CN110797554A - 一种具有内置燃料罐的水凝胶固态电解质微型燃料电池 - Google Patents

一种具有内置燃料罐的水凝胶固态电解质微型燃料电池 Download PDF

Info

Publication number
CN110797554A
CN110797554A CN201911086970.7A CN201911086970A CN110797554A CN 110797554 A CN110797554 A CN 110797554A CN 201911086970 A CN201911086970 A CN 201911086970A CN 110797554 A CN110797554 A CN 110797554A
Authority
CN
China
Prior art keywords
hydrogel
anode
cathode
fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911086970.7A
Other languages
English (en)
Other versions
CN110797554B (zh
Inventor
朱恂
周远
叶丁丁
廖强
陈蓉
李俊
付乾
张亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201911086970.7A priority Critical patent/CN110797554B/zh
Publication of CN110797554A publication Critical patent/CN110797554A/zh
Application granted granted Critical
Publication of CN110797554B publication Critical patent/CN110797554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,包括从上往下设置的阴极盖板、自呼吸阴极电极、阳极电极和阳极板;阴极盖板上设置有阴极空气呼吸孔,自呼吸阴极电极放置在阴极空气呼吸孔内;阳极电极放置在阳极板上;所述自呼吸阴极电极和阳极电极均包括催化层;其特征在于:在自呼吸阴极电极与阳极电极之间设置有阴极水凝胶和阳极水凝胶;阴极水凝胶设置在自呼吸阴极电极一侧,阳极水凝胶设置在阳极电极一侧,所述阳极水凝胶与阳极电极的催化层接触构成阳极反应界面,所述阴极水凝胶与自呼吸阴极电极的催化层接触构成阴极反应界面;所述阳极水凝胶的外侧设置有燃料储液罐;本发明可广泛应用在能源、化工、环保等领域。

Description

一种具有内置燃料罐的水凝胶固态电解质微型燃料电池
技术领域
本发明涉及燃料电池领域,具体涉及一种具有内置燃料罐的水凝胶固态电解质微型燃料电池。
背景技术
相对于传统一次性电池(如锌锰电池)或可充电电池(如锂离子电池)存在回收困难,易造成环境污染以及难以在自然环境下降解等问题,基于聚合物电解质膜(Polymerelectrolyte membrane)的燃料电池被认为是便携式电子设备最具潜力的供电电源。例如基于氢气燃料的聚合物电解质膜燃料电池(H2-fed PEMFCs)和直接甲醇燃料电池(DMFCs)具有良好的应用前景。然而,尽管近年来对PEMFCs和DMFCs投入了大量的研究,但以上两类燃料电池仍然存在诸多问题。基于氢气燃料的PEMFCs的发展不仅受限氢气压缩储存所需的高昂成本,而且氢气的运输和使用过程中也存在一定的危险性,并且氢气在常温常压下为气态,能量密度低。对于直接甲醇燃料电池,液态甲醇具有更可观的能量密度(4900Wh L-1),但甲醇的电氧化反应动力学相对于氢气更弱,电池性能较差。而直接甲醇燃料电池所用到的质子交换膜(Proton Exchange Membrane)因其本身固有缺陷(甲醇可穿透质子交换膜)而使得DMFCs只能在较低的甲醇浓度下运行,高浓度甲醇会引起阴极混合电位导致电池性能下降,降低燃料的利用率。近年来直接甲酸燃料电池(DFAFCs)吸引了人们的广泛关注。甲酸无毒、不易燃,存储和运输安全方便。相对于甲醇,甲酸的能量密度虽然较低,但其电化学氧化能力强,电池的开路电压更高(1.43V vs.1.21V),同时质子交换膜中的磺酸基团与甲酸阴离子间有排斥作用,由此甲酸对于Nafion膜的渗透率比甲醇小一个数量级,可以在高燃料浓度(10mol/L)和更薄的质子交换膜下运行,并且甲酸拥有更高的电迁移速率(甲酸为强酸电解质),因此在实际运行过程中更有利于输出更高的功率密度。
目前,直接甲酸燃料电池需要用循环泵将燃料从燃料罐泵入槽道中的反应区域,发生电化学反应输出电能,这不仅需要额外消耗泵功,减小电池的净输出功率密度,而且增加了电池系统的复杂性,不利于电池微型化。除此之外,直接甲酸燃料电池所需的质子交换膜(一般为杜邦公司的Nafion膜)不仅造价昂贵,还存在膜降解、老化等问题。近年来,功能化的水凝胶因具有较高的机械强度和良好的导电性而被应用于超级电容器、微型传感器、可穿戴电子设备等领域。若将水凝胶运用于燃料电池,则不仅可以代替Nafion溶液作为催化剂的粘接剂,同时成型的水凝胶还可作为燃料电池隔膜。
发明内容
本发明针对现有技术存在的不足,提出了一种具有内置燃料罐的水凝胶固态电解质微型燃料电池。
本发明的技术方案是:一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,包括从上往下设置的阴极盖板、自呼吸阴极电极、阳极电极和阳极板;阴极盖板上设置有阴极空气呼吸孔,自呼吸阴极电极放置在阴极空气呼吸孔内;阳极电极放置在阳极板上;所述自呼吸阴极电极和阳极电极均包括催化层;
其特征在于:
在自呼吸阴极电极与阳极电极之间设置有阴极水凝胶和阳极水凝胶;阴极水凝胶设置在自呼吸阴极电极一侧,阳极水凝胶设置在阳极电极一侧,所述阳极水凝胶与阳极电极的催化层接触构成阳极反应界面,所述阴极水凝胶与自呼吸阴极电极的催化层接触构成阴极反应界面。
所述阳极水凝胶由水凝胶浸没在一定浓度的燃料与电解液的混合溶液中直至水凝胶达到饱和而获得;所述阴极水凝胶由水凝胶浸没在一定浓度的电解液溶液中直至水凝胶达到饱和而获得。
所述阳极水凝胶的外侧设置有燃料储液罐,所述燃料储液罐上设置有补液阀;所述燃料储液罐根据阳极水凝胶内燃料浓度的变化向阳极水凝胶补充燃料,打开补液阀,利用注射泵或其它设备向燃料储液罐补充燃料。
本发明将燃料和电解液充入水凝胶中,采用具有亲水性的水凝胶同时作为燃料/电解液的二级储液介质,充满电解液的水凝胶同时作为电池的固态电解质,去除了质子交换膜,进一步提高了电池的集成度,更有利于微型化,同时降低了电池成本。阳极和阴极分别布置在阳极水凝胶和阴极水凝胶两侧,采用空气自呼吸阴极消除阴极侧溶解氧传质限制,阳极侧水凝胶中的燃料通过扩散的方式到达电极表面发生氧化反应。电池整体均为固态,水凝胶良好的保水性避免了液体燃料/电解液的泄露问题。通过设置燃料储液罐,当阳极水凝胶中的燃料被消耗,燃料储液罐向阳极水凝胶供给燃料。
根据本发明所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池的优选方案,所述水凝胶采用壳聚糖水凝胶或琼脂水凝胶。
根据本发明所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池的优选方案,所述阴极水凝胶和阳极水凝胶设置在水凝胶封装腔室内,所述燃料储液罐设置在水凝胶封装腔室的外侧,该水凝胶封装腔室为具有长方形通孔的长方体,由第一、第二、第三、第四端板构成,第一、第二、第三、第四端板的上端固定在阴极盖板上,第一、第二、第三、第四端板的下端固定在阳极板;
在所述水凝胶封装腔室的任一端板上设置通孔,所述燃料储液罐的出液端穿过端板上设置的通孔与阳极水凝胶连接。通过浓度差扩散燃料储液罐向阳极水凝胶持续供给燃料。
根据本发明所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池的优选方案,所述自呼吸阴极电极由具有整平层的疏水多孔碳纸和Pt/C催化层组成;
所述阳极电极由具有亲水性多孔碳纸与Pd/C催化层或者石墨板与Pd/C催化层组成。
本发明所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池的有益效果是:
1)本发明无需质子交换膜,水凝胶可重复使用,有效减少了电池运行陈本。
2)水凝胶同时作为电池的燃料储液罐,电解液储液罐以及固态电解质,有利于实现电池的微型化、集成化。
3)双层水凝胶可有效减小燃料渗透问题,有利于提高电池性能。
4)电池整体均为固态,无液体泄漏问题,便于电池携带和装配。
5)采用空气作为氧化剂,无需其它氧化剂,有效降低了电池运行成本。电池反应生成物为二氧化碳和水,对环境无污染。
6)内置燃料储液罐设计,灵活补液,可大幅提高电池的可持续运行时间,无需拆卸电池更换水凝胶,操作简单,携带方便。
本发明可广泛应用在能源、化工、环保等领域。
附图说明
图1是本发明实施例1所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池的结构示意图。
图2是图1的俯视图。
图3是图1的左视图。
图4是本发明实施例2所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池的结构示意图。
图5是图4的左视图。
具体实施方式
实施例1.参见图1至图3,一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,包括从上往下设置的阴极盖板1、自呼吸阴极电极3、阳极电极8和阳极板7;阴极盖板1上设置有阴极空气呼吸孔2,自呼吸阴极电极3放置在阴极空气呼吸孔2内;阳极电极8放置在阳极板7上;所述自呼吸阴极电极3和阳极电极8均包括催化层;
在自呼吸阴极电极3与阳极电极8之间设置有阴极水凝胶4和阳极水凝胶9;阴极水凝胶4设置在自呼吸阴极电极3一侧,阳极水凝胶9设置在阳极电极8一侧,所述阳极水凝胶9与阳极电极8的催化层接触构成阳极反应界面,所述阴极水凝胶4与自呼吸阴极电极3的催化层接触构成阴极反应界面;
所述阳极水凝胶9由水凝胶浸没在一定浓度的燃料与电解液的混合溶液中直至水凝胶达到饱和而获得;所述阴极水凝胶4由水凝胶浸没在一定浓度的电解液溶液中直至水凝胶达到饱和而获得;
所述阳极水凝胶9的外侧设置有燃料储液罐6,所述燃料储液罐6上设置有补液阀10;所述燃料储液罐6根据阳极水凝胶9内燃料浓度的变化向阳极水凝胶补充燃料,打开补液阀,利用注射泵或其它设备向燃料储液罐补充燃料。
在具体实施时,所述阳极水凝胶9由水凝胶浸没在一定浓度的燃料与电解液的混合溶液中直至水凝胶达到饱和而获得;所述阴极水凝胶由水凝胶浸没在一定浓度的电解液溶液中直至水凝胶达到饱和而获得;所述水凝胶可采用壳聚糖水凝胶或琼脂水凝胶等。电解液可采用酸性电解液或者碱性电解液;酸性电解液可采用硫酸溶液等,碱性电解液可采用氢氧化钾溶液等,燃料可采用甲酸、甲醇、乙醇等液体燃料。具体实施时可将水凝胶浸没在0.5-1mol/L燃料与0.5-2mol/L电解液的混合溶液中直至水凝胶达到饱和获得阳极水凝胶;可将水凝胶浸没在0.5-2mol/L电解液溶液中直至水凝胶达到饱和而获得阴极水凝胶。
所述自呼吸阴极电极3由具有整平层的疏水性多孔碳纸,Pt/C催化层组成;所述阳极电极8由具有亲水性多孔碳纸与Pd/C催化层或者石墨板与Pd/C催化层组成。自呼吸阴极电极3可通过喷涂法将Pt/C催化剂浆料均匀喷涂在具有整平层的疏水碳纸表面。阳极电极8可将石墨板或者多孔碳纸通过阳极氧化法做亲水处理,使电极表面含有大量的亲水含氧基团,再通过喷涂法将Pd/C催化剂浆料均匀喷涂在亲水处理后的石墨板或多孔碳纸表面,并于常温下干燥。
所述阴极盖板、阳极板均采用有机玻璃板或其他耐腐蚀材料。
实施例2,参见图4和图5,与实施例1不同的是:
所述阴极水凝胶4和阳极水凝胶9设置在水凝胶封装腔室内,所述燃料储液罐6设置在水凝胶封装腔室的外侧,该水凝胶封装腔室为具有长方形通孔的长方体,由第一、第二、第三、第四端板构成,第一、第二、第三、第四端板的上端固定在阴极盖板1上,第一、第二、第三、第四端板的下端固定在阳极板7;
在所述水凝胶封装腔室的任一端板上设置通孔,所述燃料储液罐6的出液端穿过端板上设置的通孔与阳极水凝胶9连接。
水凝胶腔室采用有机玻璃板或其他耐腐蚀材料。
运行时,将负载通过导线与自呼吸阴极电极3和阳极电极8连接,阳极水凝胶9中的燃料通过扩散的方式向阳极电极8表面传输,在阳极催化层上发生氧化反应产生氢离子、电子及二氧化碳。氢离子通过电迁移方式依次通过阳极水凝胶层、阴、阳极水凝胶交界面、阴极水凝胶层到达自呼吸阴极电极3;电子经负载到达自呼吸阴极电极3。空气中的氧气通过疏水多孔碳纸传输至Pd/C催化层,结合氢离子和电子发生还原反应生成水。
以甲酸为燃料为例,电池内发生的反应如下,
阳极甲酸氧化反应:
HCOOH→CO2↑+2H++2e-,E0=-0.198V vs.SHE(标准氢电极)
阴极氧气还原反应:
O2+4H++4e-→2H2O,E0=1.229V vs.SHE
总反应:
2HCOOH+O2→2CO2↑+2H2O,△E=1.427V
在电池运行过程中,阳极水凝胶中所储存的燃料持续被消耗,燃料浓度降低,处于非饱和状态。此时燃料储液罐内的高浓度液体燃料与阳极水凝胶的液固接触面存在浓度梯度,燃料向阳极水凝胶扩散补充新鲜燃料,直至阳极水凝胶内燃料浓度达到饱和,以保证电池可以长时间持续稳定运行。阳极水凝胶在饱和状态下燃料浓度仍低于燃料储液罐内的燃料浓度,稳定在适宜的浓度值,可减小燃料渗透。当燃料储液罐内的高浓度燃料消耗完时,打开燃料储液罐的补液阀,通过注射泵或其它设备向燃料储液罐重新补充高浓度燃料,无需拆卸电池更换阳极水凝胶,操作更为简单。避免了阳极水凝胶在拆卸过程中可能导致的机械强度受损,同时节约了重新补充燃料的时间,在实际过程中更有利于便携和使用。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (4)

1.一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,包括从上往下设置的阴极盖板(1)、自呼吸阴极电极(3)、阳极电极(8)和阳极板(7);阴极盖板(1)上设置有阴极空气呼吸孔(2),自呼吸阴极电极(3)放置在阴极空气呼吸孔(2)内;阳极电极(8)放置在阳极板(7)上;所述自呼吸阴极电极(3)和阳极电极(8)均包括催化层;
其特征在于:
在自呼吸阴极电极(3)与阳极电极(8)之间设置有阴极水凝胶(4)和阳极水凝胶(9);阴极水凝胶(4)设置在自呼吸阴极电极(3)一侧,阳极水凝胶(9)设置在阳极电极(8)一侧,所述阳极水凝胶(9)与阳极电极(8)的催化层接触构成阳极反应界面,所述阴极水凝胶(4)与自呼吸阴极电极(3)的催化层接触构成阴极反应界面;
所述阳极水凝胶(9)由水凝胶浸没在一定浓度的燃料与电解液的混合溶液中直至水凝胶达到饱和而获得;所述阴极水凝胶(4)由水凝胶浸没在一定浓度的电解液溶液中直至水凝胶达到饱和而获得;
所述阳极水凝胶(9)的外侧设置有燃料储液罐(6),所述燃料储液罐(6)上设置有补液阀(10);所述燃料储液罐(6)根据阳极水凝胶(9)内燃料浓度的变化向阳极水凝胶补充燃料,打开补液阀,利用注射泵或其它设备向燃料储液罐补充燃料。
2.根据权利要求1所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,其特征在于:所述水凝胶采用壳聚糖水凝胶或琼脂水凝胶。
3.根据权利要求1所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,其特征在于:所述阴极水凝胶(4)和阳极水凝胶(9)设置在水凝胶封装腔室内,所述燃料储液罐(6)设置在水凝胶封装腔室的外侧,该水凝胶封装腔室为具有长方形通孔的长方体,由第一、第二、第三、第四端板构成,第一、第二、第三、第四端板的上端固定在阴极盖板(1)上,第一、第二、第三、第四端板的下端固定在阳极板(7);
在所述水凝胶封装腔室的任一端板上设置通孔,所述燃料储液罐(6)的出液端穿过端板上设置的通孔与阳极水凝胶(9)连接。
4.根据权利要求1或2或3所述的一种具有内置燃料罐的水凝胶固态电解质微型燃料电池,其特征在于:
所述自呼吸阴极电极(3)由具有整平层的疏水多孔碳纸和Pt/C催化层组成;
所述阳极电极(8)由具有亲水性多孔碳纸与Pd/C催化层或者石墨板与Pd/C催化层组成。
CN201911086970.7A 2019-11-08 2019-11-08 一种具有内置燃料罐的水凝胶固态电解质微型燃料电池 Active CN110797554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911086970.7A CN110797554B (zh) 2019-11-08 2019-11-08 一种具有内置燃料罐的水凝胶固态电解质微型燃料电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911086970.7A CN110797554B (zh) 2019-11-08 2019-11-08 一种具有内置燃料罐的水凝胶固态电解质微型燃料电池

Publications (2)

Publication Number Publication Date
CN110797554A true CN110797554A (zh) 2020-02-14
CN110797554B CN110797554B (zh) 2020-12-29

Family

ID=69443522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911086970.7A Active CN110797554B (zh) 2019-11-08 2019-11-08 一种具有内置燃料罐的水凝胶固态电解质微型燃料电池

Country Status (1)

Country Link
CN (1) CN110797554B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864242A (zh) * 2020-08-10 2020-10-30 江苏大学 一种自呼吸式的凝胶流动相异型燃料电池
CN114335643A (zh) * 2021-12-16 2022-04-12 重庆大学 一种铁络合物-空气液流电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274393A1 (en) * 2007-04-17 2008-11-06 Markoski Larry J Hydrogel barrier for fuel cells
CN102983345A (zh) * 2012-12-07 2013-03-20 中国海洋大学 疏水凝胶基中高温质子交换膜及其制备方法和应用
CN103094596A (zh) * 2013-01-29 2013-05-08 中国海洋大学 多孔水凝胶基中高温质子交换膜及其制备方法和应用
CN106876761A (zh) * 2017-04-28 2017-06-20 江西师范大学 一种自供给水凝胶电解质微生物燃料电池
CN108110291A (zh) * 2017-12-28 2018-06-01 成都新柯力化工科技有限公司 一种燃料电池用耐高温陶瓷基质子交换膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274393A1 (en) * 2007-04-17 2008-11-06 Markoski Larry J Hydrogel barrier for fuel cells
CN102983345A (zh) * 2012-12-07 2013-03-20 中国海洋大学 疏水凝胶基中高温质子交换膜及其制备方法和应用
CN103094596A (zh) * 2013-01-29 2013-05-08 中国海洋大学 多孔水凝胶基中高温质子交换膜及其制备方法和应用
CN106876761A (zh) * 2017-04-28 2017-06-20 江西师范大学 一种自供给水凝胶电解质微生物燃料电池
CN108110291A (zh) * 2017-12-28 2018-06-01 成都新柯力化工科技有限公司 一种燃料电池用耐高温陶瓷基质子交换膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864242A (zh) * 2020-08-10 2020-10-30 江苏大学 一种自呼吸式的凝胶流动相异型燃料电池
CN114335643A (zh) * 2021-12-16 2022-04-12 重庆大学 一种铁络合物-空气液流电池
CN114335643B (zh) * 2021-12-16 2023-10-03 重庆大学 一种铁络合物-空气液流电池

Also Published As

Publication number Publication date
CN110797554B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
Goor et al. High power direct methanol fuel cell for mobility and portable applications
AU2020101412A4 (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization and preparation method thereof
KR100733100B1 (ko) 양성자 전도성 막을 갖는 연료 전지
US7282282B2 (en) Organic fuel cells and fuel cell conducting sheets
WO2005029609A2 (en) Organic fuel cells and fuel cell conducting sheets
US20110065016A1 (en) Fuel cell and fuel cell layer
CN103066307B (zh) 一种自呼吸直接甲醇燃料电池
CN110797554B (zh) 一种具有内置燃料罐的水凝胶固态电解质微型燃料电池
JP2939978B2 (ja) アルコール燃料電池及びその作動方法
KR100896900B1 (ko) 연료전지와 수전해를 이용한 산소발생기
WO2003069709A1 (en) Liquid fuel cell
JP2003317791A (ja) 液体燃料電池
JP3917001B2 (ja) 液体燃料電池
CN110797560B (zh) 一种具有水凝胶固态电解质的微型无膜液体燃料电池
US10090552B2 (en) Liquid fuel battery
KR100719095B1 (ko) 연료 확산속도 제어물질층을 포함하여 메탄올 크로스오버현상을 억제시킨 직접 메탄올 연료전지
CN110808393B (zh) 可拆卸及封装压力可调的水凝胶储供液型无膜燃料电池
CN110828840B (zh) 一种便携式凝胶型自呼吸微型无膜燃料电池
JP2003308869A (ja) 燃料電池
CN113981479B (zh) 一种水电解装置
JP4637460B2 (ja) 燃料電池の製造方法
JP4018500B2 (ja) 燃料電池
US7608350B2 (en) Preparation and storage of membrane and electrode assemblies
CN206250293U (zh) 便携式高效铝氧动力电池
JP2014239017A (ja) ダイレクトメタノール型燃料電池の活性化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant