所有可能基序。
为了测试REPAIR的PFS偏好,我们克隆了在靶区和腺苷编辑位点上游包含6个碱基对的简并PFS序列的池化质粒文库。文库由Integrated DNA Technologies(IDT)合成为ultramer,并且通过使引物退火以及DNA聚合酶I(New England Biolabs)的Klenow片段填补序列使文库成为双链。然后将包含简并序列的该dsDNA片段gibson克隆到消化的报告载体中,然后将其用异丙醇沉淀并纯化。然后将克隆的文库电穿孔到Endura感受态大肠杆菌细胞(Lucigen)中,并接种在245mm×245mm正方形生物测定板(Nunc)中。16小时后,使用无内毒素的MACHEREY-NAGEL midiprep试剂盒收获菌落并进行midiprep分析。通过下一代测序验证克隆的文库。
为了克隆与疾病相关的突变来测试REPAIR活性,选择如ClinVar中定义的与疾病发病机制相关的34个G>A突变,并在CMV启动子下将围绕这些突变的200bp区golden-gate克隆到mScarlett和EGFP之间。选择AVPR2和FANCC中两个另外的G>A突变,用于在EF1α表达下Gibson克隆整个基因序列。
为了表达用于REPAIR的哺乳动物向导RNA,合成了具有golden-gate受体位点的PspCas13b正向重复序列,并经由限制性消化克隆在U6表达下对其进行克隆。然后通过golden gate克隆将各个指导物克隆到该表达主链中。
哺乳动物细胞培养
哺乳动物细胞培养实验是在HEK293FT品系(美国模式培养物集存库(ATCC))中进行的,该品系在含高葡萄糖、丙酮酸钠和GlutaMAX(Thermo Fisher Scientific)并且另外还补充有1×青霉素-链霉素(Thermo Fisher Scientific)和10%胎牛血清(VWRSeradigm)的杜尔贝科改良伊格尔培养基(Dulbecco's Modified Eagle Medium)中生长。将细胞保持在低于80%的汇合度。
除非另有说明,否则所有转染均用Lipofectamine 2000(Thermo FisherScientific)在涂覆有聚-D-赖氨酸的96孔板(BD Biocoat)上进行。转染前十六小时以大约20,000个细胞/孔接种细胞,以确保转染时的汇合度达到90%。对于板上的每个孔,将转染质粒与Opti-MEM I还原血清培养基(Thermo Fisher)合并,总体积为25μl。单独地,将24.5ul Opti-MEM与0.5ul Lipofectamine 2000合并。然后将质粒和Lipofectamine溶液合并并孵育5分钟,然后将它们吸移到细胞上。
RNA敲低哺乳动物细胞测定
为了用报告基因构建体评估哺乳动物细胞中的RNA靶向情况,将150ng Cas13构建体与300ng指导表达质粒和12.5ng敲低报告基因构建体共转染。转染后48小时,从细胞中移出含有分泌型荧光素酶的培养基,在PBS中以1:5稀释,并利用BioLux Cypridinia和BioluxGaussia荧光素酶测定试剂盒(New England Biolabs)在具有注射方案的酶标仪(BiotekSynergy Neo2)上测量活性。进行的所有重复都是生物学重复。
为了靶向内源基因,将150ng Cas13构建体与300ng指导表达质粒共转染。转染后48小时,使用先前描述的Cells-to-Ct试剂盒(Thermo Fisher Scientific)的改良方法,溶解细胞并收获RNA并且进行反转录。使用KRAS转录物的TaqMan qPCR探针(Thermo FisherScientific)、GAPDH对照探针(Thermo Fisher Scientific)和Fast Advanced Master Mix(Thermo Fisher Scientific)通过qPCR测量cDNA表达。在LightCycler 480仪器II(Roche)上读取qPCR反应,其中以384孔形式进行四个5ul技术重复。
使用错配靶标的池化文库评估RNA特异性
使用接种在6孔板中接种的HEK293FT细胞来测试Cas13干扰错配靶标文库的能力。使用2400ng Cas13载体、4800ng指导物和240ng错配靶标文库转染约汇合70%的细胞。转染后48小时,使用QIAshredder(Qiagen)和Qiagen RNeasy Mini Kit收获细胞并提取RNA。使用qScript Flex cDNA合成试剂盒(Quantabio),按照制造商基因特异性引物延伸方案并使用Gluc特异性RT引物,对1ug提取的RNA进行反转录。然后扩增cDNA并在Illumina NextSeq上进行测序。
通过对每个序列的读数进行计数来分析测序,并通过确定log2(-读数计数比)值来计算消耗竭得分,其中读数计数比是靶向指导条件与非靶向指导条件下的读数计数之比。该得分值代表序列上Cas13的活性水平,值越高代表耗竭越强,因此代表Cas13裂解活性越高。确定了单错配和双错配序列的单独分布,并将其绘制为热图,其具有每个错配同一性的耗竭得分。对于双错配序列,绘制了给定位置处所有可能的双错配的平均值。
通过RNA测序在哺乳动物细胞中对Cas13进行全转录组分析
为了测量全转录组特异性,共转染了150ng Cas13构建体、300ng指导表达质粒和15ng敲低报告基因构建体。对于shRNA条件,共转染了300ng shRNA靶向质粒、15ng敲低报告基因构建体和150ng EF1-α驱动的mCherry(以平衡报告基因负载)。转染后48小时,利用RNeasy Plus Mini试剂盒(Qiagen)纯化RNA,针对使用NEBNext Poly(A)mRNA磁性分离模块(New England Biolabs)选择mRNA,并将其准备利用Illumina(New England Biolabs)的NEBNext Ultra RNA Library Prep Kit进行测序。然后在NextSeq(Illumina)上对RNA测序文库进行测序。
为了分析全转录组测序数据,使用Bowtie和RSEM 1.2.31版利用默认参数对读数进行RefSeq GRCh38组件比对。将转录物表达定量为log2(TPM+1),过滤基因以使log2(TPM+1)大于2.5。为了选择差异表达的基因,仅考虑差异变化大于2或小于.75的基因。针对三个靶向重复与非靶向重复进行Student T检验以评估差异表达的统计显著性,并通过Benjamini-Hochberg程序过滤了小于0.01%的错误发现率。
哺乳动物细胞转染中的ADAR RNA编辑
为了评估哺乳动物细胞中的REPAIR活性,我们转染了150ng REPAIR载体、300ng指导表达质粒和40ng RNA编辑报告基因。48小时后,使用先前描述的方法并利用基因特异性逆转录引物,收获来自细胞的RNA并进行逆转录。然后使用NEBNext High-Fidelity 2X PCRMaster Mix对提取的cDNA进行两轮PCR,以加入Illumina适配体和样品条形码。然后在Illumina NextSeq或MiSeq上对文库进行下一代测序。然后在测序窗口内的所有腺苷处评估RNA编辑率。
在荧光素酶报告基因被靶向RNA编辑的实验中,我们还在收获RNA之前收获了含有分泌型荧光素酶的培养基。在这种情况下,由于校正后的Cluc可能处于较低水平,因此我们没有稀释介质。我们利用BioLux Cypridinia和Biolux Gaussia荧光素酶测定试剂盒(NewEngland Biolabs)在具有注射方案的酶标仪(Biotek Synergy Neo2)上测量荧光素酶活性。进行的所有重复都是生物学重复。
PFS结合哺乳动物筛选
为了确定PFS对编辑效率的贡献,将625ng PFS靶标文库、4.7ug指导物和2.35ugREPAIR共转染到接种在225cm2烧瓶中的HEK293FT细胞上。将质粒与33ul PLUS试剂(ThermoFisher Scientific)混合,用Opti-MEM调节至533ul,孵育5分钟,再与30ulLipofectamine2000和500ul Opti-MEM合并,再孵育5分钟,然后将其吸移到细胞上。转染后48小时,利用RNeasy Plus Mini试剂盒(Qiagen)收获RNA,利用qScript Flex(Quantabio)并使用基因特异性引物进行反转录,并使用NEBNext High-Fidelity 2X PCR Master Mix(New England Biolabs)进行两轮PCR扩增,以加入Illumina适配体和样品条形码。在Illumina NextSeq上对文库进行测序,并将靶标腺苷处的RNA编辑率映射为PFS同一性。为了增加覆盖率,PFS在计算上被折叠为4个核苷酸。计算每个PFS的REPAIR编辑率,在生物学重复内求平均值,减去对应PFS的非靶向率。
进行全转录组测序以评估ADAR编辑特异性
为了分析整个转录组的脱靶RNA编辑位点,我们使用RNeasy Plus Miniprep试剂盒(Qiagen)从转染后48小时的细胞中收集总RNA。然后使用NEBNext Poly(A)mRNA磁性分离模块(NEB)富集mRNA部分,然后并将该RNA准备使用Illumina(NEB)的NEBNext Ultra RNALibrary Prep Kit进行测序。然后在Illumina NextSeq上对文库进行测序,并将其加载使得每个样品至少有500万个读数。
靶向和全转录组实验的RNA编辑分析
为了分析全转录组RNA编辑RNA测序数据,将序列文件随机下采样至500万个读数。使用添加有Gluc和Cluc序列的RefSeq GRCh38组件生成索引,并使用Bowtie/RSEM版本1.3.0对读数进行比对和定量。然后使用REDitools[cite]利用以下参数对比对BAM进行分类和RNA编辑位点分析:-t 8 -e -d -l -U[AG或TC]-p -u -m20 -T6-0 -W -v 1 -n 0.0。在未转染或EGFP转染的条件下发现的任何显著编辑均视为SNP或转染的假象,并从脱靶分析中过滤掉。如果Fisher精确检验得出p值小于0.5并且3个生物学重复中至少有2个鉴定出编辑位点,则认为脱靶显著。
为了分析每个脱靶的预测变异效应,使用SIFT和PolyPhen-2注释并且使用作为UCSC基因组浏览器工具套件的一部分的变体注释集成器(https://genome.ucsc.edu/cgi-bin/hgVai),对脱靶编辑位点列表进行分析。为了判断脱靶基因是否致癌,参见了COSMIC癌症体细胞突变目录(cancer.sanger.ac.uk)中的致癌注释数据库。
为了分析REPAIR构建体是否干扰RNA水平,使用RSEM分析输出的每百万转录物(TPM)值进行表达计数,并通过取log2(TPM+1)将其转化为对数空间。为了找到差异调控的基因,针对三个靶向指导物重复与三个非靶向指导物重复进行Student t检验。仅对log2(TPM+1)值大于2.5的基因进行统计分析,并且只有倍数变化大于2或小于0.8的基因才视为被差异调控。对错误发现率小于0.01的基因进行报告。
哺乳动物细胞中Cas13家族成员的全面表征。
我们之前开发了用于哺乳动物敲低应用的LwaCas13a,但它需要msfGFP稳定结构域才能有效敲低,尽管特异性很高,但敲低效率并不能始终低于50%(15)。我们试图通过表征一组遗传上多样化的Cas13家族成员来评估它们在哺乳动物细胞中的RNA敲低活性,从而鉴定出更可靠的RNA靶向CRISPR系统(图5A)。我们将21个Cas13a、15个Cas13b和7个Cas13c经哺乳动物密码子优化的直系同源物(表4)克隆到具有N端和C端核输出信号(NES)序列和C端msfGFP的表达载体中,以增强蛋白质稳定性。为了测定在哺乳动物细胞中的干扰,我们设计了在单独的启动子下表达正交Gaussia(Gluc)和Cypridinia(Cluc)荧光素酶的双报告基因构建体,该构建体允许一种荧光素酶用作Cas13干扰活性的量度,而另一种荧光素酶作为内部对照。对于每个直系同源物,我们使用来源于氨苄青霉素干扰测定的Cas13b PFS基序(图11;表5)和以前Cas13a活性报告中的3'H PFS设计了与PFS相容的向导RNA(10)。
我们用Cas13表达、向导RNA和报告质粒转染HEK293FT细胞,并在48小时后定量靶向Gluc的水平。针对每个Cas13直系同源物测试两种向导RNA揭示了一系列的活性水平,包括相对于最近表征的LwaCas13a,两种向导RNA的干扰相似或增加的五个Cas13b直系同源物(图5B)。我们选择了这五个Cas13b直系同源物,以及选择前两个Cas13a直系同源物进行进一步工程化。
接下来,我们在没有msfGFP的情况下测试了Cas13介导的Gluc的敲低,以便选择不需要稳定结构域就能实现可靠活性的直系同源物。我们假设,除了msfGFP之外,Cas13活性还可能受到亚细胞定位的影响,如先前针对LwaCas13a的优化所报道的(15)。因此,我们测试了七个选择的Cas13直系同源物的干扰活性,这些直系同源物在没有msfGFP的情况下与六个不同定位标签中的一个标签在C端融合。使用荧光素酶报告基因测定法,我们发现与HIV Rev基因NES在C端融合的PspCas13b和PguCas13b以及与MAPK NES在C端融合的RanCas13b具有最高水平的干扰活性(图12A)。为了进一步区分前几个直系同源物的活性水平,我们就使用位置匹配的指导物来敲低KRAS转录物的能力将三种经优化的Cas13b构建体与最佳LwaCas13a-msfGFP融合体和shRNA进行了比较(图12B)。我们观察到PspCas13b的干扰水平最高(平均敲低62.9%),因此选择其用于与LwaCas13a进行进一步比较。
为了更严格地定义PspCas13b和LwaCas13a的活性水平,我们设计了沿Gluc和Cluc平铺的位置匹配的指导物,并使用我们的荧光素酶报告物测定了它们的活性。我们分别测试了93个和20个靶向Gluc和Cluc的位置匹配的指导物,发现相对于LwaCas13a,PspCas13b的敲低水平持续增加(PspCas13b的敲低平均水平为92.3%,而LwaCas13a的敲低平均水平为40.1%)(图5C、图5D)。
Cas13哺乳动物干扰活性的特异性
为了表征PspCas13b和LwaCas13a的干扰特异性,我们设计了荧光素酶靶标的质粒文库,该靶标文库在整个靶标序列以及三个侧接5'和3'碱基对中包含单错配和双错配(图12C)。我们用LwaCas13a或PspCas13b、靶向未修饰靶序列的固定向导RNA以及与合适系统相对应的错配靶标文库转染HEK293FT细胞。然后,我们对未裂解的转录物进行靶向RNA测序,以定量错配靶序列的耗竭。我们发现LwaCas13a和PspCas13b具有相对不耐受单个错配的中心区,从PspCas13b靶标的碱基对12-26和LwaCas13a靶标的碱基对13-24延伸(图12D)。双错配的耐受性比单个突变甚至更低,在较大的窗口(在各自的靶标中分别从PspCas13b的碱基对12-29和LwaCas13a的碱基对8-27延伸)中观察到的敲低活性很小(图12E)。另外,因为在侧接靶序列5'端和3'端的三个核苷酸中包括错配,所以我们可以评估PFS对Cas13敲低活性的限制。测序表明,几乎所有PFS组合都可实现可靠的敲低,这表明对于任一种测试的酶,对哺乳动物细胞中干扰的PFS限制可能都不存在。这些结果表明,Cas13a和Cas13b显示出相似的序列限制和对错配的敏感性。
接下来,我们表征了转录组的mRNA部分中PspCas13b和LwaCas13a的干扰特异性。我们进行了全转录组mRNA测序,以检测显著差异表达的基因。LwaCas13a和PspCas13b证实了Gluc的可靠敲低(图5E、图5F),并且与位置匹配的shRNA相比具有高度特异性,后者显示了数百个脱靶(图5G)。
Cas13-ADAR融合体实现了靶向RNA编辑
鉴于PspCas13b在哺乳动物细胞中实现了一致、可靠和特异性的mRNA敲低,我们设想可以将其调整为RNA结合平台来募集ADAR的脱氨酶结构域(ADARDD)进行可编程RNA编辑。为了设计缺乏核酸酶活性的PspCas13b(dPspCas13b,这里称为dCas13b),我们突变了HEPN结构域中的保守催化残基,并观察到荧光素酶RNA敲低活性的丧失(图13A)。我们假设,dCas13b-ADARDD融合体可以被向导RNA募集以靶向腺苷,其中杂交后的RNA为ADAR活性创造了所需的双链体底物(图6A)。为了提高靶腺苷脱氨率,我们在最初的RNA编辑设计中引入了另外两个修饰:我们引入了与靶腺苷相对的错配胞苷(先前据报道这会增加脱氨频率),并将dCas13b与包含高活性突变以增强催化活性的人类ADAR1或ADAR2的脱氨酶结构域(ADAR1DD(E1008Q)(25)或ADAR2DD(E488Q)(19))融合。
为了测试dCas13b-ADARDD的活性,我们通过引入无义突变(W85X(UGG->UAG))在Cluc上产生了RNA编辑报告物,可以通过A->I编辑将该无义突变功能性修复为野生型密码子(图6B),然后检测为恢复Cluc发光。我们在靶腺苷上均匀地平铺了具有长度为30、50、70或84个核苷酸的间隔序列的指导物,以确定最佳的指导物位置和设计(图6C)。我们发现dCas13b-ADAR1DD需要更长的指导物才能修复Cluc报道物,而dCas13b-ADAR2DD在测试的所有指导物长度下均起作用(图6C)。我们还发现,高活性E488Q突变提高了编辑效率,因为野生型ADAR2DD的荧光素酶恢复有所减少(图13B)。根据所展示的活性,我们选择了dCas13b-ADAR2DD(E488Q)进行进一步表征,并将该方法指定为编程的腺嘌呤肌苷置换的RNA编辑版本1(REPAIRv1)。
为了验证荧光素酶活性的恢复是由于真正的编辑事件引起的,我们直接通过逆转录和靶向下一代测序测量了经过REPAIRv1的Cluc转录物的编辑。我们测试了靶位点周围30nt和50nt的间隔序列,发现两种指导物长度均导致了预期的A到I编辑,而50nt的间隔序列实现了更高的编辑百分比(图6D、图6E、图13C)。我们还观察到50nt的间隔序列在非靶向腺苷处的编辑倾向增加,这可能是由于双链体RNA的区增加(图6E、图13C)。
接下来,我们靶向了内源基因PPIB。我们设计了平铺PPIB的50nt的间隔序列,发现可以编辑PPIB转录物,编辑效率高达28%(图13D)。为了测试是否可以进一步优化REPAIR,我们修饰了dCas13b和ADAR2DD(E488Q)之间的接头(图13E、表6),发现接头选择适当地影响了荧光素酶活性恢复。
定义用于RNA编辑的序列参数
鉴于我们可以在测试位点实现精确的RNA编辑,我们想要表征针对转录组中任何RNA靶点进行系统编程的序列限制。序列限制可能是由于dCas13b靶向限制诸如PFS或者由于ADAR序列偏好引起的(26)。为了研究PFS对REPAIRv1的限制,我们设计了一个质粒文库,其在Cluc转录物的靶位点5'端携带一系列四个随机核苷酸(图7A)。我们靶向UAG或AAC基序内的中心腺苷,发现对于这两个基序,所有PFS都展示出可检测水平的RNA编辑,大多数PFS在靶位点处的编辑率均超过50%(图7B)。接下来,我们试图确定REPAIRv1中的ADAR2DD是否具有紧密侧接靶碱基的任何序列限制,如先前关于ADAR2DD所报道的(26)。我们测试了靶腺苷周围的5'和3'侧接核苷酸的每种可能组合(图7C),发现REPAIRv1能够编辑所有基序(图7D)。最后,我们分析了间隔序列中与靶标A相对的碱基的身份是否影响编辑效率,发现A-C错配的荧光素酶恢复率最高,而A-G、A-U和A-A的REPAIRv1活性大大降低(图13F)。
使用REPAIRv1校正与疾病相关的人类突变
为了证明REPAIRv1系统在哺乳动物细胞中进行RNA编辑的广泛适用性,我们针对两种与疾病相关的突变设计了REPAIRv1指导物:X联锁肾原性尿崩症中的878G>A(AVPR2W293X)和Fanconi贫血中的1517G>A(FANCC W506X)。我们将携带这些突变的基因的cDNA的表达构建体转染到HEK293FT细胞中,并测试了REPAIRv1是否可以校正这些突变。使用包含50nt的间隔序列的向导RNA,我们能够实现35%的AVPR2校正和23%的FANCC校正(图8A-D)。然后,我们测试了REPAIRv1校正34种与疾病相关的G>A突变的能力(表7),发现我们能够在33个位点实现重要编辑,编辑效率高达28%(图8E)。我们选择的突变仅是ClinVar数据库中致病性G到A突变(5,739个)的一部分,其中还包括另外11,943个G到A变异(图8F和图14)。因为没有序列限制,所以REPAIRv1能够潜在地编辑所有这些与疾病相关的突变,特别是鉴于我们观察到了重要编辑,而与靶基序无关(图7C和图8G)。
向患病细胞递送REPAIRv1系统是治疗用途的前提,因此,我们寻求设计出可以包装到治疗相关病毒载体诸如腺相关病毒(AAV)载体中的REPAIRv1构建体。AAV载体的包装限制为4.7kb,无法容纳大尺寸的dCas13b-ADARDD(4473bp)以及启动子和表达调控元件。为了减小尺寸,我们测试了与ADAR2DD(E488Q)融合的dCas13的各种N端和C端截短物的RNA编辑活性。我们发现测试的所有C端截短物仍具有功能并能够恢复荧光素酶信号(图15),最大的截短物C端Δ984-1090(融合蛋白的总尺寸为4,152bp)足够小,在AAV载体的包装限制内。
REPAIRv1的全转录组特异性。
尽管利用PspCas13b进行RNA敲低具有高度特异性,但在我们的荧光素酶平铺实验中,我们在指导物:靶标双链体内观察到了脱靶腺苷编辑(图6E)。为了查看这是否是普遍现象,我们平铺了内源转录物KRAS,并测量了靶腺苷附近的脱靶编辑程度(图9A)。我们发现,对于KRAS,尽管在靶编辑率为23%,但靶位点周围有许多位点也具有可检测的A到G编辑(图9B)。
由于在指导物:靶标双链体内观察到了脱靶编辑,我们通过对所有mRNA进行RNA测序评估了所有可能的转录组脱靶。RNA测序显示,存在大量A到G脱靶事件,其中在靶向条件下有1,732个脱靶,在非靶向条件下有925个脱靶,有828个脱靶重叠(图9C、图9D)。在整个转录组的所有编辑位点中,在靶编辑位点的编辑率最高,其中A到G转化率为89%。
鉴于Cas13靶向的高度特异性,我们认为脱靶可能源自ADAR。先前已经描述了两种RNA引导的ADAR系统(图16A)。第一种利用ADAR2DD与小病毒蛋白lambda N
Figure BDA0002313867470003081
的融合物,该蛋白与
Figure BDA0002313867470003082
RNA发夹结合(22)。具有双
Figure BDA0002313867470003083
发夹的向导RNA指导ADAR2DD编辑在向导RNA中编码的位点(23)。第二种设计利用全长ADAR2(ADAR2)和具有发夹的向导RNA,ADAR2的双链RNA结合结构域(dsRBD)识别该发夹(21,24)。我们分析了这两种系统相较于REPAIRv1的编辑效率,发现BoxB-ADAR2和ADAR2系统分别显示出63%和36%的编辑率,而REPAIRv1达到了89%的编辑率(图16B-E)。另外,与REPAIRv1靶向指导物条件下的1,229个脱靶相比,在靶向指导物条件下分别在BoxB和ADAR2系统中观察到了2018个和174个脱靶。值得注意的是,两种基于ADAR2DD的系统(REPAIRv1和BoxB)在所有条件下都显示出高百分比的脱靶重叠,而ADAR2系统却有截然不同的脱靶(图16F)。靶向条件和非靶向条件之间以及REPAIRv1和BoxB条件之间的脱靶重叠表明,ADAR2DD会驱使脱靶,而与dCas13靶向无关(图16F)。
通过合理的蛋白质工程提高REPAIRv1的特异性
为了提高REPAIR的特异性,我们采用了ADAR2DD(E488Q)的结构指导的蛋白质工程。由于脱靶具有与指导物无关的性质,我们假设破坏ADAR2DD(E488Q)-RNA结合的稳定性会选择性地降低脱靶编辑,但由于dCas13b将ADAR2DD(E488Q)与靶位点结合增加了局部浓度,因此会维持在靶编辑。我们对先前确定与ADAR2DD(E488Q)背景上的靶RNA的双链体区接触的ADAR2DD(E488Q)残基(图10A)(18)进行了诱变。为了评估效率和特异性,我们假设在检测到的非靶向条件下的背景荧光素酶恢复将指示较宽的脱靶活性,利用靶向和非靶向指导物测试了17个单突变体。我们发现,选定残基处的突变对靶向和非靶向指导物的荧光素酶活性具有显著影响(图10A、图10B、图17A)。大多数突变体要么显著提高了靶向指导物的荧光素酶活性,要么增加了靶向与非靶向指导物活性之比(我们将其称为特异性得分)(图10A、图10B)。我们选择了这些突变体的一个子集(图10B)用于通过下一代测序进行全转录组特异性分析。如预期的那样,从全转录组测序中测得的脱靶与突变体的特异性得分相关(图17B)。我们发现,除ADAR2DD(E488Q/R455E)外,所有测序的REPAIRv1突变体均可以有效编辑报告转录物(图10C),许多突变体显示出脱靶数量减少(图17C和图18)。我们进一步探索了特异性突变体的脱靶的周围基序,发现REPAIRv1和大多数工程化突变体对其编辑表现出强烈的3'G偏好,与被表征的ADAR2基序一致(图19A)(26)。我们选择了突变体ADAR2DD(E488Q/T375G)进行后续实验,因为该突变体在全转录组脱靶数量最低的四个突变体中编辑百分比最高,将其称为REPAIRv2。与REPAIRv1相比,REPAIRv2表现出更高的特异性,转录组脱靶从1732个减少到10个(图10D)。在Cluc中靶腺苷周围的区中,REPAIRv2减少了脱靶编辑,这在测序记录中可见(图10E)。在来源于下一代测序的基序中,REPAIRv1表现出对3'G的强烈偏好,但对所有基序均显示出脱靶编辑(图19B);相比之下,REPAIRv2仅编辑最强的脱靶基序(图19C)。转录物上的编辑分布严重偏斜,高度编辑的基因具有60多个编辑(图20A、图20B),而REPAIRv2多次仅编辑一个转录物(EEF1A1)(图20D-F)。预测REPAIRv1脱靶编辑会导致多种变异,包括1000个错义突变(图20C)和93个致癌事件(图20D)。相比之下,REPAIRv2仅具有6个错义突变(图20E),没有一个有致癌后果(图20F)。预测的脱靶效应的这种降低将REPAIRv2与其他RNA编辑方法区分开来。
我们将REPAIRv2靶向内源基因,以测试特异性增强的突变是否能减少靶转录物附近的编辑,同时保持高效的在靶编辑。对于靶向KRAS或PPIB的指导物,我们发现,REPAIRv2没有可检测的脱靶编辑,这与REPAIRv1不同,并且可以分别以27.1%和13%的效率有效地编辑在靶腺苷(图10F、图10G)。这种特异性扩展到其他靶位点,包括在REPAIRv1的非靶向条件下显示出高水平背景的区,诸如其他KRAS或PPIB靶位点(图21)。总体而言,REPAIRv2消除了双链体区中编辑后的腺苷周围的脱靶现象,并显示出显著增强的全转录组特异性。
结论
我们在这里表明,RNA引导的RNA靶向VI-B型效应物Cas13b能够高效且高特异性地敲低RNA,为改进用于探询必要基因和非编码RNA的工具提供了基础,以及可以在转录组学水平控制细胞过程。无催化活性的Cas13b(dCas13b)保留了可编程RNA结合能力,在这里我们通过将dCas13b与腺苷脱氨酶ADAR2融合以实现精确的A到I编辑(我们称为REPAIRv1(可编程的腺嘌呤到肌苷置换的RNA编辑版本1)的系统)来利用这种结合能力。对该系统进行进一步工程化产生了REPAIRv2,这种方法相对于当前的编辑平台具有相当的或增加的活性,并且具有显著提高的特异性。
尽管Cas13b表现出高保真性,但我们对dCas13b-ADAR2DD融合物的初步研究结果显示有数千个脱靶。为了解决这个问题,我们采用了一种合理的诱变策略来改变与RNA双链体接触的ADAR2DD残基,从而鉴定出一个变体ADAR2DD(E488Q/T375G),其在与dCas13b融合时能够进行精确、有效和高度特异性的编辑。利用此变体的编辑效率可与利用两个当前可用的系统BoxB-ADARDD或ADAR2编辑相当或比其更好。此外,REPAIRv2系统在整个转录组中仅形成了10个可观察到的脱靶,比两种替代编辑技术好至少一个数量级。
与其他核酸编辑工具相比,REPAIR系统具有许多优势。首先,可以通过将胞嘧啶置于所需的腺苷对面的指导物延伸区中,以产生对ADAR编辑活性而言理想的有利A-C错配,从而在指导物中编码精确的靶位点。其次,Cas13没有靶向序列限制诸如PFS或PAM,并且在靶腺苷周围没有基序偏好,因此转录组中的任何腺苷都可能被REPAIR系统靶向。但是,我们确实注意到,DNA碱基编辑器可以靶向有义链或反义链,而REPAIR系统仅限于转录序列,从而限制了我们可以靶向的可能编辑位点的总数。但是,由于利用REPAIR靶向的灵活性更强,因此该系统相较于Cas9-DNA碱基编辑器可以在ClinVar内实现更多的编辑(图8C)。第三,REPAIR系统将靶腺苷直接脱氨为肌苷,并且不依赖于内源修复途径诸如碱基切除或错配修复来产生所需的编辑结果。因此,REPAIR在不能支持其他形式编辑的非分裂细胞中应该是可能的。第四,RNA编辑可以是瞬时的,从而有可能暂时控制编辑结果。这种特性可能对治疗由细胞状态的暂时变化引起的疾病诸如局部炎症有用。
REPAIR系统为附加工程提供了多种机会。Cas13b具有前crRNA加工活性(13),可对多种变异进行多重编辑,仅仅如此可能不会改变疾病风险,但一起可能具有累加效应和改变疾病的潜力。扩展我们合理的设计方法诸如结合有前景的突变可以进一步提高系统的特异性和效率,而无偏倚的筛选方法可以鉴定其他残基以改善REPAIR活性和特异性。
当前,REPAIR可实现的碱基转化仅限于由腺苷生成肌苷;dCas13与其他催化RNA编辑结构域诸如APOBEC的其他融合体可以实现胞苷到尿苷编辑。另外,ADAR的诱变作用可以放宽底物对靶胞苷的偏好,从而使C->U编辑器可以利用双链体RNA底物要求来赋予增强的特异性。通过形成DNA-RNA异源双链体靶标(27)或诱变ADAR结构域,利用无催化活性的DNA靶向CRISPR效应物例如dCas9或dCpf1,也可以在DNA底物上进行腺苷到肌苷编辑。
REPAIR可用于其中A到I(A到G)编辑可以逆转或减慢疾病进展的一系列治疗适应症(图22)。首先,在与疾病相关的组织中表达REPAIR以靶向病因性孟德尔G到A突变可用于恢复有害突变并治疗疾病。例如,在脑组织中通过AAV稳定表达REPAIR可用于校正引起局灶性癫痫的GRIN2A错义突变c.2191G>A(Asp731Asn)(28)或引起早发性阿尔茨海默病的APP错义突变c.2149G>A(Val717Ile)(29)。其次,REPAIR可用于通过修饰参与疾病相关信号转导的蛋白质的功能来治疗疾病。例如,REPAIR编辑将允许重新编码作为激酶靶标的一些丝氨酸、苏氨酸和酪氨酸残基(图22)。与疾病相关的蛋白质中这些残基的磷酸化会影响许多疾病的进展,包括阿尔茨海默病和多种神经退行性病症(30)。第三,REPAIR可用于改变表达的风险修饰的G到A变体的序列,以抢先降低患者进入疾病状态的机会。最有趣的案例是“保护性”风险修饰的等位基因,它显著降低了进入疾病状态的机会,在某些情况下,还可以带来其他健康益处。例如,REPAIR可用于在功能上模拟分别预防心血管疾病和银屑病关节炎的PCSK9和IFIH1的A到G等位基因(31)。最后,REPAIR可用于治疗性修饰外显子调节疗法的剪接受体和供体位点。REPAIR可以将AU变为IU或将AA变为AI,这分别相当于共有5'剪接供体或3'剪接受体位点的功能,从而形成新的剪接点。另外,REPAIR编辑可以将共有3'剪接受体位点从AG突变为IG,以促进相邻下游外显子的跳跃,这种治疗策略在治疗DMD中引起了广泛关注。剪接位点的调节在反义寡核苷酸已取得一定成功的疾病中可能具有广泛的应用,诸如调节SMN2剪接以治疗脊髓性肌肉萎缩(32)。
我们证实了PspCas13b酶既可用作RNA敲低工具,又可用作RNA编辑工具。用于可编程RNA结合的dCas13b平台有许多应用,包括实时转录成像、剪接修饰、转录物的靶向定位、RNA结合蛋白的下拉以及表观转录组修饰。这里,我们使用dCas13产生REPAIR,为现有的成套核酸编辑技术注入了新的力量。REPAIR提供了一种用于治疗遗传疾病或模拟保护等位基因的新方法,并将RNA编辑确立为修饰遗传功能的有用工具。
表4 本研究中使用的Cas13直系同源物
Figure BDA0002313867470003131
Figure BDA0002313867470003141
表5 细菌筛选中的PFS临界值
Figure BDA0002313867470003142
Figure BDA0002313867470003151
表6 本研究中用于在哺乳动物细胞中进行RNA编辑的dCas13b-ADAR接头序列。
Figure BDA0002313867470003152
Figure BDA0002313867470003161
表7 与疾病相关的突变的疾病信息
Figure BDA0002313867470003171
Figure BDA0002313867470003181
表8:本研究中使用的关键质粒
Figure BDA0002313867470003182
表9:本研究中用于在哺乳动物细胞中进行敲低的指导/shRNA序列
Figure BDA0002313867470003191
Figure BDA0002313867470003211
表10:用于Gluc敲低的指导序列
Figure BDA0002313867470003212
Figure BDA0002313867470003221
Figure BDA0002313867470003231
Figure BDA0002313867470003241
Figure BDA0002313867470003251
Figure BDA0002313867470003261
Figure BDA0002313867470003271
Figure BDA0002313867470003281
表11:用于Cluc敲低的指导序列
Figure BDA0002313867470003282
Figure BDA0002313867470003291
Figure BDA0002313867470003301
表12:本研究中用于在哺乳动物细胞中进行RNA编辑的指导序列。错配碱基翻转被大写
Figure BDA0002313867470003311
Figure BDA0002313867470003321
Figure BDA0002313867470003351
Figure BDA0002313867470003361
Figure BDA0002313867470003371
Figure BDA0002313867470003391
Figure BDA0002313867470003401
Figure BDA0002313867470003411
参考文献
1.P.D.Hsu,E.S.Lander,F.Zhang,Development and applications of CRISPR-Cas9 for genome engineering.Cell 157,1262-1278(2014).
2.A.C.Komor,A.H.Badran,D.R.Liu,CRISPR-Based Technologies for theManipulation of Eukaryotic Genomes.Cell 168,20-36(2017).
3.L.Cong et al.,Multiplex genome engineering using CRISPR/Cassystems.Science 339,819-823(2013).
4.P.Mali et al.,RNA-guided human genome engineering via Cas9.Science339,823-826(2013).
5.B.Zetsche et al.,Cpf1 is a single RNA-guided endonuclease of aclass 2 CRISPR-Cas system.Cell 163,759-771(2015).
6.H.Kim,J.S.Kim,A guide to genome engineering with programmablenucleases.Nat Rev Genet 15,321-334(2014).
7.A.C.Komor,Y.B.Kim,M.S.Packer,J.A.Zuris,D.R.Liu,Programmable editingof a target base in genomic DNA without double-stranded DNA cleavage.Nature533,420-424(2016).
8.K.Nishida et al.,Targeted nucleotide editing using hybridprokaryotic and vertebrate adaptive immune systems.Science 353,(2016).
9.Y.B.Kim et al.,Increasing the genome-targeting scope and precisionof base editing with engineered Cas9-cytidine deaminase fusions.NatBiotechnol 35,371-376(2017).
10.O.O.Abudayyeh et al.,C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.Science 353,aaf5573(2016).
11.S.Shmakov et al.,Discovery and Functional Characterization ofDiverse Class 2 CRISPR-Cas Systems.Mol Cell 60,385-397(2015).
12.S.Shmakov et al.,Diversity and evolution of class 2 CRISPR-Cassystems.Nat Rev Microbiol 15,169-182(2017).
13.A.A.Smargon et al.,Casl3b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 andCsx28.Mol Cell 65,618-630 e617(2017).
14.J.S.Gootenberg et al.,Nucleic acid detection with CRISPR-Cas13a/C2c2.Science 356,438-442(2017).
15.O.O.Abudayyeh et al.,RNA targeting with CRISPR-Cas13a.Nature inpress,(2017).
16.K.Nishikura,Functions and regulation of RNA editing by ADARdeaminases.Annu Rev Biochem 79,321-349(2010).
17.B.L.Bass,H.Weintraub,An unwinding activity that covalentlymodifies its double-stranded RNA substrate.Cell 55,1089-1098(1988).
18.M.M.Matthews et al.,Structures of human ADAR2 bound to dsRNAreveal base-flipping mechanism and basis for site selectivity.Nat Struct MolBiol 23,426-433(2016).
19.A.Kuttan,B.L.Bass,Mechanistic insights into editing-sitespecificity of ADARs.Proc Natl Acad Sci USA 109,E3295-3304(2012).
20.S.K.Wong,S.Sato,D.W.Lazinski,Substrate recognition by ADAR1 andADAR2.RNA 7,846-858(2001).
21.M.Fukuda et al.,Construction of a guide-RNA for site-directed RNAmutagenesis utilising intracellular A-to-I RNA editing.Sci Rep 7,41478(2017).
22.M.F.Montiel-Gonzalez,I.Vallecillo-Viejo,G.A.Yudowski,J.J.Rosenthal,Correction of mutations within the cystic fibrosistransmembrane conductance regulator by site-directed RNA editing.Proc NatlAcad Sci USA 110,18285-18290(2013).
23.M.F.Montiel-Gonzalez,I.C.Vallecillo-Viejo,J.J.Rosenthal,Anefficient system for selectively altering genetic information withinmRNAs.Nucleic Acids Res 44,e157(2016).
24.J.Wettengel,P.Reautschnig,S.Geisler,P.J.Kahle,T.Stafforst,Harnessing human ADAR2 for RNA repair-Recoding a PINK1 mutation rescuesmitophagy.Nucleic Acids Res 45,2797-2808(2017).
25.Y.Wang,J.Havel,P.A.Beal,A Phenotypic Screen for Functional Mutantsof Human Adenosine Deaminase Acting on RNA 1.ACS Chem Biol 10,2512-2519(2015).
26.K.A.Lehmann,B.L.Bass,Double-stranded RNA adenosine deaminasesADAR1 and ADAR2 have overlapping specificities.Biochemistry 39,12875-12884(2000).
27.Y.Zheng,C.Lorenzo,P.A.Beal,DNA editing in DNA/RNA hybrids byadenosine deaminases that act on RNA.Nucleic Acids Res 45,3369-3377(2017).
28.K.Gao et al.,A de novo loss-of-function GRIN2A mutation associatedwith childhood focal epilepsy and acquired epileptic aphasia.PLoS One 12,e0170818(2017).
29.H.M.Lanoiselee et al.,APP,PSEN1,and PSEN2 mutations in early-onsetAlzheimer disease:A genetic screening study of familial and sporadiccases.PLoS Med 14,e1002270(2017).
30.C.Ballatore,V.M.Lee,J.Q.Trojanowski,Tau-mediated neurodegenerationin Alzheimer′s disease and related disorders.Nat Rev Neurosci 8,663-672(2007).
31.Y.Li et al.,Carriers of rare missense variants in IFIH1 areprotected from psoriasis.J Invest Dermatol 130,2768-2772(2010).
32.R.S.Finkel et al.,Treatment of infantile-onset spinal muscularatrophy with nusinersen:a phase 2,open-label,dose-escalation study.Lancet388,3017-3026(2016).
实施例4-其他VI-B型效应物
表13
Figure BDA0002313867470003431
Figure BDA0002313867470003441
Figure BDA0002313867470003451
Figure BDA0002313867470003471
Figure BDA0002313867470003481
Figure BDA0002313867470003491
Figure BDA0002313867470003501
Figure BDA0002313867470003511
Figure BDA0002313867470003531
Figure BDA0002313867470003541
Figure BDA0002313867470003551
Figure BDA0002313867470003571
Figure BDA0002313867470003581
Figure BDA0002313867470003591
Figure BDA0002313867470003601
Figure BDA0002313867470003611
Figure BDA0002313867470003621
Figure BDA0002313867470003631
表14
Figure BDA0002313867470003641
Figure BDA0002313867470003651
Figure BDA0002313867470003661
Figure BDA0002313867470003671
Figure BDA0002313867470003681
***
尽管已经在本文中示出和描述了本发明的优选实施方案,但是对于本领域技术人员显而易见的是,这些实施方案仅作为实例提供。在不背离本发明的情况下,本领域技术人员现在将想到许多变化、改变和代替形式。应当理解,本文所述的本发明的实施方案的各种替代方案可用于实践本发明。以下权利要求旨在限定本发明的范围并且从而覆盖在这些权利要求及其等同物范围内的方法和结构。

Claims (50)

1.一种修饰真核细胞、优选哺乳动物细胞中的目标靶基因座的方法,所述方法包括将包含任选地与一个或多个定位信号融合的Cas13b效应蛋白以及一种或多种核酸组分的非天然存在的或工程化的组合物递送到所述基因座,其中至少所述一种或多种核酸组分被工程化,所述一种或多种核酸组分将所述复合物指导至所述目标靶标,并且所述效应蛋白与所述一种或多种核酸组分形成复合物,并且所述复合物与所述目标靶基因座结合。
2.一种非天然存在的或工程化的组合物,其包含任选地与一个或多个定位信号融合的Cas13b效应蛋白以及一种或多种核酸组分,其中至少所述一种或多种核酸组分被工程化以用于修饰真核细胞中的目标靶基因座,所述一种或多种核酸组分将所述复合物指导至所述目标靶标,并且所述效应蛋白与所述一种或多种核酸组分形成复合物,并且所述复合物与所述目标靶基因座结合。
3.一种非天然存在的或工程化的组合物的用途,所述非天然存在的或工程化的组合物包含任选地与一个或多个定位信号融合的Cas13b效应蛋白以及一种或多种核酸组分,其中至少所述一种或多种核酸组分被工程化以用于修饰真核细胞中的目标靶基因座,所述一种或多种核酸组分将所述复合物指导至所述目标靶标,并且所述效应蛋白与所述一种或多种核酸组分形成复合物,并且所述复合物与所述目标靶基因座结合。
4.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与选自卟啉单胞菌属、普雷沃菌属、拟杆菌属、里氏杆菌属、伯杰菌属、另枝菌属、香味菌属、二氧化碳噬纤维菌属和黄杆菌属的原核生物的野生型Cas13b效应蛋白具有至少80%的同源性或同一性。
5.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与选自口腔卟啉单胞菌、普雷沃菌属种、牙龈卟啉单胞菌、化脓拟杆菌、鸭疫里默氏杆菌、动物溃疡伯杰菌、中间普雷沃菌、颊普雷沃菌、另枝菌属种、桔红色普雷沃菌、类香味菌、犬咬二氧化碳噬纤维菌、嗜鳃黄杆菌和柱状黄杆菌的原核生物的野生型Cas13b效应蛋白具有至少80%的同源性或同一性。
6.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属种P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属种COT-052OH4946 Cas13b(登录号WP_039428968)、化脓拟杆菌Cas13b(登录号WP_034542281)、鸭疫里默氏杆菌Cas13b(登录号WP_004919755)、动物溃疡伯杰菌Cas13b(登录号WP_002664492)、中间普雷沃菌Cas13b(登录号WP_036860899)、颊普雷沃菌Cas13b(登录号WP_004343973)、牙龈卟啉单胞菌Cas13b(登录号WP_012458151)、另枝菌属种ZOR0009 Cas13b(登录号WP_047447901)、普雷沃菌属种MA2016 Cas13b(登录号WP_036929175)、桔红色普雷沃菌Cas13b(登录号WP_025000926)、类香味菌CCUG 10230Cas13b(登录号EHO06562)、中间普雷沃菌Cas13b(登录号WP_061868553)、犬咬二氧化碳噬纤维菌Cas13b(登录号WP_013997271)、嗜鳃黄杆菌Cas13b(登录号WP_014084666)、类香味菌Cas13b(登录号WP_058700060)、柱状黄杆菌Cas13b(登录号WP_065213424)和中间普雷沃菌Cas13b(登录号WP_050955369)的野生型Cas13b效应蛋白具有至少80%的同源性或同一性。
7.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)、普雷沃菌属种P5-125 Cas13b(登录号WP_044065294)、牙龈卟啉单胞菌Cas13b(登录号WP_053444417)、卟啉单胞菌属种COT-052OH4946 Cas13b(登录号WP_039428968)、化脓拟杆菌Cas13b(登录号WP_034542281)和鸭疫里默氏杆菌Cas13b(登录号WP_004919755)的野生型Cas13b效应蛋白具有至少80%的同源性。
8.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与选自口腔卟啉单胞菌Cas13b(登录号WP_039434803)和普雷沃菌属种P5-125 Cas13b(登录号WP_044065294)的野生型Cas13b效应蛋白具有至少80%的同源性。
9.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白是包含与由DKHXFGAFLNLARHN(SEQ ID NO:1)、GLLFFVSLFLDK(SEQ ID NO:2)、SKIXGFK(SEQ IDNO:3)、DMLNELXRCP(SEQ ID NO:4)、RXZDRFPYFALRYXD(SEQ ID NO:5)和LRFQVBLGXY(SEQ IDNO:6)组成的序列中的一个或多个具有至少70%序列同一性的序列的蛋白质。
10.如前述权利要求中任一项所述的方法、组合物或用途,其中所述目标靶基因座包括RNA。
11.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与至少一个定位信号融合,并且其中所述定位信号是核定位信号(NLS)或核输出信号(NES),优选NES。
12.如前述权利要求中任一项所述的方法、组合物或用途,其中对所述目标靶基因座的修饰包括链断裂。
13.如前述权利要求中任一项所述的方法、组合物或用途,其中针对在哺乳动物细胞中的表达对所述Cas13b效应蛋白进行密码子优化。
14.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与一个或多个功能结构域缔合;并且任选地所述效应蛋白含有任选地在HEPN结构域内一个或多个突变,诸如R116A、H121A、R1177A、H1182A(其中氨基酸位置对应于源自动物溃疡伯杰菌ATCC 43767的Cas13b蛋白的氨基酸位置),由此所述复合物可以递送表观遗传修饰物或者转录或翻译激活或阻遏信号。
15.如前述权利要求中任一项所述的方法、组合物或用途,其中所述功能结构域修饰所述靶基因座的转录或翻译。
16.如前述权利要求中任一项所述的方法、组合物或用途,其中所述目标靶基因座包含在细胞内的核酸分子中。
17.如前述权利要求中任一项所述的方法、组合物或用途,其中所述修饰是体内或离体的。
18.如前述权利要求中任一项所述的方法、组合物或用途,其中当与所述效应蛋白复合时,所述一种或多种核酸组分能够实现所述复合物与所述目标靶基因座的靶序列的序列特异性结合。
19.如前述权利要求中任一项所述的方法、组合物或用途,其中所述一种或多种核酸组分包含双正向重复序列。
20.如前述权利要求中任一项所述的方法、组合物或用途,其中所述效应蛋白和所述一种或多种核酸组分经由编码所述多肽和/或所述一种或多种核酸组分的一种或多种多核苷酸分子提供,并且其中所述一种或多种多核苷酸分子可操作地被构造成表达所述多肽和/或所述一种或多种核酸组分。
21.如权利要求20所述的方法、组合物或用途,其中所述一种或多种多核苷酸分子包含可操作地被构造成表达所述多肽和/或所述一种或多种核酸组分的一个或多个调控元件,任选地其中所述一个或多个调控元件包含一个或多个启动子或一个或多个诱导型启动子。
22.如权利要求20或21所述的方法、组合物或用途,其中所述一种或多种多核苷酸分子包含在一个或多个载体内。
23.如权利要求20或21所述的方法、组合物或用途,其中所述一种或多种多核苷酸分子包含在一个载体内。
24.如权利要求22或23所述的方法、组合物或用途,其中所述一个或多个载体包括病毒载体。
25.如权利要求24所述的方法、组合物或用途,其中所述一个或多个病毒载体包括一个或多个逆转录病毒载体、慢病毒载体、腺病毒载体、腺相关病毒载体或单纯疱疹病毒载体。
26.如权利要求20或21所述的方法、组合物或用途,其中所述一种或多种多核苷酸分子包含在递送系统中,或如权利要求22或23所述的方法、组合物或用途,其中所述一个或多个载体包含在递送系统中,或如前述权利要求中任一项所述的方法、组合物或用途,其中所组装的复合物包含在递送系统中。
27.如前述权利要求中任一项所述的方法、组合物或用途,其中所述非天然存在的或工程化的组合物经由包括一个或多个脂质体、一个或多个颗粒、一个或多个外泌体、一个或多个微泡、基因枪或者一个或多个病毒载体在内的递送媒介物来递送。
28.如前述权利要求中任一项所述的方法、组合物或用途,其中所述组合物包含增强Cas13b效应蛋白活性的辅助蛋白,优选csx28蛋白。
29.如前述权利要求中任一项所述的方法、组合物或用途,其中所述组合物包含阻遏Cas13b效应蛋白活性的辅助蛋白,优选csx27蛋白。
30.如前述权利要求中任一项所述的方法、组合物或用途,其中所述Cas13b效应蛋白与至少一个功能结构域连接;其中所述Cas13b效应蛋白包含在所述HEPN结构域中的一个或多个突变;并且其中所述Cas13b效应蛋白在其C端被截短,所述截短任选地选自对应于普雷沃菌属种P5-125 Cas13b蛋白的氨基酸位置的Δ1053-1090、Δ1026-1090、Δ984-1090、Δ934-1090、Δ884-1090、Δ834-1090、Δ784-1090和Δ734-1090。
31.一种哺乳动物细胞,所述哺乳动物细胞根据所述方法修饰,或被工程化为任选诱导性或组成性地包含或表达前述或后续权利要求中任一项所述的组合物或其组分。
32.根据权利要求31所述的哺乳动物细胞,其中所述修饰导致:
-所述细胞包括至少一种RNA产物的转录或翻译改变;
-所述细胞包括至少一种RNA产物的转录或翻译改变,其中所述至少一种产物的表达增加;或者
-所述细胞包括至少一种RNA产物的转录或翻译改变,其中所述至少一种产物的表达降低。
33.如权利要求1至30中任一项所要求保护或所提及的非天然存在的或工程化的组合物,其在真核细胞、优选哺乳动物细胞中体内或离体用于:
-RNA序列特异性干扰,
-RNA序列特异性基因调控,
-筛选RNA或RNA产物或lincRNA或非编码RNA,或核RNA或mRNA,
-诱变,
-荧光原位杂交,
-育种,
-体外或体内诱导细胞休眠,
-体外或体内诱导细胞周期停滞,
-体外或体内减少细胞生长和/或细胞增殖,
-体外或体内诱导细胞失能,
-体外或体内诱导细胞凋亡,
-体外或体内诱导细胞坏死,
-体外或体内诱导细胞死亡,或者
-体外或体内诱导程序性细胞死亡。
34.一种细胞系,所述细胞系是根据权利要求31或32所述的细胞或其子代的细胞系或者包含根据权利要求31或32所述的细胞或其子代。
35.一种真核生物、优选哺乳动物,其包含根据权利要求31或32所述的一种或多种细胞。
36.一种真核模型、优选哺乳动物模型,其包含根据权利要求31或32所述的一种或多种细胞;所述一种或多种细胞任选诱导性或组成性地表达如前述权利要求中任一项所述的组合物或其组分。
37.一种产物,其来自如权利要求31或32所述的细胞、或者如权利要求34或35所述的细胞系或生物、或者如权利要求36所述的哺乳动物模型;所述细胞系或所述哺乳动物模型的哺乳动物的所述一种或多种细胞任选诱导性或组成性地表达如前述权利要求中任一项所述的组合物或其组分。
38.一种测定、筛选方法或诱变方法,其包括如权利要求1至30中任一项所述的方法、组合物或用途。
39.一种基于RNA的测定、筛选方法或诱变方法,其中改进包括不使用RNA,所述方法包括使用如权利要求1至30中任一项所要求保护或所提及的非天然存在的或工程化的组合物,其中任选地所述基于RNA的测定、筛选方法或诱变方法是RNAi或荧光原位杂交方法。
40.一种用于调节目标真核靶基因座的翻译的方法,所述方法包括将如权利要求1至30中任一项所要求保护或所提及的非天然存在的或工程化的组合物递送到所述基因座,并且其中所述Cas13b效应蛋白与(异源)翻译调节子诸如翻译激活子或翻译阻遏子融合,并且任选地与一个或多个定位信号融合;其中至少所述一种或多种核酸组分被工程化,所述一种或多种核酸组分将所述复合物指导至所述目标靶标,并且所述效应蛋白与所述一种或多种核酸组分形成复合物,并且所述复合物与所述目标靶基因座结合,优选地其中所述异源结构域是EIF4,诸如EIF4E。
41.一种检测样品中的靶RNA的方法,其包括
(a)将所述样品与以下物质一起孵育:如权利要求1至30中任一项所要求保护或所提及的非天然存在的或工程化的组合物,以及能够被所述效应蛋白非特异性且可检测地裂解的基于RNA的裂解诱导型报告物,
(b)基于通过裂解所述基于RNA的裂解诱导型报告物产生的信号来检测所述靶RNA。
42.如权利要求41所述的方法,其中所述基于RNA的裂解诱导型报告物构建体包含荧光染料和猝灭剂。
43.如权利要求41或42所述的方法,其中所述靶RNA包括病原体RNA。
44.如权利要求43所述的方法,其中所述病原体包括病毒、细菌、真菌或寄生虫。
45.如权利要求41至44中任一项所述的方法,其包括被设计成检测靶RNA或RNA转录物的剪接变体中的单核苷酸多态性的向导RNA。
46.如权利要求41至45中任一项所述的方法,其中所述向导RNA包含与所述靶RNA错配的一个或多个核苷酸。
47.如权利要求41至46中任一项所述的方法,其中所述向导RNA与诊断疾病状态的靶分子结合。
48.如权利要求47所述的方法,其中所述疾病状态包括癌症。
49.如权利要求47所述的方法,其中所述疾病状态包括自身免疫疾病。
50.一种核糖核酸(RNA)检测系统,其包含
a)如权利要求1至30中任一项所要求保护或所提及的非天然存在的或工程化的组合物,以及
c)能够被所述效应蛋白非特异性且可检测地裂解的基于RNA的裂解诱导型报告物。
CN201880038907.3A 2017-04-12 2018-04-11 新型vi型crispr直系同源物和系统 Pending CN110799645A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762484791P 2017-04-12 2017-04-12
US62/484,791 2017-04-12
US201762561662P 2017-09-21 2017-09-21
US62/561,662 2017-09-21
US201762568129P 2017-10-04 2017-10-04
US62/568,129 2017-10-04
PCT/US2018/027125 WO2018191388A1 (en) 2017-04-12 2018-04-11 Novel type vi crispr orthologs and systems

Publications (1)

Publication Number Publication Date
CN110799645A true CN110799645A (zh) 2020-02-14

Family

ID=62196674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880038907.3A Pending CN110799645A (zh) 2017-04-12 2018-04-11 新型vi型crispr直系同源物和系统

Country Status (9)

Country Link
US (2) US11840711B2 (zh)
EP (1) EP3610009A1 (zh)
JP (2) JP2020516285A (zh)
KR (1) KR20200006054A (zh)
CN (1) CN110799645A (zh)
AU (1) AU2018251801A1 (zh)
BR (1) BR112019021378A2 (zh)
CA (1) CA3059757A1 (zh)
WO (1) WO2018191388A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328290A (zh) * 2017-06-26 2020-06-23 博德研究所 用于靶向核酸编辑的基于crispr/cas-腺嘌呤脱氨酶的组合物、系统和方法
CN111727247A (zh) * 2017-10-04 2020-09-29 博德研究所 用于靶向核酸编辑的系统、方法和组合物
CN112430586A (zh) * 2020-11-16 2021-03-02 珠海舒桐医疗科技有限公司 一种VI-B型CRISPR/Cas13基因编辑系统及其应用
WO2021169980A1 (en) * 2020-02-25 2021-09-02 Shanghaitech University Compositions and methods for detecting nucleic acid-protein interactions
CN113897359A (zh) * 2020-07-06 2022-01-07 博雅辑因(北京)生物科技有限公司 一种改善的rna编辑方法
WO2022253351A1 (zh) * 2021-06-04 2022-12-08 中国科学院脑科学与智能技术卓越创新中心 新型Cas13蛋白及其筛选方法和应用
CN116083398A (zh) * 2021-11-05 2023-05-09 广州瑞风生物科技有限公司 分离的Cas13蛋白及其应用
CN116590257A (zh) * 2020-02-28 2023-08-15 辉大(上海)生物科技有限公司 VI-E型和VI-F型CRISPR-Cas系统及其用途
CN117126925A (zh) * 2023-08-07 2023-11-28 中科枢密生物技术(武汉)有限公司 一种能够长期稳定保存的Crispr-Cas核酸检测试剂盒

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2841572B1 (en) 2012-04-27 2019-06-19 Duke University Genetic correction of mutated genes
US10676726B2 (en) 2015-02-09 2020-06-09 Duke University Compositions and methods for epigenome editing
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
SG11201900907YA (en) 2016-08-03 2019-02-27 Harvard College Adenosine nucleobase editors and uses thereof
EP3497214B1 (en) 2016-08-09 2023-06-28 President and Fellows of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CA3039928A1 (en) 2016-10-14 2018-04-19 President And Fellows Of Harvard College Aav delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
IL306092A (en) 2017-03-23 2023-11-01 Harvard College Nucleic base editors that include nucleic acid programmable DNA binding proteins
US11840711B2 (en) 2017-04-12 2023-12-12 The Broad Institute, Inc. Type VI CRISPR orthologs and systems
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
US20200332272A1 (en) * 2017-10-23 2020-10-22 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
US20210130800A1 (en) * 2017-10-23 2021-05-06 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
WO2020006036A1 (en) 2018-06-26 2020-01-02 Massachusetts Institute Of Technology Crispr effector system based amplification methods, systems, and diagnostics
CN112639121A (zh) 2018-06-26 2021-04-09 博德研究所 基于crispr双切口酶的扩增组合物、系统和方法
WO2020124050A1 (en) 2018-12-13 2020-06-18 The Broad Institute, Inc. Tiled assays using crispr-cas based detection
KR20210110345A (ko) * 2018-12-31 2021-09-07 더 리서치 인스티튜트 앳 네이션와이드 칠드런스 하스피탈 RNA 표적화 CRISPR-Cas13b를 사용한 DUX4 RNA 침묵화
WO2020142739A1 (en) * 2019-01-04 2020-07-09 Mammoth Biosciences, Inc. COMPOSITIONS AND METHODS FOR DETECTING MODIFIED NUCLEIC ACIDS AND AMPLIFYING ssDNA
BR112021013173A2 (pt) * 2019-01-04 2021-09-28 The University Of Chicago Sistemas e métodos para modular rna
WO2020186231A2 (en) 2019-03-14 2020-09-17 The Broad Institute, Inc. Crispr effector system based multiplex diagnostics
US20220177863A1 (en) 2019-03-18 2022-06-09 The Broad Institute, Inc. Type vii crispr proteins and systems
AU2020242032A1 (en) 2019-03-19 2021-10-07 Massachusetts Institute Of Technology Methods and compositions for editing nucleotide sequences
WO2020210776A1 (en) * 2019-04-12 2020-10-15 Duke University Crispr/cas-based base editing composition for restoring dystrophin function
EP4004197A1 (en) * 2019-07-26 2022-06-01 Mammoth Biosciences, Inc. Compositions for detection of dna and methods of use thereof
US20220313799A1 (en) * 2019-08-29 2022-10-06 Beam Therapeutics Inc. Compositions and methods for editing a mutation to permit transcription or expression
US20220333208A1 (en) 2019-09-03 2022-10-20 The Broad Institute, Inc. Crispr effector system based multiplex cancer diagnostics
US11844800B2 (en) 2019-10-30 2023-12-19 Massachusetts Institute Of Technology Methods and compositions for predicting and preventing relapse of acute lymphoblastic leukemia
WO2021158999A1 (en) * 2020-02-05 2021-08-12 The Broad Institute, Inc. Gene editing methods for treating spinal muscular atrophy
EP3875602A1 (en) * 2020-03-05 2021-09-08 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Nucleic acid fluorescence detection
KR20230019843A (ko) 2020-05-08 2023-02-09 더 브로드 인스티튜트, 인코퍼레이티드 표적 이중 가닥 뉴클레오티드 서열의 두 가닥의 동시 편집을 위한 방법 및 조성물
US20230212571A1 (en) * 2020-06-08 2023-07-06 Neonc Technologies, Inc. Compositions and methods for delivering polynucleotides
EP4267252A1 (en) * 2020-12-23 2023-11-01 Mammoth Biosciences, Inc. Compositions and methods of using programmable nucleases for inducing cell death
IL308806A (en) 2021-06-01 2024-01-01 Arbor Biotechnologies Inc Gene editing systems including nuclease crisper and their uses
EP4141112A4 (en) * 2021-07-08 2024-01-17 Korea Advanced Inst Sci & Tech METHOD FOR MODULATING OR EDITING RNA EXPRESSION BY REGULATING THE CAS13 PROTEIN
US11814689B2 (en) 2021-07-21 2023-11-14 Montana State University Nucleic acid detection using type III CRISPR complex
WO2023215761A1 (en) * 2022-05-03 2023-11-09 Tacit Therapeutics, Inc. Localization of trans-splicing nucleic acid molecules to and within the cellular nucleus
CN114634972B (zh) * 2022-05-19 2022-08-26 舜丰生物科技(海南)有限公司 利用Cas酶进行核酸检测的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899657A (zh) * 2013-12-12 2016-08-24 布罗德研究所有限公司 用于改变基因产物表达的crispr-cas系统和方法、结构信息以及诱导型模块化cas酶
CN106029880A (zh) * 2013-12-12 2016-10-12 布罗德研究所有限公司 核苷酸重复障碍中CRISPR-Cas系统的组合物和使用方法
CN109153980A (zh) * 2015-10-22 2019-01-04 布罗德研究所有限公司 Vi-b型crispr酶和系统

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US101A (en) 1836-12-06 Method of jcakibtg and furling iw sails fob ships
US61836A (en) 1867-02-05 Thomas jose
US4946787A (en) 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5049386A (en) 1985-01-07 1991-09-17 Syntex (U.S.A.) Inc. N-ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)Alk-1-YL-N,N,N-tetrasubstituted ammonium lipids and uses therefor
DE3751873T2 (de) 1986-04-09 1997-02-13 Genzyme Corp Genetisch transformierte Tiere, die ein gewünschtes Protein in Milch absondern
US4873316A (en) 1987-06-23 1989-10-10 Biogen, Inc. Isolation of exogenous recombinant proteins from the milk of transgenic mammals
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
WO1991017424A1 (en) 1990-05-03 1991-11-14 Vical, Inc. Intracellular delivery of biologically active substances by means of self-assembling lipid complexes
GB9114259D0 (en) 1991-07-02 1991-08-21 Ici Plc Plant derived enzyme and dna sequences
HUT70467A (en) 1992-07-27 1995-10-30 Pioneer Hi Bred Int An improved method of agrobactenium-mediated transformation of cultvred soyhean cells
US5593972A (en) 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
US5789156A (en) 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5814618A (en) 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US5543158A (en) 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
US6007845A (en) 1994-07-22 1999-12-28 Massachusetts Institute Of Technology Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers
WO1996039154A1 (en) 1995-06-06 1996-12-12 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5985662A (en) 1995-07-13 1999-11-16 Isis Pharmaceuticals Inc. Antisense inhibition of hepatitis B virus replication
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US5985309A (en) 1996-05-24 1999-11-16 Massachusetts Institute Of Technology Preparation of particles for inhalation
US5846946A (en) 1996-06-14 1998-12-08 Pasteur Merieux Serums Et Vaccins Compositions and methods for administering Borrelia DNA
GB9907461D0 (en) 1999-03-31 1999-05-26 King S College London Neurite regeneration
GB9720465D0 (en) 1997-09-25 1997-11-26 Oxford Biomedica Ltd Dual-virus vectors
DE69836092T2 (de) 1997-10-24 2007-05-10 Invitrogen Corp., Carlsbad Rekombinatorisches klonieren unter verwendung von nukleinsaüren mit rekombinationsstellen
US6750059B1 (en) 1998-07-16 2004-06-15 Whatman, Inc. Archiving of vectors
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7868149B2 (en) 1999-07-20 2011-01-11 Monsanto Technology Llc Plant genome sequence and uses thereof
US6603061B1 (en) 1999-07-29 2003-08-05 Monsanto Company Agrobacterium-mediated plant transformation method
GB0024550D0 (zh) 2000-10-06 2000-11-22 Oxford Biomedica Ltd
US7776321B2 (en) 2001-09-26 2010-08-17 Mayo Foundation For Medical Education And Research Mutable vaccines
GB0125216D0 (en) 2001-10-19 2001-12-12 Univ Strathclyde Dendrimers for use in targeted delivery
US20090100536A1 (en) 2001-12-04 2009-04-16 Monsanto Company Transgenic plants with enhanced agronomic traits
EP1458879A2 (en) 2001-12-21 2004-09-22 Oxford Biomedica (UK) Limited Method for producing a transgenic organism using a lentiviral expression vector such as eiav
DE60334618D1 (de) 2002-06-28 2010-12-02 Protiva Biotherapeutics Inc Verfahren und vorrichtung zur herstellung von liposomen
US20040058886A1 (en) 2002-08-08 2004-03-25 Dharmacon, Inc. Short interfering RNAs having a hairpin structure containing a non-nucleotide loop
GB0220467D0 (en) 2002-09-03 2002-10-09 Oxford Biomedica Ltd Composition
EP1558724A4 (en) 2002-11-01 2006-08-02 New England Biolabs Inc ORGANIC RNA SCREENING AND ITS USE IN INTERRUPTING GENE TRANSMISSION IN THE ENVIRONMENT
EP1648519B1 (en) 2003-07-16 2014-10-08 Protiva Biotherapeutics Inc. Lipid encapsulated interfering rna
US7803397B2 (en) 2003-09-15 2010-09-28 Protiva Biotherapeutics, Inc. Polyethyleneglycol-modified lipid compounds and uses thereof
GB0325379D0 (en) 2003-10-30 2003-12-03 Oxford Biomedica Ltd Vectors
ATE536418T1 (de) 2004-06-07 2011-12-15 Protiva Biotherapeutics Inc Lipidverkapselte interferenz-rna
WO2005120152A2 (en) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use
BRPI0513390A (pt) 2004-07-16 2008-05-06 Us Gov Health & Human Serv vacinas contra aids contendo construções de ácido nucléico cmv/r
GB0422877D0 (en) 2004-10-14 2004-11-17 Univ Glasgow Bioactive polymers
US7838658B2 (en) 2005-10-20 2010-11-23 Ian Maclachlan siRNA silencing of filovirus gene expression
WO2007049731A1 (ja) 2005-10-28 2007-05-03 Mitsubishi Tanabe Pharma Corporation 新規細胞膜透過ペプチド
US8101741B2 (en) 2005-11-02 2012-01-24 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
GB0526211D0 (en) 2005-12-22 2006-02-01 Oxford Biomedica Ltd Viral vectors
US7915399B2 (en) 2006-06-09 2011-03-29 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
JP2008078613A (ja) 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
WO2008042156A1 (en) 2006-09-28 2008-04-10 Northwestern University Maximizing oligonucleotide loading on gold nanoparticle
CA2670096A1 (en) 2006-11-21 2008-05-29 The Samuel Roberts Noble Foundation, Inc. Biofuel production methods and compositions
WO2008149176A1 (en) 2007-06-06 2008-12-11 Cellectis Meganuclease variants cleaving a dna target sequence from the mouse rosa26 locus and uses thereof
CA2711179A1 (en) 2007-12-31 2009-07-16 Nanocor Therapeutics, Inc. Rna interference for the treatment of heart failure
HUE034483T2 (en) 2008-04-15 2018-02-28 Protiva Biotherapeutics Inc New lipid preparations for introducing a nucleic acid
JP2011523557A (ja) 2008-06-04 2011-08-18 メディカル リサーチ カウンシル ペプチド
JP2011526619A (ja) 2008-06-30 2011-10-13 サイレンシード リミテッド 局所ドラッグデリバリーシステム、その方法、および、その組成物
WO2010004594A1 (en) 2008-07-08 2010-01-14 S.I.F.I. Societa' Industria Farmaceutica Italiana S.P.A. Ophthalmic compositions for treating pathologies of the posterior segment of the eye
JP6087504B2 (ja) 2008-11-07 2017-03-01 マサチューセッツ インスティテュート オブ テクノロジー アミノアルコールリピドイドおよびその使用
GB2465749B (en) 2008-11-25 2013-05-08 Algentech Sas Plant cell transformation method
WO2010096488A1 (en) 2009-02-17 2010-08-26 The Regents Of The University Of California Method of reducing acetylation in plants to improve biofuel production
EP2449106B1 (en) 2009-07-01 2015-04-08 Protiva Biotherapeutics Inc. Compositions and methods for silencing apolipoprotein b
IL292615B2 (en) 2009-07-01 2023-11-01 Protiva Biotherapeutics Inc Nucleic acid-lipid particles, preparations containing them and their uses
WO2011008730A2 (en) 2009-07-13 2011-01-20 Somagenics Inc. Chemical modification of small hairpin rnas for inhibition of gene expression
US8889394B2 (en) 2009-09-07 2014-11-18 Empire Technology Development Llc Multiple domain proteins
US20120003201A1 (en) 2010-04-21 2012-01-05 Nicholas Susanne B Vault agents for chronic kidney disease
KR101880536B1 (ko) 2010-04-26 2018-07-23 상가모 테라퓨틱스, 인코포레이티드 아연 핑거 뉴클레아제를 사용하는 로사 좌위의 게놈 편집
EP2569425B1 (en) 2010-05-10 2016-07-06 The Regents of The University of California Endoribonuclease compositions and methods of use thereof
US8372951B2 (en) 2010-05-14 2013-02-12 National Tsing Hua University Cell penetrating peptides for intracellular delivery
US20110293571A1 (en) 2010-05-28 2011-12-01 Oxford Biomedica (Uk) Ltd. Method for vector delivery
US9193827B2 (en) 2010-08-26 2015-11-24 Massachusetts Institute Of Technology Poly(beta-amino alcohols), their preparation, and uses thereof
US9238716B2 (en) 2011-03-28 2016-01-19 Massachusetts Institute Of Technology Conjugated lipomers and uses thereof
JP2014511687A (ja) 2011-03-31 2014-05-19 モデルナ セラピューティクス インコーポレイテッド 工学操作された核酸の送達および製剤
US20120295960A1 (en) 2011-05-20 2012-11-22 Oxford Biomedica (Uk) Ltd. Treatment regimen for parkinson's disease
LT2791160T (lt) 2011-12-16 2022-06-10 Modernatx, Inc. Modifikuotos mrnr sudėtys
US20130185823A1 (en) 2012-01-16 2013-07-18 Academia Sinica Mesoporous silica nanoparticle-mediated delivery of dna into arabidopsis root
EP2877213B1 (en) 2012-07-25 2020-12-02 The Broad Institute, Inc. Inducible dna binding proteins and genome perturbation tools and applications thereof
US8614194B1 (en) 2012-07-25 2013-12-24 Kaohsiung Medical University Anionic cell penetrating peptide and its use for intracellular delivery
KR20150105634A (ko) 2012-12-12 2015-09-17 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작을 위한 개선된 시스템, 방법 및 효소 조성물의 유전자 조작 및 최적화
EP2940140B1 (en) 2012-12-12 2019-03-27 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
EP3825401A1 (en) 2012-12-12 2021-05-26 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
IL239317B (en) 2012-12-12 2022-07-01 Broad Inst Inc Providing, engineering and optimizing systems, methods and compositions for sequence manipulation and therapeutic applications
PL2931898T3 (pl) 2012-12-12 2016-09-30 Le Cong Projektowanie i optymalizacja systemów, sposoby i kompozycje do manipulacji sekwencją z domenami funkcjonalnymi
PT2784162E (pt) 2012-12-12 2015-08-27 Broad Inst Inc Engenharia de sistemas, métodos e composições guia otimizadas para a manipulação de sequências
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
WO2014093709A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
CN113425857A (zh) 2013-06-17 2021-09-24 布罗德研究所有限公司 用于肝靶向和治疗的crispr-cas系统、载体和组合物的递送与用途
EP3011035B1 (en) 2013-06-17 2020-05-13 The Broad Institute, Inc. Assay for quantitative evaluation of target site cleavage by one or more crispr-cas guide sequences
KR20160044457A (ko) 2013-06-17 2016-04-25 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작을 위한 탠덤 안내 시스템, 방법 및 조성물의 전달, 조작 및 최적화
EP3597755A1 (en) 2013-06-17 2020-01-22 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
CN105492611A (zh) 2013-06-17 2016-04-13 布罗德研究所有限公司 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物
EP3620524A1 (en) 2013-06-17 2020-03-11 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
SG10201804977UA (en) 2013-12-12 2018-07-30 Broad Inst Inc Delivery, Use and Therapeutic Applications of the Crispr-Cas Systems and Compositions for Targeting Disorders and Diseases Using Particle Delivery Components
EP3149168B1 (en) 2014-05-27 2021-09-22 The Broad Institute, Inc. High-throughput assembly of genetic elements
WO2016186745A1 (en) 2015-05-15 2016-11-24 Ge Healthcare Dharmacon, Inc. Synthetic single guide rna for cas9-mediated gene editing
CA3028158A1 (en) 2016-06-17 2017-12-21 The Broad Institute, Inc. Type vi crispr orthologs and systems
EP4361261A2 (en) * 2017-03-15 2024-05-01 The Broad Institute Inc. Novel cas13b orthologues crispr enzymes and systems
US11840711B2 (en) 2017-04-12 2023-12-12 The Broad Institute, Inc. Type VI CRISPR orthologs and systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899657A (zh) * 2013-12-12 2016-08-24 布罗德研究所有限公司 用于改变基因产物表达的crispr-cas系统和方法、结构信息以及诱导型模块化cas酶
CN106029880A (zh) * 2013-12-12 2016-10-12 布罗德研究所有限公司 核苷酸重复障碍中CRISPR-Cas系统的组合物和使用方法
CN109153980A (zh) * 2015-10-22 2019-01-04 布罗德研究所有限公司 Vi-b型crispr酶和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AARON A. SMARGON ET AL.: ""Cas13b Is a Type VI-B CRISPR-Associated RNA Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28"" *
DAVID A. NELLES ET AL.: "\"Programmable RNA Tracking in Live Cells with CRISPR/Cas9\"" *
RODOLPHE BARRANGOU ET AL.: ""Expanding the CRISPR Toolbox: Targeting RNA with Cas13b"" *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328290A (zh) * 2017-06-26 2020-06-23 博德研究所 用于靶向核酸编辑的基于crispr/cas-腺嘌呤脱氨酶的组合物、系统和方法
CN111727247A (zh) * 2017-10-04 2020-09-29 博德研究所 用于靶向核酸编辑的系统、方法和组合物
WO2021169980A1 (en) * 2020-02-25 2021-09-02 Shanghaitech University Compositions and methods for detecting nucleic acid-protein interactions
CN116590257A (zh) * 2020-02-28 2023-08-15 辉大(上海)生物科技有限公司 VI-E型和VI-F型CRISPR-Cas系统及其用途
CN116590257B (zh) * 2020-02-28 2024-04-30 辉大(上海)生物科技有限公司 VI-E型和VI-F型CRISPR-Cas系统及其用途
CN113897359A (zh) * 2020-07-06 2022-01-07 博雅辑因(北京)生物科技有限公司 一种改善的rna编辑方法
CN112430586A (zh) * 2020-11-16 2021-03-02 珠海舒桐医疗科技有限公司 一种VI-B型CRISPR/Cas13基因编辑系统及其应用
WO2022253351A1 (zh) * 2021-06-04 2022-12-08 中国科学院脑科学与智能技术卓越创新中心 新型Cas13蛋白及其筛选方法和应用
CN116083398A (zh) * 2021-11-05 2023-05-09 广州瑞风生物科技有限公司 分离的Cas13蛋白及其应用
CN116083398B (zh) * 2021-11-05 2024-01-05 广州瑞风生物科技有限公司 分离的Cas13蛋白及其应用
CN117126925A (zh) * 2023-08-07 2023-11-28 中科枢密生物技术(武汉)有限公司 一种能够长期稳定保存的Crispr-Cas核酸检测试剂盒

Also Published As

Publication number Publication date
JP2020516285A (ja) 2020-06-11
BR112019021378A2 (pt) 2020-05-05
EP3610009A1 (en) 2020-02-19
KR20200006054A (ko) 2020-01-17
US20240110165A1 (en) 2024-04-04
AU2018251801A8 (en) 2019-11-21
US20210071158A1 (en) 2021-03-11
WO2018191388A1 (en) 2018-10-18
JP2023052236A (ja) 2023-04-11
CA3059757A1 (en) 2018-10-18
AU2018251801A1 (en) 2019-11-07
US11840711B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
US20240110165A1 (en) Novel type vi crispr orthologs and systems
AU2021201683B2 (en) Novel CAS13B orthologues CRISPR enzymes and systems
AU2021203747B2 (en) Novel Type VI CRISPR orthologs and systems
US20200231975A1 (en) Novel type vi crispr orthologs and systems
WO2019005866A1 (en) NEW TYPE VI CRISPR ORTHOLOGISTS AND ASSOCIATED SYSTEMS
CA3024543A1 (en) Type vi-b crispr enzymes and systems
US20200308560A1 (en) Novel type vi crispr orthologs and systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40024463

Country of ref document: HK