CN110743531B - 一种用于萘降解双相V-Ti高效催化剂的制备方法 - Google Patents

一种用于萘降解双相V-Ti高效催化剂的制备方法 Download PDF

Info

Publication number
CN110743531B
CN110743531B CN201911092668.2A CN201911092668A CN110743531B CN 110743531 B CN110743531 B CN 110743531B CN 201911092668 A CN201911092668 A CN 201911092668A CN 110743531 B CN110743531 B CN 110743531B
Authority
CN
China
Prior art keywords
naphthalene
catalyst
titanium
biphase
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911092668.2A
Other languages
English (en)
Other versions
CN110743531A (zh
Inventor
刘广
秦娟
周志伟
张雨琛
徐梓琴
武文良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201911092668.2A priority Critical patent/CN110743531B/zh
Publication of CN110743531A publication Critical patent/CN110743531A/zh
Application granted granted Critical
Publication of CN110743531B publication Critical patent/CN110743531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B01J35/615
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • B01J35/633
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

本发明涉及一种用于萘降解双相V‑Ti高效催化剂的制备方法,其具体步骤如下:将模板剂加入乙醇中,超声搅拌溶解,再将钛源、钒源依次加入上述溶液中,搅拌溶解;经过恒温恒湿挥发形成凝胶;在空气中煅烧,最后得到用于萘降解双相V‑Ti高效催化剂。本发明制得的催化剂具有较大的比表面积,催化剂中的双相协同作用与过渡金属的掺杂作用成功耦合,提供大量的氧空位和更多的活性组分。催化剂在相对温和的催化条件下,对环境污染物萘的降解率高,稳定性好,回收利用容易,可多次循环使用,而且反应过程操作简单,绿色经济,对环保有很大意义。

Description

一种用于萘降解双相V-Ti高效催化剂的制备方法
技术领域
本发明涉及一种催化剂,尤其涉及一种用于萘降解双相V-Ti高效催化剂的制备方法。
背景技术
多环芳烃(PAHs)是具有两个或多个苯环的化学污染物,主要来源于煤焦油的炼制和加工过程以及化石燃料的不完全燃烧。而萘作为结构最简单的多环芳烃,由于其毒性、致突变性及潜在致癌性被认定为一种典型的环境污染物,被美国环境保护署(EPA)和国际癌症研究机构(IARC)列为16种优先控制的环境污染物之一。萘的液相氧化法由于成本低,反应条件温和,节能环保等特点得到广泛研究。但也出现了催化剂利用率低,成本高等问题,因此,寻求高效的催化剂迫在眉睫。
介孔TiO2由于其突出的特性如成本低,环境友好,聚合物丰富,化学和热稳定性好而备受关注。TiO2具有三种天然存在的晶型:锐钛矿,金红石和板钛矿。锐钛矿是一种亚稳态TiO2晶相,它倾向于转变为金红石相,减少表面积,导致催化活性丧失。Zhang等报道在强酸性条件下,由于氯离子会中断金红石结构的生长(影响程度取决于氯离子浓度),从而形成双相结构,且干燥煅烧后会在相界面处形成氧空位,氧空位等缺陷可以作为固体表面的反应位点,从而提高其催化活性。An等制备具有氧空位的锐钛矿-金红石双相TiO2用于光催化制氢,结果显示其析氢速率是空白TiO2纳米管的19倍。Fang等通过原位还原的方法制备了Ti3+自掺杂的TiO2,进一步增加了催化剂的氧空位浓度。但是,催化剂的催化活性受限于较小的比表面积。已证明金属元素的掺杂可以改善TiO2的性质,提高比表面积和催化活性,其中V-TiO2催化剂是很有前景的催化体系,氧化钒和二氧化钛载体之间的协同作用负责该系统的催化功能。Zhu等制备掺钒的锐钛矿-金红石双相介孔V-TiO2光催化剂用于降解苯酚和4-氯苯酚,结果表明催化剂具有良好的结晶度,比表面积也得到很大提高。但是其制备过程繁琐,而且制备条件苛刻。Yv等通过传统的一锅溶胶凝胶法制备锐钛矿相介孔V-TiO2催化剂用于萘双氧水催化氧化反应。结果表明锐钛矿相介孔TiO2的热稳定性低、有序性差和氧空位浓度低等缺点仍然严重影响着催化剂的催化性能,而且较小的比表面积小仍然影响着催化剂的应用。
发明内容
本发明的目的是为了改进现有技术的不足而提供一种用于萘降解双相V-Ti高效催化剂的制备方法。制备的催化剂极大地提高了萘的降解,对环境保护有很大意义。
本发明的技术方案为:一种用于萘降解双相V-Ti高效催化剂的制备方法,其具体步骤如下:
1)将模板剂加入乙醇中,超声搅拌溶解;
2)将有机和无机钛源、钒源依次加入上述溶液中,超声搅拌溶解得混合溶液;
3)恒温恒湿挥发形成凝胶;
4)在空气中煅烧,得到用于萘降解双相V-Ti高效催化剂。
本发明制得的用于萘降解双相V-Ti高效催化剂以二氧化钛为载体,五氧化二钒为活性组分,其中五氧化二钒与二氧化钛的摩尔比为0.09-0.11:1。
优选所述的模板剂为P123、F127或CTAB中的一种;模板剂在乙醇溶液中的浓度为0.0040-0.0060mol/L。
优选所述的无机钛源为四氯化钛或三氯化钛,所述的有机钛源为异丙醇钛或钛酸四丁酯;钒源为乙酰丙酮氧钒或草酸氧钒中的一种;优选混合溶液中钛源的浓度为0.26-0.34mol/L,无机和有机钛源的摩尔比为1:1.7~2.6;钒源的浓度为0.024-0.036mol/L;溶液中钒钛元素的摩尔比为0.09-0.11:1。
优选步骤2)中搅拌温度为35-45℃,搅拌时间为4-6h。
优选步骤3)中挥发温度为35-45℃,挥发湿度为50%-60%。
优选步骤4)中煅烧温度为350-450℃,煅烧时间为5-7h。
有益效果:
1、本发明提供的技术方案制备用于萘降解双相V-Ti高效催化剂具有较大的比表面积(305m2·g-1,优于文献值247m2·g-1);
2、本发明提供的用于萘降解双相V-Ti高效催化剂中双相协同作用提供了大量的氧空位,催化剂具有更多的吸附位点,同时与过渡金属钒耦合为催化剂提供了较强的活性组分浓度,在萘双氧水催化氧化反应中表现出较高的催化性能;
3、本发明提供的技术方案通过制备高效催化剂提高双氧水对萘的降解率,催化剂稳定性好,回收利用容易,可多次循环使用,对环保有很大意义。
附图说明
图1是实施例1~3制备的用于萘降解双相V-Ti高效催化剂的小角XRD图;
图2是实施例1~3制备的用于萘降解双相V-Ti高效催化剂的广角XRD图;
图3是实施例1~3制备的用于萘降解双相V-Ti高效催化剂的氮气吸脱附曲线;
图4是实施例1~3制备的用于萘降解双相V-Ti高效催化剂的BJH曲线;其中a为实施例1中制备的催化剂9V-TiO2-1,b为实施例2中制备的催化剂10V-TiO2-2,c为实施例3中制备的催化剂11V-TiO2-3。
具体实施方式
实施例1:将0.11mmol的环氧丙烷与环氧乙烷的共聚物(F127)溶于26ml乙醇中(浓度为0.0042mol/L),36℃水浴下搅拌过夜。向上述溶液中加入0.63mmol的草酸氧钒(0.024mol/L),将0.38g四氯化钛和1.43g异丙醇钛依次加入到溶液中(钛源浓度0.27mol/L),超声30min,进一步在36℃水浴下搅拌6h。然后将溶液转移到培养皿中36℃、52%湿度下挥发至凝胶态,在350℃空气中焙烧7h得到用于萘降解双相V-Ti高效催化剂9V-TiO2-1(钒钛摩尔比为0.9,钒的负载量为9%)。
实施例2:将0.15mmol聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)溶于30ml乙醇中(浓度为0.0050mol/L),40℃水浴下搅拌过夜。向上述溶液中加入0.9mmol的乙酰丙酮氧钒(0.030mol/L),将0.46g三氯化钛和1.71g异丙醇钛依次加入到溶液中(钛源浓度0.30mol/L),再向上述溶液中加入2g盐酸,超声30min,进一步在40℃水浴下搅拌5h。然后将溶液转移到培养皿中40℃、55%湿度下挥发至凝胶态,在400℃空气中焙烧6h得到用于萘降解双相V-Ti高效催化剂10V-TiO2-2(钒钛摩尔比为1,钒的负载量为10%)。
实施例3:将0.20mmol十六烷基三甲基溴化铵(CTAB)溶于34ml乙醇中(浓度为0.0059mol/L),44℃水浴下搅拌过夜。向上述溶液中加入1.21mmol的乙酰丙酮氧钒(0.036mol/L),将0.62g三氯化钛和2.4g钛酸四乙酯依次加入到溶液中(钛源浓度0.33mol/L),再向上述溶液中加入1.5g盐酸,超声30min,进一步在44℃水浴下搅拌4h。然后将溶液转移到培养皿中44℃、59%湿度下挥发至凝胶态,在450℃空气中焙烧5h得到用于萘降解双相V-Ti高效催化剂11V-TiO2-3(钒钛摩尔比为1.1,钒的负载量为11%)。
从图1可以看出,制备的催化剂都是介孔结构;图2可以发现催化剂a的载体为纯锐钛矿相二氧化钛,催化剂b和c的载体都是具有锐钛矿和金红石双向结构的二氧化钛。其氮气吸脱附曲线如图3所示,图中所示曲线均为Ⅳ型吸附曲线,所有催化剂都具有H2型滞回环,表明其介孔结构;图4表明催化剂的孔径单一。表1为用于萘降解双相V-Ti高效催化剂的孔结构数据,其中10V-TiO2-2催化剂具有最大的比表面积,孔容和孔径。
表1
催化剂 孔径/(nm)<sup>a</sup> 比表面积/(m<sup>2</sup>·g<sup>-1</sup>)<sup>b</sup> 孔容/(cm<sup>3</sup>·g<sup>-1</sup>)<sup>c</sup>
9V-TiO<sub>2</sub>-1 3.85 263 0.23
10V-TiO<sub>2</sub>-2 4.78 305 0.37
11V-TiO<sub>2</sub>-3 4.58 278 0.31
a BJH method;b BET specific areas;c P/P0=0.99
本发明还提供了利用上述所制备的用于萘降解双相V-Ti高效催化剂对萘双氧水催化氧化的方法,其具体步骤如下:
将萘、氧化剂、制得的催化剂依次加入溶剂中进行催化氧化反应;其中上述氧化剂为过氧化氢;反应条件为:m催化剂:m=0.1-0.2,m氧化剂:m=5-7,m溶剂:m=20-30,反应时间6-7h,反应温度60-70℃。
具体操作为:将一定量的萘和与萘质量比为0.1-0.2的催化剂同时加入20-30g乙腈作为溶剂中,并将混合物保持搅拌10min。然后,通过注射器在20min内将5-7g H2O2(30%重量比)加入反应体系中。将反应混合物保持在60-70℃水浴下反应6-7h并通过冷凝器冷凝回流。通过离心分离液体产物以除去催化剂,并在配备有OV-1701柱的火焰离子化检测器的SP-6890气相色谱仪上进行分析。通过离心分离催化剂并用乙腈和乙醇洗涤,然后在105-115℃下干燥4h以研究可重复使用性。
实施例4-12:
以上述三个样品为催化剂,在萘双氧水氧化体系测试其催化性能。反应温度为65℃,反应时间为6h,氧化剂与萘的比为1.5,溶剂与萘的比例为20,催化剂与萘的比分别为0.10、0.15、0.20时,实验结果见表2。
表2催化剂用量对萘的转化率的影响
Figure BDA0002267258110000051
由表2可见,随着催化剂用量的增加,萘的转化率逐渐增加,当催化剂与萘的比例到达0.15时,萘的转化率增加不明显,且10V-TiO2-2的转化率最高。再增加催化剂用量,,因此,催化剂用量为与萘的比例的0.15-0.20最为适宜,转化率为42.3%。
实施例13-21:
以上述三个样品为催化剂,在萘双氧水氧化体系测试其催化性能。反应温度为65℃,反应时间为6h,催化剂与萘的比例为0.15,溶剂与萘的比例为20,氧化剂与萘的比分别为5、6、7时,实验结果见表3。
表3氧化剂用量对萘的转化率的影响
Figure BDA0002267258110000052
由表3可见,随着双氧水用量的增加,萘的转化率不断增加,但当双氧水与萘的质量比为6时,萘的转化率基本稳定。
实施例22-30:
以上述三个样品为催化剂,在萘双氧水氧化体系测试其催化性能。催化剂与萘的质量比为0.15,氧化剂与萘的比为1.5,溶剂与萘的比例为20,反应时间为6h,反应温度分别为60、65、70℃时,实验结果见表4。
表4反应温度对萘的转化率的影响
Figure BDA0002267258110000061
由表4可见,随着反应温度的升高,萘的转化率逐渐增加,但当反应温度升至65℃时,萘的转化率基本稳定。
实施例31-36:
以上述三个样品为催化剂,在萘双氧水氧化体系测试其催化性能。催化剂与萘的质量比为0.15,氧化剂与萘的比为1.5,溶剂与萘的比例为20,反应温度为65℃,反应时间分别为6、7h时,实验结果见表5。
表5反应时间对萘的转化率的影响
Figure BDA0002267258110000062
由表5可见,当反应时间为6h时,萘的转化率基本稳定,反应时间在6h时,催化氧化过程基本完成。
实施例37-45:
以上述三个样品为催化剂,在萘双氧水氧化体系测试其催化性能。反应温度为65℃,反应时间为6h,催化剂与萘的比例为0.15,氧化剂与萘的比为6,溶剂与萘的比例分别为20、25、30时,实验结果见表6。
表6溶剂用量对萘的转化率的影响
Figure BDA0002267258110000063
Figure BDA0002267258110000071
由表6可见,随着乙腈用量的增加,萘的转化率增加不明显,当溶剂与萘的比例为25时,萘的转化率基本不再增长。

Claims (5)

1.一种用于萘降解双相V-Ti高效催化剂的制备方法,其具体步骤如下:
1)将模板剂加入乙醇中,超声搅拌溶解;所述的模板剂为P123、F127或CTAB中的一种;模板剂在乙醇溶液中的浓度为0.0040-0.0060mol/L;
2)将有机和无机钛源、钒源依次加入上述溶液中,超声搅拌溶解得混合溶液;其中所述的无机钛源为四氯化钛或三氯化钛,所述的有机钛源为异丙醇钛或钛酸四丁酯;钒源为乙酰丙酮氧钒或草酸氧钒中的一种;混合溶液中钛源的浓度为0.26-0.34mol/L,无机和有机钛源的摩尔比为1:1.7~2.6;钒源的浓度为0.024-0.036mol/L;溶液中钒钛元素的摩尔比为0.09-0.11:1;
3)恒温恒湿挥发形成凝胶;
4)在空气中煅烧,得到用于萘降解双相V-Ti高效催化剂。
2.根据权利要求1所述的制备方法,其特征在于制得的用于萘降解双相V-Ti高效催化剂以二氧化钛为载体,五氧化二钒为活性组分,其中五氧化二钒与二氧化钛的摩尔比为0.09-0.11:1。
3.根据权利要求1所述的制备方法,其特征在于步骤2)中搅拌温度为35-45℃,搅拌时间为4-6h。
4.根据权利要求1所述的制备方法,其特征在于步骤3)中挥发温度为35-45℃,挥发湿度为50%-60%。
5.根据权利要求1所述的制备方法,其特征在于步骤4)中煅烧温度为350-450℃,煅烧时间为5-7h。
CN201911092668.2A 2019-11-11 2019-11-11 一种用于萘降解双相V-Ti高效催化剂的制备方法 Active CN110743531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911092668.2A CN110743531B (zh) 2019-11-11 2019-11-11 一种用于萘降解双相V-Ti高效催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911092668.2A CN110743531B (zh) 2019-11-11 2019-11-11 一种用于萘降解双相V-Ti高效催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110743531A CN110743531A (zh) 2020-02-04
CN110743531B true CN110743531B (zh) 2022-08-30

Family

ID=69282861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911092668.2A Active CN110743531B (zh) 2019-11-11 2019-11-11 一种用于萘降解双相V-Ti高效催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110743531B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714936A (zh) * 2005-06-09 2006-01-04 吉化集团公司 纳米级过渡金属氧化催化剂及其制备方法和应用
CN101298045A (zh) * 2008-06-12 2008-11-05 南京工业大学 用于催化氧化的金属/二氧化钛催化剂及其制备方法
CN102258992A (zh) * 2011-06-23 2011-11-30 浙江大学 一种表面铁修饰的二氧化钛光催化剂及其制备方法和用途
CN102513079A (zh) * 2011-11-22 2012-06-27 南京工业大学 具有高效光电活性的可控晶形二氧化钛与石墨烯复合材料及其制备方法
CN102926030A (zh) * 2012-10-15 2013-02-13 东华大学 一种含TiO2/WO3异质结纳米纤维的制备方法
KR20130124601A (ko) * 2012-05-07 2013-11-15 양현섭 광촉매 코팅한 플라스틱 제조 방법
CN104211109A (zh) * 2014-06-12 2014-12-17 中国科学院福建物质结构研究所 高纯度的板钛矿型二氧化钛纳米片及其制备方法和应用
CN104906946A (zh) * 2015-04-29 2015-09-16 南京工业大学 一种用于气体净化的催化膜制备方法
CN108126720A (zh) * 2018-01-15 2018-06-08 安徽工业大学 一种催化氧化no的掺杂钴改性钒磷氧化物负载型催化剂及制备方法
CN109626677A (zh) * 2019-02-22 2019-04-16 江苏同瑞环保有限公司 一种焦化废水深度处理工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714936A (zh) * 2005-06-09 2006-01-04 吉化集团公司 纳米级过渡金属氧化催化剂及其制备方法和应用
CN101298045A (zh) * 2008-06-12 2008-11-05 南京工业大学 用于催化氧化的金属/二氧化钛催化剂及其制备方法
CN102258992A (zh) * 2011-06-23 2011-11-30 浙江大学 一种表面铁修饰的二氧化钛光催化剂及其制备方法和用途
CN102513079A (zh) * 2011-11-22 2012-06-27 南京工业大学 具有高效光电活性的可控晶形二氧化钛与石墨烯复合材料及其制备方法
KR20130124601A (ko) * 2012-05-07 2013-11-15 양현섭 광촉매 코팅한 플라스틱 제조 방법
CN102926030A (zh) * 2012-10-15 2013-02-13 东华大学 一种含TiO2/WO3异质结纳米纤维的制备方法
CN104211109A (zh) * 2014-06-12 2014-12-17 中国科学院福建物质结构研究所 高纯度的板钛矿型二氧化钛纳米片及其制备方法和应用
CN104906946A (zh) * 2015-04-29 2015-09-16 南京工业大学 一种用于气体净化的催化膜制备方法
CN108126720A (zh) * 2018-01-15 2018-06-08 安徽工业大学 一种催化氧化no的掺杂钴改性钒磷氧化物负载型催化剂及制备方法
CN109626677A (zh) * 2019-02-22 2019-04-16 江苏同瑞环保有限公司 一种焦化废水深度处理工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Degradation of naphthalene by liquid-phase oxidation over ordered mesoporous V-m-TiO2 catalysts";Zhiwei Zhou et al;《JOURNAL OF POROUS MATERIALS》;20171212;第25卷;1366页第2节 *
"Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability";Yan Zhou et al;《THE JOURNAL OF PHYSICAL CHEMISTRY》;20160303;第120卷(第11期);第6116页右栏第1段,第6117页左栏第3段,第6120页左栏第2段,右栏第1段 *
"Well-organized 3D urchin-like hierarchical TiO2 microspheres with high photocatalytic activity";Liqin Xiang et al;《J Mater Sci》;20110916;第47卷;第1436-1445页 *
"天然钒钛磁铁矿非均相Fenton法降解酸性橙Ⅱ的研究";梁晓亮等;《矿物学报》;20100315;第30卷(第1期);第40-48页 *

Also Published As

Publication number Publication date
CN110743531A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
Amini et al. Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles
Kuwahara et al. Esterification of levulinic acid with ethanol over sulfated Si-doped ZrO2 solid acid catalyst: study of the structure–activity relationships
Yu et al. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process
Zhao et al. Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst
Wang et al. Synthesis of nanocrystalline TiO2 in alcohols
Rezvani et al. Synthesis of new nanocomposite based on ceramic and heteropolymolybdate using leaf extract of Aloe vera as a high‐performance nanocatalyst to desulfurization of real fuel
CN101391811B (zh) 一种高比表面积二氧化钛的制备方法
CN101347732B (zh) 多孔掺铁二氧化钛光催化剂的制备方法
CN102773117A (zh) 一种中油型加氢裂化催化剂及其制备方法
Yao et al. Highly efficient catalytic oxidation of cyclohexane over cobalt-doped mesoporous titania with anatase crystalline structure
Faria et al. 13 Carbon Materials in Photocatalysis
CN101780404A (zh) 具有高比表面积介孔二氧化钛光催化剂的一种新型制备方法
Shen et al. Insight into Ce Doping Induced Oxygen Vacancies over Ce‐Doped Mno2 Catalysts for Imine Synthesis
Miao et al. Facile and new synthesis of cobalt doped mesoporous TiO2 with high visible-light performance
Xun et al. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization
Su et al. Enhanced oxidative desulfurization of fuel in ionic liquid by TiO2 quantum dots catalysts modified with Anderson-type polyoxometalate
US6544637B1 (en) Porous inorganic material having pore walls of crystalline titanium oxide and method of producing same
Yu et al. High-index planes T-Nb2O5 using self-assembly strategy for aerobic oxidative desulfurization in fuels
CN110743531B (zh) 一种用于萘降解双相V-Ti高效催化剂的制备方法
Song et al. Construction of an La-BiVO4/O-Doped g-C3N4 Heterojunction Photocatalyst Embedded in Electrospinning Nanofibers
Bhattacharyya et al. Mechanistic insight by in situ FTIR for the gas phase photo-oxidation of ethylene by V-doped titania and nano titania
CN104923197A (zh) 具有高效光催化性能的复合物溶胶制备方法
EP2840066B1 (en) Metal complex of fluorinated tin oxide and titanium oxide and preparation method thereof
CN115518673A (zh) 一种VOCs高效降解Pt-CeTi复合分子筛催化剂的制备方法
BSTR Deep oxidative desulfurization of model fuels by prepared nano TiO2 with phosphotungstic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant