CN110668491A - 一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用 - Google Patents

一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110668491A
CN110668491A CN201910977483.3A CN201910977483A CN110668491A CN 110668491 A CN110668491 A CN 110668491A CN 201910977483 A CN201910977483 A CN 201910977483A CN 110668491 A CN110668491 A CN 110668491A
Authority
CN
China
Prior art keywords
tio
composite material
framework
nano
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910977483.3A
Other languages
English (en)
Inventor
潘安强
谢雪芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910977483.3A priority Critical patent/CN110668491A/zh
Publication of CN110668491A publication Critical patent/CN110668491A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,包括如下步骤:(1)将高分子化合物添加到有机溶剂中,充分搅拌得到混合均匀的透明溶液,依次往透明溶液中加入乙酸、钛源和氯化亚锡后得到纺丝母液,所述钛源中的钛和氯化亚锡中的锡的摩尔比为1:1;(2)将纺丝母液进行静电纺丝后得到前驱体;(3)在惰性气氛下,将前驱体与硫源于500℃下进行煅烧即得复合材料。本发明通过严格控制合成过程中的钛、锡摩尔比以及前驱体煅烧温度,配合静电纺丝方法,得到以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料,合成产物形貌特殊,是具有分级结构的复合纳米材料。

Description

一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其 制备方法和应用
技术领域
本发明属于锂离子电池负极材料技术领域,涉及一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用。
背景技术
近年来,锡基负极材料由于储存丰富,价格低廉且具有较高的理论容量等优点受到研究者的广泛关注,被认为是一种有望替代石墨极具潜力的负极材料。然而由于锡基材料首圈库伦效率较低,在充放电的过程中体积膨胀现象较为严重,导致电极材料从集流体上脱落,造成容量迅速衰减,从而严重制约了其商业应用。因此,研究人员通过不同的方法对锡基材料进行改性,通常是通过纳米化和制备更小尺寸的电极材料来改善其的电化学性能。[1,2]
在各种金属氧化物中,TiO2尤其是非晶态TiO2或经过氢处理的TiO2,由于其具有丰富的缺陷和与活性物质强烈的化学相互作用,可以保证较长的循环寿命,因此在复合材料中被广泛用作硫的寄主、保护层或缓冲层。近年来的研究表明,设计独特的纳米材料或碳质材料复合材料是提高电化学性能的两种有效途径。
[1]Wu,P.;Du,N.;Zhang,H.;Liu,J.;Chang,L.;Wang,L.;Yang,D.;Jiang,J.-Z.Layer-Stacked Tin Disulfide Nanorods in Silica Nanoreactors with ImprovedLithium Storage Capabilities.Nanoscale,2012,4,4002-4006.
[2]Mukaibo,H.;Yoshizawa,A.;Momma,T.;Osaka,T.Particle Size andPerformance of SnS2 Anodes for Rechargeable Lithium Batteries.J.PowerSources2003,119,60-63.
发明内容
为了解决现有锡基负极材料存在的缺陷,本发明的目的是在于提供一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,通过严格控制合成过程中的钛、锡摩尔比以及前驱体煅烧温度,配合静电纺丝方法,得到以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料,合成产物形貌特殊,是具有分级结构的复合纳米材料,促使单相以及材料内部在分级层面上可以充分发挥两相的协同作用,有利于增大电解液和电极材料的接触面积,减小极化,更好地适应锂离子嵌入和脱出过程中的应力变化,从而提高材料的比容量和循环稳定性能。
为了实现上述技术目的,本发明提供了一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,包括如下步骤:
(1)将高分子化合物添加到有机溶剂中,充分搅拌得到混合均匀的透明溶液,依次往透明溶液中加入乙酸、钛源和氯化亚锡后得到纺丝母液,所述钛源中的钛和氯化亚锡中的锡的摩尔比为1:1;
(2)将步骤(1)中的纺丝母液进行静电纺丝后得到前驱体;
(3)在惰性气氛下,将步骤(2)中的前驱体与硫源于500℃下进行煅烧即得复合材料。
优选的,步骤(1)中,所述的高分子化合物为聚乙烯吡咯烷酮或聚乙烯醇,所述的有机溶剂为N,N-二甲基甲酰胺或无水乙醇,高分子化合物与有机溶剂的固液比为0.1~0.3g/mL。
优选的,步骤(1)中,纺丝母液中乙酸与有机溶剂的体积比为0.3~0.5,钛源和氯化亚锡的浓度均为0.2~0.5mol/L。
优选的,步骤(1)中,所述钛源为钛酸四丁酯或钛酸异丙酯。
优选的,步骤(2)中,静电纺丝的工艺条件为:纺丝母液流量为10~16μl/min,针尖-收集器距离为120~150mm,电压为11-14kV。
优选的,步骤(3)中,所述硫源为硫脲、硫粉或硫化氢,硫源与氯化亚锡的摩尔比为1.1~1.5:1。
优选的,步骤(3)中,煅烧工艺条件:煅烧时间为0.5-8h,升温速率为0.1~5℃/min。
本发明还提供了由上述制备方法制得的以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料。
本发明还提供了所述的以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的应用,将其用作锂离子电池负极材料。
与现有技术相比,本发明具有以下优点:
1、本发明通过严格控制合成过程中的钛、锡摩尔比以及前驱体煅烧温度,配合静电纺丝方法,得到以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料,合成产物形貌特殊,是具有分级结构的复合纳米材料,促使单相以及材料内部在分级层面上可以充分发挥两相的协同作用,有利于增大电解液和电极材料的接触面积,减小极化,更好地适应锂离子嵌入和脱出过程中的应力变化。
2、本发明的复合纳米材料应用于锂离子电池时,从电池性能进行分析,分级结构可以与电解液充分接触,特别是在大电流密度下,能够获得较高的比容量和稳定的循环性能。
附图说明
图1为实施例1制得的SS@TO-11的XRD图;
图2为实施例1制得的SS@TO-11的SEM图;
图3为实施例1制得的SS@TO-11的TEM图;
图4为对比例1制得的SS@TO-12的SEM图;
图5为对比例2制得的SS@TO-21的SEM图;
图6为对比例3制得的SS@TO-400的SEM图;
图7为对比例4制得的SS@TO-600的SEM图;
图8为实施例1制得的SS@TO-11、对比例1制得的SS@TO-12、对比例2制得的SS@TO-21、对比例5制得的TO和对比例6制得的SS在电流密度为0.1Ag-1条件下的循环容量对比图。
图9为实施例1制得的SS@TO-11、对比例1制得的SS@TO-12、对比例2制得的SS@TO-21、对比例5制得的TO和对比例6制得的SS在不同电流密度下的倍率性能对比图。
图10实施例1制得的SS@TO-11在电流密度为1A g-1条件下的循环容量图。
具体实施方式
以下实施方式和实施例旨在进一步说明本发明,而不是对本发明的限制。
实施例1
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将2mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入1mmol的钛酸四丁酯,搅拌至澄清的淡黄色,加入1mmol的氯化亚锡,40℃搅拌8h使其充分混合得到纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入1.2mmol的硫粉,以2℃/min的升温速率至500℃的条件进行热处理3h得到复合材料SS@TO-11。
采用日本理学D/max-2500型X射线衍射分析仪分析所得样品,所得结果如图1所示(该材料是由SnS和TiO2复合而成)。
使用美国FEI公司NovaNanoSEM 230扫描电镜观察样品形貌观察,如图2所示(该材料是以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料)。
采用日本JEOL JEM-2100F透射电镜观察样品的形貌细节,如图3所示,该材料具有明显的分级结构。
按照复合材料80wt.%、超导碳黑10wt.%和羧甲基纤维素10wt.%混合均匀,制成浆料,均匀涂覆在铜箔上,真空烘干后组装成扣式电池进行电化学性能测试。循环性能测试电压范围为0.01~3V,电流密度为1A g-1。其循环性能结果如图10所示(相比第4圈而言,在400圈后保留了383mAh g-1容量,每圈的保留容量为82.4%,容量衰减率为0.04%,说明该材料具有良好的稳定性)。
对比例1
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将2mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入1mmol的钛酸四丁酯,搅拌至澄清的淡黄色,加入2mmol的氯化亚锡,40℃搅拌8h使其充分混合得到纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入2.4mmol的硫粉,以2℃/min的升温速率至500℃的条件进行热处理3h得到复合材料SS@TO-12。
使用美国FEI公司NovaNanoSEM 230扫描电镜观察样品形貌和粒径,如图4所示,可发现形貌为纳米带。
对比例2
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将4mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入2mmol的钛酸四丁酯,搅拌至澄清的淡黄色,加入1mmol的氯化亚锡,40℃搅拌8h使其充分混合得到纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入1.2mmol的硫粉,以2℃/min的升温速率至500℃的条件进行热处理3h得到复合材料SS@TO-21。
使用美国FEI公司NovaNanoSEM 230扫描电镜观察样品形貌,如图5所示,形貌为表面光滑的纳米纤维。
对比例3
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将2mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入1mmol的钛酸四丁酯,搅拌至澄清的淡黄色,加入1mmol的氯化亚锡,40℃搅拌8h使其充分混合纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入1.2mmol的硫粉,以2℃/min的升温速率至400℃的条件进行热处理3h得到复合材料SS@TO-400。
使用美国FEI公司NovaNanoSEM 230扫描电镜观察样品形貌,如图6所示,形貌主要为纳米纤维,部分发生团聚现象,没有出现分级结构。
对比例4
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将2mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入1mmol的钛酸四丁酯,搅拌至澄清的淡黄色,加入1mmol的氯化亚锡,40℃搅拌8h使其充分混合纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入1.2mmol的硫粉,以2℃/min的升温速率至600℃的条件进行热处理3h得到复合材料SS@TO-600。
使用美国FEI公司NovaNanoSEM 230扫描电镜观察样品形貌,如图7所示在温度为600℃时,形貌为纳米纤维状,并没有形成分级结构。
对比例5
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将2mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入1mmol的钛酸四丁酯,搅拌至澄清的淡黄色,40℃继续搅拌8h得到纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入1.2mmol的硫粉,以2℃/min的升温速率至500℃的条件进行热处理3h得到TO。
对比例6
将0.5g聚乙烯吡咯烷酮加入到4.6mL的N,N-二甲基甲酰胺中,在35℃条件下搅拌,得到混合均匀的透明溶液,将2mL的乙酸溶液加入上述透明溶液中搅拌均匀,并加入1mmol的氯化亚锡,40℃继续搅拌8h得到纺丝母液,将纺丝母液转移到一个带有20号不锈钢针头的5ml注射器中,针尖-收集器距离为120mm,并施加12kV的电压,控制纺丝母液的推进速度为12μl/min进行静电纺丝后得到前驱体。所得的前驱体在氩气气氛中加入1.2mmol的硫粉,以2℃/min的升温速率至500℃的条件进行热处理3h得到SS。
如图8所示,在电流密度为0.1Ag-1时,循环50圈后,SS@TO-11样品保留了相对于第二圈的84%循环容量。与SS@TO-11相比,SS在整个测试过程中的容量衰减较为严重。
如图9所示,经过倍率性能的对比,在50mAg-1~2000mAg-1电流密度之间,SS@TO-11电极的倍率性能优于其他四种电极。
如图10所示,在电流密度为1Ag-1时,前2圈是先在0.1Ag-1小电流密度下测试,SS@TO-11在第四圈提供了465mAh g-1容量,在400圈后保留了383mAh g-1容量,每圈的保留容量为82.4%,容量衰减率为0.04%。
综上所述,TiO2在硫化过程中起到了减缓Sn团聚和晶体生长的作用,从而成功地维持了纳米纤维的形貌,保证了SS@TO-11良好的循环性能,由此可以看出经过与钛复合后得到的具有独特分级结构的以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料能大幅度的提升材料的稳定性。

Claims (9)

1.一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于,包括如下步骤:
(1)将高分子化合物添加到有机溶剂中,充分搅拌得到混合均匀的透明溶液,依次往透明溶液中加入乙酸、钛源和氯化亚锡后得到纺丝母液,所述钛源中的钛和氯化亚锡中的锡的摩尔比为1:1;
(2)将步骤(1)中的纺丝母液进行静电纺丝后得到前驱体;
(3)在惰性气氛下,将步骤(2)中的前驱体与硫源于500℃下进行煅烧即得复合材料。
2.根据权利要求1所述的一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于:步骤(1)中,所述的高分子化合物为聚乙烯吡咯烷酮或聚乙烯醇,所述的有机溶剂为N,N-二甲基甲酰胺或无水乙醇,高分子化合物与有机溶剂的固液比为0.1~0.3g/mL。
3.根据权利要求1所述的一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于:步骤(1)中,纺丝母液中乙酸与有机溶剂的体积比为0.3~0.5,钛源和氯化亚锡的浓度均为0.2~0.5mol/L。
4.根据权利要求1所述的一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于:步骤(1)中,所述钛源为钛酸四丁酯或钛酸异丙酯。
5.根据权利要求1所述的一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于:步骤(2)中,静电纺丝的工艺条件为:纺丝母液流量为10~16μl/min,针尖-收集器距离为120~150mm,电压为11-14kV。
6.根据权利要求1所述的一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于:步骤(3)中,所述硫源为硫脲、硫粉或硫化氢,硫源与氯化亚锡的摩尔比为1.1~1.5:1。
7.根据权利要求1所述的一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的制备方法,其特征在于:步骤(3)中,煅烧工艺条件:煅烧时间为0.5-8h,升温速率为0.1~5℃/min。
8.权利要求1-7任一项所述的制备方法制得的以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料。
9.权利要求1-7任一项所述的制备方法制得的以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料或权利要求8所述的以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料的应用,其特征在于:将其用作锂离子电池负极材料。
CN201910977483.3A 2019-10-15 2019-10-15 一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用 Pending CN110668491A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910977483.3A CN110668491A (zh) 2019-10-15 2019-10-15 一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910977483.3A CN110668491A (zh) 2019-10-15 2019-10-15 一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110668491A true CN110668491A (zh) 2020-01-10

Family

ID=69082569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910977483.3A Pending CN110668491A (zh) 2019-10-15 2019-10-15 一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110668491A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416124A (zh) * 2020-03-27 2020-07-14 陕西科技大学 一种自立式Sn-SnS/CNTs@C柔性薄膜及其制备和应用
CN112357951A (zh) * 2020-10-16 2021-02-12 湖北大学 一种SnS纳米片的固相制备方法
CN113809225A (zh) * 2021-09-17 2021-12-17 陕西科技大学 一种SnS/C-PEDOT:PSS柔性热电薄膜及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUEFANG XIE ET AL.: ""Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO2"", 《J. MATER. CHEM. A》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416124A (zh) * 2020-03-27 2020-07-14 陕西科技大学 一种自立式Sn-SnS/CNTs@C柔性薄膜及其制备和应用
CN112357951A (zh) * 2020-10-16 2021-02-12 湖北大学 一种SnS纳米片的固相制备方法
CN112357951B (zh) * 2020-10-16 2022-04-19 湖北大学 一种SnS纳米片的固相制备方法
CN113809225A (zh) * 2021-09-17 2021-12-17 陕西科技大学 一种SnS/C-PEDOT:PSS柔性热电薄膜及制备方法
CN113809225B (zh) * 2021-09-17 2022-11-22 陕西科技大学 一种SnS/C-PEDOT:PSS柔性热电薄膜及制备方法

Similar Documents

Publication Publication Date Title
CN107681142B (zh) 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法
CN101969113B (zh) 石墨烯基二氧化锡复合锂离子电池负极材料的制备方法
CN110668491A (zh) 一种以TiO2纳米纤维作为骨架支撑SnS纳米片的复合材料及其制备方法和应用
CN108390048B (zh) 一种氮磷共掺杂碳包覆MoO3-x及其制备方法
CN109473643B (zh) 一种CoSe2/石墨烯复合材料制备方法和用途
CN111943259B (zh) 一种碳包覆介孔双相二氧化钛及其制备方法与储能应用
Liang et al. Synthesis and characterisation of SnO2 nano-single crystals as anode materials for lithium-ion batteries
Meng et al. Spherical nano Sb@ HCMs as high-rate and superior cycle performance anode material for sodium-ion batteries
CN102157727B (zh) 一种锂离子电池负极材料纳米MnO的制备方法
CN117133908A (zh) 一种红磷碳电池负极材料及其制备方法及其应用
CN113651359B (zh) 一种硫化锑纳米棒的制备方法与应用
CN113809286B (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用
Liu et al. V-MOF@ carbon nanotube derived three-dimensional V2O5@ carbon nanotube as high-performance cathode for aqueous zinc-ion batteries
CN113772718A (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
WO2017113125A1 (zh) 作为锂离子电池阳极材料的V2O5-C-SnO2杂化纳米带及其制备方法
CN110776009A (zh) 一种改性的一维铌酸钛及其制备方法和应用
CN113764631A (zh) 一种钠离子电池用FeS0.5Se0.5/CF复合负极材料及其制备方法
Zhang et al. Simple Preparation of Co3O4 with a Controlled Shape and Excellent Lithium Storage Performance
CN112133899B (zh) 锡锑硫化物/石墨烯复合材料的制备方法及其在钠离子电池负极中的应用
CN109244414B (zh) 一种束状MoO3@NC锂离子电池电极材料及其制备方法
CN111446416B (zh) 多级结构相结TiO2复合石墨烯负极材料的制备及应用
CN117080383B (zh) 一种负极材料及铅炭电池
CN114242982B (zh) 石墨烯包覆二维金属化合物电极材料及其制备方法和应用
CN114937760B (zh) 一种氮硫硒共掺杂SnS0.5Se0.5@CNF自支撑电极材料的制备方法
CN113972363B (zh) 一种负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110