CN110665530A - 一种氧掺杂介孔石墨相氮化碳的制备方法 - Google Patents

一种氧掺杂介孔石墨相氮化碳的制备方法 Download PDF

Info

Publication number
CN110665530A
CN110665530A CN201910982166.0A CN201910982166A CN110665530A CN 110665530 A CN110665530 A CN 110665530A CN 201910982166 A CN201910982166 A CN 201910982166A CN 110665530 A CN110665530 A CN 110665530A
Authority
CN
China
Prior art keywords
carbon nitride
phase carbon
mesoporous graphite
graphite phase
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910982166.0A
Other languages
English (en)
Inventor
赵阳
王欢
张彪
陈曦
宋华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201910982166.0A priority Critical patent/CN110665530A/zh
Publication of CN110665530A publication Critical patent/CN110665530A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/39
    • B01J35/613
    • B01J35/633
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明的一种氧掺杂介孔石墨相氮化碳的制备方法,涉及光催化剂技术领域,其操作步骤如下:介孔石墨相氮化碳的制备:将发泡剂以8~12℃/min的速率升温、并在550℃下恒温2h,制得介孔石墨相氮化碳;氧掺杂介孔石墨相氮化碳的制备:将a步骤制得的介孔石墨相氮化碳分散于溶剂中,120℃下恒温8h后,取固体用蒸馏水洗涤,然后在60℃下干燥6h,即得目标产物氧掺杂介孔石墨相氮化碳。本发明通过H2O2溶剂热处理尿素热聚合制备的介孔石墨相氮化碳,以尿素作为发泡剂,得到具有高比表面积的氧掺杂介孔石墨相氮化碳,具有极高的应用价值。

Description

一种氧掺杂介孔石墨相氮化碳的制备方法
技术领域:
本发明涉及光催化剂技术领域,具体涉及一种氧掺杂介孔石墨相氮化碳的制备方法。
背景技术:
石墨氮化碳(g-C3N4)因其具有合适的带隙(2.70eV)、良好的稳定性和无毒等特性而受到科学家的青睐,这些特性都有利于污染物降解和水的光解。然而,对于普通块状g-C3N4来说,在可见光光催化过程中仍然存在一些固有的缺陷,如光生载流子利用率低、带隙较宽和比表面积较小。通常情况下,介孔多孔材料可以通过硬模板法来制备具有较大接触面积的光催化剂,该方法通常使用二维或三维多孔二氧化硅纳米粒子作为模板剂,并通过氢氟化铵(NH4HF2)溶液来移除模板,进而增大催化剂与目标污染物之间的接触面积。而单纯的通过硬模板增加催化剂与污染物之间的接触面积,其效果不明显,同时也不具备较宽的光吸收范围。
发明内容:
本发明的目的是为了克服上述现有技术存在的不足之处,制备了同时具有高比表面积和更宽吸收范围的氧掺杂介孔石墨相氮化碳。
本发明的一种氧掺杂介孔石墨相氮化碳的制备方法,操作步骤如下:
a、介孔石墨相氮化碳的制备:将发泡剂以8~12℃/min的速率升温、并在550℃下恒温2h,制得介孔石墨相氮化碳(mpg-C3N4);
b、氧掺杂介孔石墨相氮化碳的制备:将a步骤制得的介孔石墨相氮化碳分散于溶剂中,120℃下恒温8h后,取固体用蒸馏水洗涤,然后在60℃下干燥6h,即得目标产物氧掺杂介孔石墨相氮化碳(O-mpg-C3N4),其中溶剂与介孔石墨相氮化碳的质量比为1~5:1。
作为本发明的进一步改进,所述的a步骤中所述的发泡剂为尿素或硫脲。
作为本发明的进一步改进,所述的b步骤中所述的溶剂为过氧化氢溶液。
作为本发明的进一步改进,所述的过氧化氢溶液为质量浓度为30%的水溶液。
本发明的一种氧掺杂介孔石墨相氮化碳的制备方法,通过H2O2溶剂热处理尿素热聚合制备的mpg-C3N4,以尿素作为发泡剂,得到具有高比表面积的氧掺杂介孔石墨相氮化碳,其制备流程如图1所示。在尿素焙烧过程中会产生氨和二氧化碳,这些气体会阻碍g-C3N4纳米片的聚集,但由于具有高比表面积,mpg-C3N4在水热处理过程中可以更充分地与H2O2反应,根据X射线光电子能谱(XPS)分析,O原子会优先取代配位的N原子。最终,所得到的O-mpg-C3N4,在模拟日光下光催化降解罗丹明B(RhB)的活性提高了约65倍,有极高的实用价值。
附图说明:
图1是本发明制备O-mpg-C3N4流程示意图;
图2是四种样品的XRD图谱;
图3是四种样品的SEM图像:(a)g-C3N4;(b)mpg-C3N4;(c)O-mpg-C3N4;(d)O-g-C3N4
图4是g-C3N4和O-mpg-C3N4的BJH孔径分布;插图为氮吸附等温线;
图5是四种样品的PL谱图;
图6是(a)四种样品的UV-vis DRS光谱;(b)g-C3N4和mpg-C3N4的带隙;
图7是g-C3N4(a)mpg-C3N4(b)O-mpg-C3N4(c)的XPS全谱图(1)和高分辨率O1s(2),C1s(3)和N1s(4)的XPS谱图;
图8是模拟太阳光照射下光催化降解RhB(a)和MO(b)的活性。
具体实施方式:
实施例1
一种氧掺杂介孔石墨相氮化碳的制备方法,操作步骤如下:
a、介孔石墨相氮化碳的制备:将尿素以8℃/min的速率升温、并在550℃下恒温2h,制得介孔石墨相氮化碳;
b、氧掺杂介孔石墨相氮化碳的制备:将a步骤制得的介孔石墨相氮化碳分散于溶剂(即质量浓度为30%的过氧化氢溶液)中,120℃下恒温8h后,取固体用蒸馏水洗涤,然后在60℃下干燥6h,即得目标产物氧掺杂介孔石墨相氮化碳,其中溶剂与介孔石墨相氮化碳的质量比为1:1。
实施例2
一种氧掺杂介孔石墨相氮化碳的制备方法,操作步骤如下:
c、介孔石墨相氮化碳的制备:将硫脲以12℃/min的速率升温、并在550℃下恒温2h,制得介孔石墨相氮化碳;
氧掺杂介孔石墨相氮化碳的制备:将a步骤制得的介孔石墨相氮化碳分散于溶剂(即质量浓度为30%的过氧化氢溶液)中,120℃下恒温8h后,取固体用蒸馏水洗涤,然后在60℃下干燥6h,即得目标产物氧掺杂介孔石墨相氮化碳,其中溶剂与介孔石墨相氮化碳的质量比为5:1。
实施例3
一种氧掺杂介孔石墨相氮化碳的制备方法,操作步骤如下:
d、介孔石墨相氮化碳的制备:将尿素以10℃/min的速率升温、并在550℃下恒温2h,制得介孔石墨相氮化碳;
氧掺杂介孔石墨相氮化碳的制备:将a步骤制得的介孔石墨相氮化碳分散溶剂(即质量浓度为30%的过氧化氢溶液)中,120℃下恒温8h后,取固体用蒸馏水洗涤,然后在60℃下干燥6h,即得目标产物氧掺杂介孔石墨相氮化碳,其中溶剂与介孔石墨相氮化碳的质量比为3:1。
对比例1:
普通块状石墨相氮化碳(g-C3N4)的制备
将三聚氰胺在空气气氛中550℃煅烧4h,制得普通块状石墨相氮化碳(g-C3N4)。
对比例2:
介孔石墨相氮化碳(mpg-C3N4)的制备
将10g尿素放入带盖的坩埚里在马弗炉中,以10℃/min的升温速率并在550℃下恒温2h,制得介孔石墨相氮化碳(mpg-C3N4)。
对比例3:
氧掺杂石墨相氮化碳的制备(O-g-C3N4)的制备
将0.4g g-C3N4分散在33mL过氧化氢(过氧化氢水溶液的质量浓度为30%)中,然后将混合物转移到50mL聚四氟乙烯内衬的高压釜中,在120℃下恒温8h,过滤分离固体产物,用蒸馏水洗涤五次,并在60℃烘箱中干燥6h,得到氧掺杂石墨相氮化碳(O-g-C3N4)。
实验例
下面对对比例1制备的普通g-C3N4、对比例2制备的mpg-C3N4、对比例3制备的O-g-C3N4、实施例3制备的O-mpg-C3N4进行表征测试与结果分析。
实验例1:
X射线衍射(XRD)
用XRD研究所制备的催化剂的晶相结构和结晶度。图2分别列出了对比例1制备的普通g-C3N4、对比例2制备的mpg-C3N4、对比例3制备的O-g-C3N4、实施例3制备的O-mpg-C3N4的粉末衍射图。在g-C3N4和O-g-C3N4中发现两个峰,在2θ=27.5°附近的最强衍射呈现典型的面内结构,而在12.9°附近的另一个峰被认为是面内结构或三嗪单元,还可以看出H2O2改性对g-C3N4的层状结构没有显著影响。与g-C3N4相比,mpg-C3N4具有相似的衍射峰,表明mpg-C3N4的晶体结构没有发生变化。然而,mpg-C3N4和O-mpg-C3N4的特征峰强度显著降低,这是由于片状结构之间的距离变宽以及煅烧过程中产生的气泡破坏了g-C3N4的层间紧密堆积。
实验例2:
扫描电子显微镜(SEM)
图3显示了以上几种样品的SEM图像。从图3a和3d中,我们可以看到普通g-C3N4和O-g-C3N4样品由不规则的大块颗粒组成,其尺寸范围从200nm到几微米。图3b和3c显示了具有折叠片状结构的mpg-C3N4和O-mpg-C3N4的微观形貌。正如我们所看到的,由于尿素高温分解产生的气泡,片状结构中存在许多空隙,这也导致了mpg-C3N4的比表面积更大。
实验例3:
BET比表面测定
通过氮孔隙率测定法来表征制备样品的结构性能。N2吸附/脱附等温线和BJH孔径分布如图4所示。这两种催化剂都表现出IV型等温线,滞后范围为0.5-1.0P/P0,这表明这两种催化剂均为介孔材料。N2吸附的显著差异表明了它们具有不同的比表面积,分别为8.3和73.9m2·g-1。BJH法计算的孔径分布表明,孔径在5-50nm范围内变化。从N2解吸等温线测量中获得的参数总结在表1中。H2O2处理过的样品的平均孔径小于未处理样品的平均孔径,这可能是由于孔塌陷造成的。
表1.氮解吸等温线测量中获得的参数
Figure BDA0002235548280000061
实施例4:
光致发光(PL)
通过光致发光(PL)研究了半导体光生载流子的传输、转移和分离效率。如图5所示,室温下375nm激发样品的稳态PL光谱。由于量子尺寸效应,mpg-C3N4的发射峰与g-C3N4相比发生蓝移。经H2O2处理后,峰强度显著下降,表明光生电子和空穴的分离效率较高。
实验例5:
固体紫外-可见漫反射(UV-vis DRS)
样品的UV-vis DRS光谱如图6a所示。与g-C3N4相比,mpg-C3N4的吸收带边缘发生蓝移(与PL一致)。如图6b所示,g-C3N4和mpg-C3N4的相应带隙分别为2.78eV和2.94eV。综上所述,虽然H2O2处理对催化剂的禁带宽度没有明显影响,但它对扩大催化剂的光催化响应范围有显著影响。
实验例6:
X射线光电子能谱(XPS)
XPS用于确定制备样品的元素分布和表面化学状态。因此,它可以提供氧掺杂的直接证据。如图7所示,在O-mpg-C3N4中检测到三种元素(C、N、O),并且mpg-C3N4与g-C3N4具有相同的图谱。在mpg-C3N4的高分辨率O1s光谱中,532.38eV对应于表面吸附水中氧原子的特征峰,只存在这么一个峰,并没有观察到与C-O或N-O相关的峰位。经H2O2处理后,由于C-O或N-C-O键的形成,在O-mpg-C3N4上检测到另一个531.48eV的清晰峰。此外,出现在288.98eV的峰在C1s光谱中被认为C-O键。mpg-C3N4中仅发现一个约288.38eV的C1s特征峰。最后,所有样品都在398.88、400.08和401.28eV处出现类似的N1s峰,分别对应于C-N-C、N-[C]3和C-NH。
实验例7:
光催化性能分析
制备的催化剂的光催化性能如图8所示。显然,O-mpg-C3N4显示出比其它光催化剂更高的光催化活性,它可以在20分钟内降解95%的RhB,在4小时内降解70%的MO,分别是g-C3N4的65倍和24倍。其优异的降解性能归因于两个方面:一个是较高的比表面积,另一个是大量的光生载流子。大量的光生载流子是由O-mpg-C3N4的高电子-空穴分离效率和较强的可见光吸收(如上PL和DRS所述)所引起。高的比表面积可以为催化反应提供更多的反应位点,这有利于催化剂和污染物之间的充分接触(如上BET所述)。

Claims (4)

1.一种氧掺杂介孔石墨相氮化碳的制备方法,操作步骤如下:
a、介孔石墨相氮化碳的制备:将发泡剂以8~12℃/min的速率升温、并在550℃下恒温2h,制得介孔石墨相氮化碳;
b、氧掺杂介孔石墨相氮化碳的制备:将a步骤制得的介孔石墨相氮化碳分散于溶剂中,120℃下恒温8h后,取固体用蒸馏水洗涤,然后在60℃下干燥6h,即得目标产物氧掺杂介孔石墨相氮化碳,其中溶剂与介孔石墨相氮化碳的质量比为1~5:1。
2.根据权利要求1所述的一种氧掺杂介孔石墨相氮化碳的制备方法,其特征在于a步骤中所述的发泡剂为尿素或硫脲。
3.根据权利要求1所述的一种氧掺杂介孔石墨相氮化碳的制备方法,其特征在于b步骤中所述的溶剂为过氧化氢溶液。
4.根据权利要求3所述的一种氧掺杂介孔石墨相氮化碳的制备方法,其特征在于所述的过氧化氢溶液为质量浓度为30%的水溶液。
CN201910982166.0A 2019-10-16 2019-10-16 一种氧掺杂介孔石墨相氮化碳的制备方法 Pending CN110665530A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910982166.0A CN110665530A (zh) 2019-10-16 2019-10-16 一种氧掺杂介孔石墨相氮化碳的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910982166.0A CN110665530A (zh) 2019-10-16 2019-10-16 一种氧掺杂介孔石墨相氮化碳的制备方法

Publications (1)

Publication Number Publication Date
CN110665530A true CN110665530A (zh) 2020-01-10

Family

ID=69082552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910982166.0A Pending CN110665530A (zh) 2019-10-16 2019-10-16 一种氧掺杂介孔石墨相氮化碳的制备方法

Country Status (1)

Country Link
CN (1) CN110665530A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729683A (zh) * 2020-07-14 2020-10-02 广东石油化工学院 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用
CN111889130A (zh) * 2020-07-30 2020-11-06 大连工业大学 一种改性氮化碳光催化剂的制备及其在光催化氧化葡萄糖合成乳酸中的应用
CN113522338A (zh) * 2021-07-19 2021-10-22 武汉纺织大学 硼氧共掺杂氮化碳非金属臭氧催化剂及其制备方法与应用
CN114797937A (zh) * 2022-04-22 2022-07-29 湖南大学 填充型富介孔管状氮化碳光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692344A (zh) * 2015-02-15 2015-06-10 南京工程学院 一种介孔石墨相氮化碳材料的制备方法
CN106540732A (zh) * 2016-10-20 2017-03-29 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN106694021A (zh) * 2016-12-29 2017-05-24 武汉纺织大学 一种氧掺杂石墨相氮化碳臭氧催化剂的制备方法与应用
CN108786878A (zh) * 2018-05-24 2018-11-13 南京理工大学 氧硫双掺杂的石墨相氮化碳的制备方法
CN108940344A (zh) * 2018-07-26 2018-12-07 湖南大学 改性石墨相氮化碳光催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104692344A (zh) * 2015-02-15 2015-06-10 南京工程学院 一种介孔石墨相氮化碳材料的制备方法
CN106540732A (zh) * 2016-10-20 2017-03-29 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN106694021A (zh) * 2016-12-29 2017-05-24 武汉纺织大学 一种氧掺杂石墨相氮化碳臭氧催化剂的制备方法与应用
CN108786878A (zh) * 2018-05-24 2018-11-13 南京理工大学 氧硫双掺杂的石墨相氮化碳的制备方法
CN108940344A (zh) * 2018-07-26 2018-12-07 湖南大学 改性石墨相氮化碳光催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIAOZHANG ET AL.: "Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation", 《COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729683A (zh) * 2020-07-14 2020-10-02 广东石油化工学院 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用
CN111729683B (zh) * 2020-07-14 2023-01-31 广东石油化工学院 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用
CN111889130A (zh) * 2020-07-30 2020-11-06 大连工业大学 一种改性氮化碳光催化剂的制备及其在光催化氧化葡萄糖合成乳酸中的应用
CN113522338A (zh) * 2021-07-19 2021-10-22 武汉纺织大学 硼氧共掺杂氮化碳非金属臭氧催化剂及其制备方法与应用
CN114797937A (zh) * 2022-04-22 2022-07-29 湖南大学 填充型富介孔管状氮化碳光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110665530A (zh) 一种氧掺杂介孔石墨相氮化碳的制备方法
Wu et al. Template-free synthesis of nanocage-like gC 3 N 4 with high surface area and nitrogen defects for enhanced photocatalytic H 2 activity
Suzuki et al. Visible light-sensitive mesoporous N-doped Ta 2 O 5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO 2 reduction
Dong et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation
Wang et al. Efficient degradation of organic pollutants and hydrogen evolution by gC 3 N 4 using melamine as the precursor and urea as the modifier
Yan Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H 2 evolution under visible light
Pudukudy et al. Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity
Jin et al. Synthesis high specific surface area nanotube gC 3 N 4 with two-step condensation treatment of melamine to enhance photocatalysis properties
Sun et al. Anatase TiO 2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity
Aslam et al. The synergistic effect between WO 3 and gC 3 N 4 towards efficient visible-light-driven photocatalytic performance
Chen et al. Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity
Han et al. Facile template-free synthesis of porous gC 3 N 4 with high photocatalytic performance under visible light
Yu et al. Ultrathin gC 3 N 4 nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H 2 production
Zhong et al. Comparison of TiO 2 and gC 3 N 4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution
Yokoi et al. Preparation of a colloidal array of NaTaO3 nanoparticles via a confined space synthesis route and its photocatalytic application
Fan et al. A template induced method to synthesize nanoporous graphitic carbon nitride with enhanced photocatalytic activity under visible light
Zhang et al. Microwave-antenna induced in situ synthesis of Cu nanowire threaded ZIF-8 with enhanced catalytic activity in H 2 production
CN112354553B (zh) 一种g-C3N4基p-n同质结光催化剂的制备方法和氢气的制备方法
CN109331857A (zh) 一种多孔富碳g-C3N4光催化剂的制备方法和应用
Shi et al. In situ bubble template promoted facile preparation of porous gC 3 N 4 with excellent visible-light photocatalytic performance
CN107433203B (zh) 一种Z-Scheme复合体系及制备方法和应用
Wang et al. One-step, high-yield synthesis of gC 3 N 4 nanosheets for enhanced visible light photocatalytic activity
Liu et al. Synthesis of Bi 2 O 3–Bi 4 V 2 O 11 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes
Kheradmand et al. Cobalt oxide on mesoporous carbon nitride for improved photocatalytic hydrogen production under visible light irradiation
Yang et al. MOF-derived Co/ZnO@ silicalite-1 photocatalyst with high photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110