CN110797263A - 功率mosfet器件及其制造方法 - Google Patents

功率mosfet器件及其制造方法 Download PDF

Info

Publication number
CN110797263A
CN110797263A CN201911109805.9A CN201911109805A CN110797263A CN 110797263 A CN110797263 A CN 110797263A CN 201911109805 A CN201911109805 A CN 201911109805A CN 110797263 A CN110797263 A CN 110797263A
Authority
CN
China
Prior art keywords
oxide layer
depositing
growing
etching
injecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911109805.9A
Other languages
English (en)
Inventor
张军亮
刘琦
张园园
徐西昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longteng Semiconductor Co Ltd
Original Assignee
Longteng Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longteng Semiconductor Co Ltd filed Critical Longteng Semiconductor Co Ltd
Priority to CN201911109805.9A priority Critical patent/CN110797263A/zh
Publication of CN110797263A publication Critical patent/CN110797263A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种功率MOSFET器件及其制造方法,步骤为:在N+Sub上生长外延层N‑epi;生长场氧化层,在有源区刻蚀场氧化层,在终端区注入P+并退火;在有源区生长屏蔽氧化层,注入杂质磷形成JFET区;在外延层生长牺牲氧化层并腐蚀,热氧化生长栅氧化层;在栅氧化层之上淀积多晶硅并刻蚀;在栅氧化层和多晶硅上注入Boron离子形成自对准的P阱;对PW进行热氧化推结;N+注入,形成自对准的源极N+区;N+退火处理;淀积LPSIN并进行源极P+高能注入;层间介质ILD淀积;接触孔刻蚀,Ti/TiN淀积;正面金属淀积并刻蚀;衬底减薄,背面注入,背面金属淀积,合金化,形成完整器件结构。本发明将closed结构改为open结构,采用LPSIN掩蔽的源极P+注入,提高了器件的通流能力。

Description

功率MOSFET器件及其制造方法
技术领域
本发明属于半导体功率器件技术领域,具体涉及一种功率MOSFET器件及其制造方法。
背景技术
功率MOSFET (Metal Oxide Semiconductor Field Effect Transistor),金属氧化物半导体场效应晶体管,是目前市场最为常见的功率半导体器件之一,功率MOSFET通常采用纵向的垂直结构,其源极和漏极在晶圆片两个相对的平面,从而可以流过大的电流和具有高的电压。功率MOSFET具有很低的栅极驱动功率,较快的开关速度和优异的热稳定性,以及良好的并联工作能力。除以上优点外,功率MOSFET的主要缺点为为其导通电阻较高,因为对于高压器件,其具有一电阻率高的N-漂移区所致,如减薄这层漂移区的厚度或者减少其电阻率,则产品的耐压会急剧下降。
此外,功率MOSFET结构中还存在有一纵向的NPN结构,器件在实际工作中要避免该NPN管开启,该NPN开启会导致器件不再受栅极控制,引起电流集中,甚至导致器件产生不可逆的损坏。
发明内容
本发明的目的是提供一种功率MOSFET器件及其制造方法,可以在不影响器件击穿电压的前提下,降低功率MOSFET的导通电阻,提高器件通流能力。
本发明所采用的技术方案为:
功率MOSFET器件的制造方法,其特征在于:
所述方法包括以下步骤:
步骤1:选取N+ Sub作为制作VDMOS外延层的衬底片;
步骤2:在所选取的N+ Sub上面生长外延层N-epi;
步骤3:在所生长的N-epi外延层上部生长一层场氧化层,并在器件有源区刻蚀场氧化层,在终端区注入P+并退火;
步骤4:在器件有源区生长一层屏蔽氧化层,之后注入杂质磷形成JFET区;
步骤5:在外延层上表面生长牺牲氧化层并腐蚀,之后热氧化生长栅氧化层;
步骤6:在栅氧化层之上淀积多晶硅并刻蚀形成多晶栅极;
步骤7:在栅氧化层和多晶硅的上表面注入Boron离子形成自对准的P阱;
步骤8:对PW进行热氧化推结;
步骤9:N+注入,形成自对准的源极N+区;
步骤10:N+退火处理;
步骤11:淀积LPSIN并进行源极P+高能注入;
步骤12:层间介质ILD淀积;
步骤13:接触孔刻蚀,Ti/TiN淀积;
步骤14:正面金属淀积并刻蚀;
步骤15:衬底减薄,背面注入,背面金属淀积,合金化,形成完整器件结构。
如所述的制造方法制得的功率MOSFET器件。
本发明具有以下优点:
本发明增大了电流密度,将closed结构改为open结构,采用LPSIN掩蔽的源极P+注入,并采用特殊源极N+区设计,在保证平面功率VDMOS器件BVDSS和EAS能力不变的情况下提高器件的通流能力,降低器件的导通电阻,克服了现有平面功率VDMOS为closed栅极结构、沟道结构被一部分栅极占用、产品比导通电阻Rsp偏大的问题。
附图说明
图1为步骤1示意图。
图2为步骤2示意图。
图3为步骤3示意图。
图4为步骤4示意图。
图5为步骤5示意图。
图6为步骤6示意图。
图7为步骤7示意图。
图8为步骤8示意图。
图9为步骤9示意图。
图10为步骤10示意图。
图11为步骤11示意图。
图12为步骤12示意图。
图13为步骤13示意图。
图14为步骤14示意图。
图15为步骤15示意图。
图16为现有平面功率VDMOS栅极结构顶视图。
图17为本发明栅极结构顶视图。
图18为本发明工艺流程图。
具体实施方式
下面结合具体实施方式对本发明进行详细的说明。
现有的平面close栅极结构功率MOSFET,将击穿点引入cell区,有效提高了产品的击穿特性和雪崩耐量。但因为其close栅极结构的限制,部分栅宽W被占据,沟道密度较低,在小电流器件中表现为特征导通电阻较高。本发明涉及一种改进的新型功率MOSFET的制作方法,可以在不影响器件击穿电压的前提下,降低功率MOSFET的导通电阻,提高器件通流能力。该方法能提高VDMOS器件通流能力,属于VDMOS的设计及制造技术,具体包括以下步骤:
步骤1:首先选取N型合适电阻率的硅片N+ Sub作为制作VDMOS外延层的衬底片;
步骤2:在所选取的N+ Sub上面生长特定电阻率的外延层N-epi;
步骤3:在所生长的N-epi外延层上部生长一层场氧化层,并在器件有源区刻蚀场氧化层,在终端区注入P+并退火;
步骤4:在器件有源区生长一层屏蔽氧化层,之后注入杂质磷形成JFET区;
步骤5:在外延层上表面生长牺牲氧化层并腐蚀,之后热氧化生长栅氧化层;
步骤6:在栅氧化层之上淀积多晶硅并刻蚀形成多晶栅极;
步骤7:在栅氧化层和多晶硅的上表面注入Boron离子形成自对准的P阱;
步骤8:对PW进行热氧化推结;
步骤9:N+注入,形成自对准的源极N+区;
步骤10:N+退火处理;
步骤11:淀积LPSIN并进行源极P+高能注入;
步骤12:层间介质ILD淀积;
步骤13:接触孔刻蚀,Ti/TiN淀积;
步骤14:正面金属淀积并刻蚀;
步骤15:衬底减薄,背面注入,背面金属淀积,合金化,形成完整器件结构。
该制造方法采用LPSIN掩蔽的源极P+注入,制得器件EAS能力更高的源极N+结构,将closed结构改为open结构,并采用特殊源极N+区设计,在不影响击穿电压BVDSS和EAS的前提下,提高了功率MOSFET的通流能力。
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (2)

1.功率MOSFET器件的制造方法,其特征在于:
所述方法包括以下步骤:
步骤1:选取N+ Sub作为制作VDMOS外延层的衬底片;
步骤2:在所选取的N+ Sub上面生长外延层N-epi;
步骤3:在所生长的N-epi外延层上部生长一层场氧化层,并在器件有源区刻蚀场氧化层,在终端区注入P+并退火;
步骤4:在器件有源区生长一层屏蔽氧化层,之后注入杂质磷形成JFET区;
步骤5:在外延层上表面生长牺牲氧化层并腐蚀,之后热氧化生长栅氧化层;
步骤6:在栅氧化层之上淀积多晶硅并刻蚀形成多晶栅极;
步骤7:在栅氧化层和多晶硅的上表面注入Boron离子形成自对准的P阱;
步骤8:对PW进行热氧化推结;
步骤9:N+注入,形成自对准的源极N+区;
步骤10:N+退火处理;
步骤11:淀积LPSIN并进行源极P+高能注入;
步骤12:层间介质ILD淀积;
步骤13:接触孔刻蚀,Ti/TiN淀积;
步骤14:正面金属淀积并刻蚀;
步骤15:衬底减薄,背面注入,背面金属淀积,合金化,形成完整器件结构。
2.如权利要求1所述的制造方法制得的功率MOSFET器件。
CN201911109805.9A 2019-11-14 2019-11-14 功率mosfet器件及其制造方法 Pending CN110797263A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911109805.9A CN110797263A (zh) 2019-11-14 2019-11-14 功率mosfet器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911109805.9A CN110797263A (zh) 2019-11-14 2019-11-14 功率mosfet器件及其制造方法

Publications (1)

Publication Number Publication Date
CN110797263A true CN110797263A (zh) 2020-02-14

Family

ID=69444494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911109805.9A Pending CN110797263A (zh) 2019-11-14 2019-11-14 功率mosfet器件及其制造方法

Country Status (1)

Country Link
CN (1) CN110797263A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066866A (zh) * 2021-03-15 2021-07-02 无锡新洁能股份有限公司 碳化硅mosfet器件及其工艺方法
CN113224135A (zh) * 2021-05-21 2021-08-06 上海道之科技有限公司 一种高雪崩耐量的屏蔽栅mosfet器件及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655331A (zh) * 1999-04-22 2005-08-17 先进模拟科技公司 超级自对准的沟-栅双扩散金属氧化物半导体器件
CN104217950A (zh) * 2013-06-04 2014-12-17 北大方正集团有限公司 一种平面vdmos器件及其制造方法
US20160181365A1 (en) * 2014-12-19 2016-06-23 General Electric Company Semiconductor devices having channel regions with non-uniform edge
CN107180857A (zh) * 2016-03-10 2017-09-19 北大方正集团有限公司 Vdmos器件的制作方法
CN108231898A (zh) * 2017-12-14 2018-06-29 东南大学 一种低导通电阻的碳化硅功率半导体器件
CN109786462A (zh) * 2017-11-14 2019-05-21 丰田自动车株式会社 开关元件及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655331A (zh) * 1999-04-22 2005-08-17 先进模拟科技公司 超级自对准的沟-栅双扩散金属氧化物半导体器件
CN104217950A (zh) * 2013-06-04 2014-12-17 北大方正集团有限公司 一种平面vdmos器件及其制造方法
US20160181365A1 (en) * 2014-12-19 2016-06-23 General Electric Company Semiconductor devices having channel regions with non-uniform edge
CN107180857A (zh) * 2016-03-10 2017-09-19 北大方正集团有限公司 Vdmos器件的制作方法
CN109786462A (zh) * 2017-11-14 2019-05-21 丰田自动车株式会社 开关元件及其制造方法
CN108231898A (zh) * 2017-12-14 2018-06-29 东南大学 一种低导通电阻的碳化硅功率半导体器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066866A (zh) * 2021-03-15 2021-07-02 无锡新洁能股份有限公司 碳化硅mosfet器件及其工艺方法
CN113066866B (zh) * 2021-03-15 2022-07-26 无锡新洁能股份有限公司 碳化硅mosfet器件及其工艺方法
CN113224135A (zh) * 2021-05-21 2021-08-06 上海道之科技有限公司 一种高雪崩耐量的屏蔽栅mosfet器件及其制作方法

Similar Documents

Publication Publication Date Title
TWI805991B (zh) 金屬氧化物半導體場效應電晶體元件
CN109920854B (zh) Mosfet器件
US9240469B2 (en) Transverse ultra-thin insulated gate bipolar transistor having high current density
US10475896B2 (en) Silicon carbide MOSFET device and method for manufacturing the same
US20230130726A1 (en) Silicon Carbide Trench Gate MOSFET and Method for Manufacturing Thereof
CN103477439B (zh) 半导体装置及其制造方法
CN107275406B (zh) 一种碳化硅TrenchMOS器件及其制作方法
CN107507861B (zh) 肖特基接触注入增强型SiC PNM-IGBT器件及其制备方法
CN105047721A (zh) 一种碳化硅沟槽栅功率MOSFETs器件及其制备方法
CN104409507B (zh) 低导通电阻vdmos器件及制备方法
CN109524472B (zh) 新型功率mosfet器件及其制备方法
CN114038908B (zh) 集成二极管的沟槽栅碳化硅mosfet器件及制造方法
CN102201445A (zh) 一种psoi横向超结功率半导体器件
CN114678277B (zh) 中心注入p+屏蔽区的分裂栅平面mosfet及其制造方法
CN111697078A (zh) 高雪崩耐量的vdmos器件及制备方法
CN113314613A (zh) 具有雪崩电荷渡越缓冲层的碳化硅mosfet器件及制备方法
CN110797263A (zh) 功率mosfet器件及其制造方法
US11837630B1 (en) Semiconductor device for reducing switching loss and manufacturing method thereof
CN103515443B (zh) 一种超结功率器件及其制造方法
CN116525683B (zh) 一种深阱型SiC Mosfet器件及制备方法
CN102637731A (zh) 一种沟槽功率mos器件的终端结构及其制造方法
CN116705616A (zh) 一种氧化镓增强型器件及其制作方法
TW200304188A (en) Semiconductor component and manufacturing method
CN111244177A (zh) 一种沟槽型mos器件的结构、制作工艺以及电子装置
CN104518027B (zh) Ldmos器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200214