CN110787796B - 一种具有规则表面纳米多孔金属的制备方法 - Google Patents

一种具有规则表面纳米多孔金属的制备方法 Download PDF

Info

Publication number
CN110787796B
CN110787796B CN201911078879.0A CN201911078879A CN110787796B CN 110787796 B CN110787796 B CN 110787796B CN 201911078879 A CN201911078879 A CN 201911078879A CN 110787796 B CN110787796 B CN 110787796B
Authority
CN
China
Prior art keywords
npg
regular
npm
porous metal
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911078879.0A
Other languages
English (en)
Other versions
CN110787796A (zh
Inventor
习卫
侯新刚
罗俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201911078879.0A priority Critical patent/CN110787796B/zh
Publication of CN110787796A publication Critical patent/CN110787796A/zh
Application granted granted Critical
Publication of CN110787796B publication Critical patent/CN110787796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/61
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

本发明公开了一种具有规则表面纳米多孔金属(NPM)的制备方法。先用脱合金法制备纳米多孔金属,此时NPM表面复杂无规则。然后将NPM作为催化剂,通入气体进行加热催化使其表面发生重构,表面逐渐变得规则有序,从而制备出具有规则表面的NPM。所述纳米多孔金属包括纳米多孔金、纳米多孔铜、纳米多孔银、以及纳米多孔钯。所述通入的气体包括CO、CO2、甲醇或者NO。本发明的制备工艺简单、普适性高,开创了具有大量规则表面NPM制备方法的先河,为纳米多孔材料暴露晶面的靶向调控提供了依据,同时有望扩大NPM的应用范围。

Description

一种具有规则表面纳米多孔金属的制备方法
技术领域
本发明是一种关于纳米多孔金属(NPM)的,特别涉及一种在催化反应过程中、表面原子重组而产生更稳定的高配位结构、制备出具有规则表面的纳米多孔金属。
背景技术
具有一定晶面的金属纳米催化材料在许多领域有广泛的应用,通过物理和化学方法使其具有规则晶面这种方式可以调节催化剂的催化活性和选择性。与传统的低维材料如纳米粒子,纳米线,纳米片和纳米薄膜相比,纳米多孔金属(NPM)的表面原子分布高度随机,表面形貌十分复杂,导致难以通过暴露特定的晶面来提高其催化活性和选择性。到目前为止,只有极少量的工作发现部分NPG的{111}晶面可以在低温CO氧化过程中形成,或通过优化脱合金条件可控制。所以怎样有效简单地制备具有规则表面的NPM是一个难题。
纳米多孔金属作为一类应用广泛的高活性催化剂,在催化反应过程中由于反应物的影响表面形貌会发生一定程度的变化。如果能利用催化反应制备出具有规则表面的NPM,那么对于提高NPM的高催化活性和选择性是重要的,并可以为NPM暴露晶面的靶向调控提供了依据。基于这种需求,开发一种制备具有规则表面纳米多孔金属的方法,是本专利申请的核心思想。
发明内容
本发明的目的,是为了克服现有技术的纳米多孔金属表面原子分布高度随机的缺陷,制备出一种具有规则表面的纳米多孔金属,为精确合成具有高选择性和稳定性的常规三维孔催化剂提供一种新的可行途径。
本发明通过如下技术方案予以实现:
本发明采用将合金薄膜通过脱合金法制备出NPM片,之后将NPM通入气体进行加热催化反应。催化过程中NPM表面原子重组从而获得具备规则表面的NPM。
一种具有规则表面纳米多孔金属的制备方法,具体步骤如下:
(1)采用脱合金法制备纳米多孔金属——纳米多孔金,缩写为NPG;
(2)将步骤(1)的NPG作为催化剂,通入甲烷气体进行热解反应;
整个气体系统先在常压下用氩气冲洗30分钟,然后引入纯甲烷气体,随后以30℃min–1的加热速率加热升高至300-500℃,发生明显的催化现象,反应后得到具有规则晶面的NPG;
催化过程中,NPG表面原子重组以产生更稳定的结构,使得NPG的韧带尺度在反应过程中逐渐变得更加规则,导致NPG形成规则表面。
所述步骤(1)的纳米多孔金属还包括纳米多孔铜、纳米多孔银、以及纳米多孔钯;
所述步骤(1)的纳米多孔金属也可以是通过电化学法或模板法获得。
所述步骤(2)中通入的气体还可以是CO、CO2、甲醇或者NO。
所述步骤(2)的加热设备为气相加热芯片,及其它在加热的同时可以引入气体的设备。
本发明开创了大量规则表面纳米多孔金属制备方法的先河,为精确合成具有高选择性和稳定性的常规三维孔催化剂提供新的可行途径。本发明的制备工艺简单、普适性高。
附图说明
图1是实施例1脱合金方法制备得到的纳米多孔金(NPG)的低倍TEM明场像;
图2是实施例1催化反应后得到的NPG的低倍TEM明场像;
图3是实施例1脱合金方法制备得到的NPG的SAED选区电子衍射图;
图4是实施例1催化反应后得到的NPG的SAED选区电子衍射图;
图5是实施例1脱合金方法制备得到的NPG的单个韧带的高倍TEM明场像;
图6是实施例1催化反应后得到的NPG的单个韧带的TEM明场像。
具体实施方式
下面通过以下具体实施例来进一步说明本发明。
实施例1
NPG催化甲烷热解反应获得具有规则晶面的NPG。
(1)使用脱合金法制备NPG。
将厚度为100nm的12Ka Au-Ag合金薄膜在恒温水浴30℃下的浓HNO3中进行去合金化30分钟,然后将脱合金薄膜浸入超纯水中35分钟。所得到的材料即为纳米多孔金,参见图1、图3和图5。图1为NPG的低倍TEM明场像,从图中可以看出其表面形貌比较复杂,没有规则表面的暴露;图3是其对应的SAED选区电子衍射,由图中可以看出微观结构为多晶;图5为单个韧带的高分辨TEM明场像,可以看出韧带表面原子分布高度随机,是既有正曲率又有负曲率的不规则表面。
(2)将步骤(1)中的NPG进行催化甲烷(CH4)热解反应。
使用加热芯片收集超纯水中的NPG片,将该芯片组装到原位TEM(这里所用加速电压为200kv)气相系统中进行原位观察。整个气体系统先在常压下用氩气冲洗30分钟,然后引入纯CH4气体。随后以30℃min–1的加热速率加热升高至346℃(发生明显的催化现象)。反应后得到的NPG因其韧带表面原子重组而形成具有规则晶面的NPG,参见图2、图4和图6。图2为反应过后NPG的低倍TEM明场像,从图中可以看出其表面形貌较为有序,暴露的表面也比较规则;图4是其对应的SAED选区电子衍射,由图中可以看出微观结构暴露大量{111}和{100}的规则表面;图6为反应过后NPG单个韧带的高分辨TEM明场像,可以看出韧带表面原子分布有序,从既有正曲率又有负曲率的不规则表面变为具有规则晶面的平整表面。

Claims (2)

1.一种具有规则表面纳米多孔金属的制备方法,具体步骤如下:
(1)采用脱合金法制备纳米多孔金属——纳米多孔金,缩写为NPG;
(2)将步骤(1)的NPG作为催化剂,通入甲烷气体进行热解反应;
整个气体系统先在常压下用氩气冲洗30分钟,然后引入纯甲烷气体,随后以30℃min–1的加热速率加热升高至300-500℃,发生明显的催化现象,反应后得到具有规则晶面的NPG;
催化过程中,NPG表面原子重组以产生更稳定的结构,使得NPG的韧带尺度在反应过程中逐渐变得更加规则,导致NPG形成规则表面。
2.根据权利要求1所述的一种具有规则表面纳米多孔金属的制备方法,其特征在于,所述步骤(2)的加热设备为气相加热芯片,及其它在加热的同时可以引入气体的设备。
CN201911078879.0A 2019-11-06 2019-11-06 一种具有规则表面纳米多孔金属的制备方法 Active CN110787796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911078879.0A CN110787796B (zh) 2019-11-06 2019-11-06 一种具有规则表面纳米多孔金属的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911078879.0A CN110787796B (zh) 2019-11-06 2019-11-06 一种具有规则表面纳米多孔金属的制备方法

Publications (2)

Publication Number Publication Date
CN110787796A CN110787796A (zh) 2020-02-14
CN110787796B true CN110787796B (zh) 2021-06-04

Family

ID=69442949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911078879.0A Active CN110787796B (zh) 2019-11-06 2019-11-06 一种具有规则表面纳米多孔金属的制备方法

Country Status (1)

Country Link
CN (1) CN110787796B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302331A (zh) * 2020-02-24 2020-06-19 天津理工大学 一种制备石墨烯的方法
CN114472901A (zh) * 2022-01-18 2022-05-13 天津理工大学 一种制备超细金属纳米线的方法
CN115254099B (zh) * 2022-07-21 2023-12-08 山东大学 一种利用铸造去合金化加后期热处理方法制备银钯单原子催化剂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648150A (zh) * 2009-09-02 2010-02-17 山东大学 一种多孔纳米钯金属催化剂及其制备方法
CN107630228A (zh) * 2017-09-19 2018-01-26 中国科学院长春应用化学研究所 一种表面氧化铱富集的纳米多孔结构析氧催化剂及其制备方法
CN108085530A (zh) * 2017-12-21 2018-05-29 山东大学 一种调控纳米多孔金微观结构的方法
CN109860638A (zh) * 2019-01-07 2019-06-07 湖南大学 一种纳米多孔Ag2Al材料、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250428A1 (en) * 2010-02-07 2011-10-13 Aerogel Technologies, Llc Preparation of cross-linked aerogels and derivatives thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648150A (zh) * 2009-09-02 2010-02-17 山东大学 一种多孔纳米钯金属催化剂及其制备方法
CN107630228A (zh) * 2017-09-19 2018-01-26 中国科学院长春应用化学研究所 一种表面氧化铱富集的纳米多孔结构析氧催化剂及其制备方法
CN108085530A (zh) * 2017-12-21 2018-05-29 山东大学 一种调控纳米多孔金微观结构的方法
CN109860638A (zh) * 2019-01-07 2019-06-07 湖南大学 一种纳米多孔Ag2Al材料、制备方法及应用

Also Published As

Publication number Publication date
CN110787796A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN110787796B (zh) 一种具有规则表面纳米多孔金属的制备方法
Liang et al. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis
Gao et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products
Jin et al. Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M= Ir and Pt) nanoframes toward efficient oxygen evolution catalysis
Ebaid et al. Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2
Yin et al. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives
Du et al. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts
WO2020127772A1 (en) Method for converting carbon dioxide (co2) into syngas by an electrolysis reaction
US9490486B2 (en) Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications
Lin et al. Significant enhancement of the performance of hydrogen evolution reaction through shape-controlled synthesis of hierarchical dendrite-like platinum
Choukroun et al. Mapping composition–selectivity relationships of supported sub-10 nm Cu–Ag nanocrystals for high-rate CO2 electroreduction
Hao et al. Pollution to solution: a universal electrocatalyst for reduction of all NOx-based species to NH3
Xie et al. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO 2 reduction
Wittstock et al. Nanoporous gold: From structure evolution to functional properties in catalysis and electrochemistry
Yan et al. Hierarchically porous CuAg via 3D printing/dealloying for tunable CO2 reduction to syngas
Huo et al. Applications of nickel‐based electrocatalysts for hydrogen evolution reaction
Wang et al. Etching-assisted route to Heterophase Au nanowires with multiple types of active surface sites for Silane oxidation
KR20180008404A (ko) 금속 보로하이드라이드 용액의 촉매적으로 유도된 가수분해 및 재생 방법
Hu et al. Activation matters: hysteresis effects during electrochemical looping of colloidal Ag nanowire catalysts
US9624598B2 (en) Segmented metallic nanostructures, homogeneous metallic nanostructures and methods for producing same
CN113913858B (zh) 一种液氮环境脉冲激光直写制备富含晶体缺陷的催化电极的制备方法
Yin et al. Macroporous Pt modified glassy carbon electrode: Preparation and electrocatalytic activity for methanol oxidation
Guo et al. Facet-Controlled PdP Nanosheets for Ethanol Electrooxidation
Kim et al. One-pot synthesis of ternary alloy hollow nanostructures with controlled morphologies for electrocatalysis
KR101662708B1 (ko) 평면내 육방정계질화붕소층에 그래핀이 삽입된 복합체 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xi Wei

Inventor after: Hou Xingang

Inventor after: Luo Jun

Inventor before: Hou Xingang

Inventor before: Xi Wei

Inventor before: Luo Jun

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant