CN111729683A - 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用 - Google Patents

氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111729683A
CN111729683A CN202010677018.0A CN202010677018A CN111729683A CN 111729683 A CN111729683 A CN 111729683A CN 202010677018 A CN202010677018 A CN 202010677018A CN 111729683 A CN111729683 A CN 111729683A
Authority
CN
China
Prior art keywords
oxygen
carbon nitride
doped
phase carbon
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010677018.0A
Other languages
English (en)
Other versions
CN111729683B (zh
Inventor
余长林
张振民
周晚琴
樊启哲
纪红兵
魏龙福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN202010677018.0A priority Critical patent/CN111729683B/zh
Publication of CN111729683A publication Critical patent/CN111729683A/zh
Application granted granted Critical
Publication of CN111729683B publication Critical patent/CN111729683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种氧掺杂类石墨相氮化碳光催化剂的制备方法,包括以下步骤:将g‑C3N4和抗坏血酸混合研磨后,加热、保温,然后冷却至室温,得到氧掺杂g‑C3N4光催化剂。通过热解研磨后的抗坏血酸和纯g‑C3N4混和物,通过抗坏血酸分解改变g‑C3N4的物理组织结构,可以得到比表面积大的催化剂,并且借助抗坏血酸在加热时易分解,将抗坏血酸加热,主要生成呋喃衍生物、五元醇和多不饱和环酮,可作为氧掺杂的来源,将氧元素掺杂到g‑C3N4中,得到高氧掺杂的g‑C3N4

Description

氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用
技术领域
本发明涉及光催化剂领域,具体涉及一种氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用。
背景技术
随着工业的不断发展,环境问题日趋严峻。铬及其化合物在冶金、电镀、印染等行业中应用广泛,由此产生了大量含Cr(VI)的废水,Cr(VI)具有毒性,长期接触可致癌。目前Cr(VI)污水的处理主要有物理处理法、化学处理法和生物处理法。然而,这三种方法仍然会对环境造成污染或者二次污染。光催化技术具有绿色无二次污染和可有效转换太阳能等优点。在光催化还原Cr(VI)过程中,被激发跃迁到CB的光生e-,将吸附在光催化剂表面的Cr(VI)还原为Cr(Ⅲ),从而实现对Cr(VI)污水的处理。
石墨相氮化碳(g-C3N4)凭借其物理化学性质稳定、安全无毒、高稳定、可见光响应和低成本的特点,在光催化领域引起了广泛的关注。然而,在实际应用中,g-C3N4可见光利用率低、比表面积较低、具有较高的光生电子与空穴的复合速率等缺点,导致其光催化性能不足,而除去水溶液中的六价铬,要求催化剂具有大比表面积和对水体铬离子具有很强的吸附能力。因此,亟需开发设计一种比表面积大的g-C3N4光催化剂。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的g-C3N4光催化剂比表面积较小的缺陷,从而提供一种氧掺杂类石墨相氮化碳光催化剂的制备方法。
本发明还提供一种氧掺杂类石墨相氮化碳光催化剂。
本发明还提供一种氧掺杂类石墨相氮化碳光催化剂的应用。
为此,本发明提供一种氧掺杂类石墨相氮化碳光催化剂的制备方法,包括以下步骤:
将g-C3N4和抗坏血酸混合研磨后,加热、保温,然后冷却至室温,得到氧掺杂g-C3N4光催化剂。
进一步地,g-C3N4和抗坏血酸的质量比为1:0.25-0.45。
进一步地,加热温度为290-350℃,保温时间为1.5-4h。
进一步地,在得到氧掺杂g-C3N4光催化剂后还包括将氧掺杂g-C3N4光催化剂进行研磨的步骤。
进一步地,在g-C3N4和抗坏血酸的加热和保温反应过程中,在体系中通入气体,优选的,所述气体为氮气或惰性气体。
进一步地,所述g-C3N4通过以下方法制备:将三聚氰胺煅烧,得到团聚体,将团聚体和无水乙醇混合研磨并用无水乙醇和去离子水冲洗,干燥,即得g-C3N4
进一步地,所述g-C3N4通过以下方法制备:在氮气或惰性气体气氛下,将三聚氰胺于540-600℃温度下煅烧1.5-3.5h,得到黄色团聚体;将得到的黄色团聚体和无水乙醇混合研磨并用无水乙醇和去离子水冲洗,干燥,即得g-C3N4
进一步地,以3-8℃/min的升温速率升温至540-600℃。
本发明还提供一种上述的氧掺杂类石墨相氮化碳光催化剂的制备方法制备的氧掺杂g-C3N4光催化剂。
本发明还提供一种上述的氧掺杂类石墨相氮化碳光催化剂在光催化Cr(VI)中的应用。
本发明技术方案,具有如下优点:
1.本发明提供的氧掺杂类石墨相氮化碳光催化剂的制备方法,通过热解研磨后的抗坏血酸和纯g-C3N4混和物,通过抗坏血酸分解改变g-C3N4的物理组织结构,可以得到比表面积大的催化剂,并且借助抗坏血酸在加热时易分解,将抗坏血酸加热,主要生成呋喃衍生物、五元醇和多不饱和环酮,可作为氧掺杂的来源,将氧元素掺杂到g-C3N4中,得到高氧掺杂的g-C3N4,氧掺杂取代部分N后形成C-O或N-C-O,可以作为强电子陷阱,有效促进光生电子和空穴的分离,减少光生载流子的复合,高氧掺杂还能改变g-C3N4的电子结构,从而减小带隙,从而有效的解决g-C3N4光催化性能不足的问题。该制备方法简单,设备要求低,选用抗坏血酸为氧源,原料来源丰富且成本低廉。
2.本发明提供的氧掺杂类石墨相氮化碳光催化剂的制备方法,研磨混合物g-C3N4和抗坏血酸的质量比为1:0.25-0.45,煅烧温度较低为290-350℃,保温时间为1.5-4h,充分研磨确保了抗坏血酸分子和g-C3N4的充分接触,为下步通过分解将氧掺入g-C3N4晶格创造条件,较低的煅烧温度有利于生成大比表面积的催化剂;在g-C3N4和抗坏血酸的加热和保温反应过程中,在体系中通入气体,可以将反应过程中生成的气体带出反应体系,从而使制备的氧参杂的g-C3N4的纯度更高。
3.本发明提供的氧掺杂类石墨相氮化碳光催化剂,合适的氧掺杂表现出最佳的光催化活性,在酸性条件下催化活性最高,而且在复杂离子环境中拥有良好的光催化稳定性;光吸收能力强,导带位置负,还原能力强,比表面积大,表现出更好的光催化还原Cr(VI)活性,可将其应用在光催化还原Cr(VI)中。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例2-4和对比例1制得的光催化剂的XRD谱图;
图2为实施例2-4和对比例1制得的光催化剂的红外谱图;
图3为实施例3和对比例1制得的光催化剂的拉曼谱图;
图4为实施例2-4和对比例1制得的光催化剂的紫外漫反射谱图;
图5为实施例2-4和对比例1制得的光催化剂的光致发光光谱(PL)谱图;
图6为实施例2-4和对比例1制得的光催化剂在氙灯照射下光催化还原Cr(VI)150min的测试曲线;
图7为实施例4制得的氧掺杂g-C3N4光催化剂在不同pH条件下光催化还原Cr(VI)的曲线;
图8为实施例4和对比例1制得的光催化剂在不同阴阳离子条件下光催化还原Cr(VI)的曲线;
图9为实施例2-4和对比例1制得的光催化剂的光电流谱图;
图10为实施例2-4和对比例1制得的光催化剂的阻抗谱图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
将5g三聚氰胺置于马弗炉中,氮气气氛下,以5℃/min的升温速率升至550℃,煅烧2h,得到黄色团聚体,将黄色团聚体和10mL无水乙醇混合,研磨10min并用无水乙醇和去离子水冲洗,干燥,即得到g-C3N4,备用。
实施例2
称取400mg g-C3N4(实施例1制备得到)置于玛瑙研钵中,加入100mg抗坏血酸,然后研磨10min,研磨均匀后,置于管式马弗炉中,氮气气氛下,加热至300℃,保温2h,反应结束冷却到室温后,获得的样品充分研磨后即得氧掺杂g-C3N4光催化剂,记为O-CN1。
实施例3
称取400mg g-C3N4(实施例1制备得到)置于玛瑙研钵中,加入140mg抗坏血酸,然后研磨10min,研磨均匀后,置于管式马弗炉中,氮气气氛下,加热至350℃,保温1.5h,反应结束冷却到室温后,获得的样品充分研磨后即得氧掺杂g-C3N4光催化剂,记为O-CN2。
实施例4
称取400mg g-C3N4(实施例1制备得到)置于玛瑙研钵中,加入180mg抗坏血酸,然后研磨10min,研磨均匀后,置于管式马弗炉中,氮气气氛下,加热至290℃,保温4h,反应结束冷却到室温后,获得的样品充分研磨后即得氧掺杂g-C3N4光催化剂,记为O-CN3。
对比例1
称取400mg g-C3N4置于玛瑙研钵中,研磨10min,研磨均匀后,置于管式马弗炉中,氮气气氛下,加热至300℃,保温2h,反应结束冷却到室温后,获得的样品充分研磨后得到产品,记为CN-1。
对比例2
称取5g三聚氰胺置于玛瑙研钵中,加入100mg抗坏血酸,研磨均匀后,置于管式马弗炉中,氮气气氛下,加热至550℃,保温2小时,反应结束冷却到室温后,获得的样品充分研磨后得到产品,记为CN-2。
实验例
1)采用比表面积测定仪对实施例和对比例得到的催化剂进行比表面积性能测试,具体测试方法如下:
仪器型号:The Brunauer-Emmett-Teller(BET)(ASAP 2020)
测试过程:将样品粉末脱气,置于液氮环境,测试吸附脱附曲线。
测试条件:在液氮中77K。
测试结果如表1所示。
表1比表面积(BET)的测试结果
Figure BDA0002584423520000071
由表1可知,相对于对比例1和对比例2,所有实施例的比表面积和孔径都增大,说明所有实施例都因为氧掺杂而改变了形貌。
2)对催化剂的结构表征
用XRD对对比例1的催化剂(CN-1)和所有实施例的催化剂的相结构进行了表征。如图1所示,g-C3N4在2θ=12.9°和27.7°处有两个衍射峰,分别对应(100)和(002)晶面。(100)晶面由构成平面的3-s-三嗪结构单元所形成,(002)晶面由π共轭平面的石墨层状堆积而形成。CN-1和所有实施例的催化剂XRD图谱相似,(100)晶面的衍射峰没有明显变化,说明三嗪环晶面内的重复基序没有变化,即经过与抗坏血酸热解后,g-C3N4的总体结构没有发生明显改变。
用红外对实施例2-4和对比例1的催化剂进行表征,红外结果如图2所示。可以看出,实施例2-4和对比例1的特征峰相似,说明氧掺杂g-C3N4后的整体结构不变。
利用拉曼对实施例3和对比例1的催化剂进行表征,如图3所示。可以看出,在强荧光背景下,部分结构峰变得不够明显,在1360cm-1和1582cm-1处观察到两个与D、G波段相关的特征峰,1582cm-1处的峰可归因于s-三嗪环的拉伸振动,并且,氧元素的掺杂大大增强了这两个拉曼峰的强度。
利用紫外可见分光光度计对实施例2-4和对比例1的催化剂进行表征,测试实施例2-4和对比例1的催化剂的吸光性能,如图4所示。对比例1的催化剂在450cm处有一个典型的吸收边,说明其吸收波长小于450cm的紫外光。而实施例2-4的催化剂在整个紫外光和可见光区域都有较强的吸收,且随着氧元素含量的增加,其吸收波长逐渐红移,说明实施例可以吸收更多的阳光。光吸收的增强可能是氧掺杂改变了g-C3N4中3-S-3三嗪环结构所致。
利用光致发光光谱(PL)对实施例2-4和对比例1的催化剂进行表征,如图5所示。荧光强度越强,催化剂中电子和空穴越容易复合。结果表明,实施例2-4明显比对比例1荧光强度弱,实施例2-4明显蓝移,这可能和量子约束效应有关。由PL图可知,氧掺杂g-C3N4后抑制了光生电子和空穴的复合速率,有利于光催化性能的提升。
3)催化剂光催化还原Cr(VI)活性测试
使用400W的氙灯作为光源,取30mg不同的催化剂分别加入到50mL Cr(VI)浓度为10mg/L的水溶液中,暗反应40min达到吸附-脱附平衡,光照后每隔30min取一次样进行吸光度测试。通过Cr(VI)与二苯碳酰二肼发生显色反应来检测其吸光度。取离心后的溶液上清液1ml置于10ml比色管中,用0.2M稀硫酸定容,最后滴加300μm显色剂,摇晃均匀待测。显色剂配制方法如下:0.2g二苯碳酰二肼先溶于50ml丙酮中,再加入50ml去离子水搅拌10min至溶液澄清即可。总共光照150min并分别测定水溶液中Cr(VI)浓度,并根据测定结果计算各催化剂对Cr(VI)的去除率,计算结果如表2所示,不同催化剂在氙灯照射下光催化还原Cr(VI)150min的测试曲线如图6所示。
表2不同催化剂Cr(VI)还原活性测试结果
Figure BDA0002584423520000091
由表2中的数据对比得出,本实施例2-4所制得的氧掺杂g-C3N4光催化剂相对于对比例中的光催化剂,具有良好的Cr(VI)去除率;尤其是实施例3制得的氧掺杂g-C3N4光催化剂(O-CN2),其光催化还原Cr(VI)活性比对比例1提升了73.5%。
4)催化剂光催化还原Cr(VI)最佳反应酸碱性测试
利用实施例4制得的氧掺杂g-C3N4光催化剂(O-CN3)进行了光催化还原Cr(VI)最佳反应酸碱性测试,其他实验条件与光催化还原Cr(VI)活性测试相同,只是调整溶液pH;测试曲线如图7所示。
由图7可以看出,光催化剂在pH=3时催化性能明显比pH=7和pH=10催化效果好,说明氧掺杂g-C3N4光催化剂(O-CN3)在酸性条件下催化性能更好。
5)催化剂光催化还原Cr(VI)在复杂离子环境下稳定性测试
利用实施例4制得的氧掺杂g-C3N4光催化剂(O-CN3)和对比例1制得的催化剂CN-1进行了光催化还原Cr(VI)在复杂离子环境下稳定性测试,其他实验条件与光催化还原Cr(VI)活性测试相同,只是在溶液中加入不同阴阳离子作为对比例;测试稳定性曲线如图8所示。由图可知,O-CN3在不同阴阳离子中比CN-1催化活性更稳定,不易受到影响。
6)对催化剂进行光电流表征
采用三电极电化学工作站(CHI660D)对样品进行光电响应表征,其中,铂电极、饱和甘汞电极和样品电极片分别作为测试中的反电极、参考电极和工作电极,电解液选用0.1mol/L的硫酸钠溶液。光源为300瓦氙灯。
结果如图9所示,实施例2-4和对比例1的催化剂都能快速响应产生光生电流,说明实施例2-4和对比例1都具有良好的光电转换性能。但是实施例2-4明显比对比例1具有更好的光电转换性能。
7)对催化剂进行阻抗表征
采用三电极电化学工作站(CHI660D)对样品进行阻抗表征,其中,铂电极、饱和甘汞电极和样品电极片分别作为测试中的反电极、参考电极和工作电极,电解液选用0.1mol/L的硫酸钠溶液。
结果如图10所示,实施例2-4的半径比对比例1都要小,说明实施例2-4的催化剂具有更好的电导率,在固液界面处电荷转移效率更高。因此,氧掺杂g-C3N4降低了阻抗,提高光生电子的迁移速率。
8)对催化剂中氧含量进行测定
采用表面光电子能谱仪器进行氧含量测试,仪器为美国赛默飞世尔科技公司生产的Thermo ESCALAB 250XI型多功能成像电子能谱仪。
测定结果如表3所示。
表3 XPS得到的催化剂的元素含量
Figure BDA0002584423520000111
由表3可知,相对于对比例,实施例2-4得到的催化剂的氧元素含量明显增多,并且C/N原子比减小,说明实施例2-4得到的催化剂中存在氧掺杂。
9)对催化剂的带隙能进行测定
采用固体紫外分光光度计对氧掺杂g-C3N4光催化剂(O-CN1)进行测试,测试结果如表4所示。
表4不同催化剂的带隙能测试结果
Figure BDA0002584423520000121
由表3可知,相对于对比例,实施例2-4得到的催化剂的带隙能明显减低。
综上所述,运用XPS证实了氧掺杂的存在,XRD、红外证实了氧掺杂对催化剂整体形貌改变不大。紫外、PL、光电流、阻抗测试证明氧掺杂可以有效增强催化剂的光吸收能力,减小带隙,加快光生电子和空穴的分离速率,进而提高光催化活性。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,包括以下步骤:
将g-C3N4和抗坏血酸混合研磨后,加热、保温,然后冷却至室温,得到氧掺杂g-C3N4光催化剂。
2.根据权利要求1所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,g-C3N4和抗坏血酸的质量比为1:0.25-0.45。
3.根据权利要求1或2所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,加热温度为290-350℃,保温时间为1.5-4h。
4.根据权利要求1-3中任一项所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,在得到氧掺杂g-C3N4光催化剂后还包括将氧掺杂g-C3N4光催化剂进行研磨的步骤。
5.根据权利要求1-4中任一项所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,在g-C3N4和抗坏血酸的加热和保温反应过程中,在体系中通入气体,优选的,所述气体为氮气或惰性气体。
6.根据权利要求1-5中任一项所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,所述g-C3N4通过以下方法制备:将三聚氰胺煅烧,得到团聚体,将团聚体和无水乙醇混合研磨并用无水乙醇和去离子水冲洗,干燥,即得g-C3N4
7.根据权利要求1-6中任一项所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,所述g-C3N4通过以下方法制备:在氮气或惰性气体气氛下,将三聚氰胺于540-600℃温度下煅烧1.5-3.5h,得到黄色团聚体;将得到的黄色团聚体和无水乙醇混合研磨并用无水乙醇和去离子水冲洗,干燥,即得g-C3N4
8.根据权利要求7所述的氧掺杂类石墨相氮化碳光催化剂的制备方法,其特征在于,以3-8℃/min的升温速率升温至540-600℃。
9.权利要求1-8中任一项所述的氧掺杂类石墨相氮化碳光催化剂的制备方法制备的氧掺杂类石墨相氮化碳光催化剂。
10.权利要求1-8中任一项所述的氧掺杂类石墨相氮化碳光催化剂的制备方法制备的氧掺杂类石墨相氮化碳光催化剂或权利要求9所述的氧掺杂类石墨相氮化碳光催化剂在光催化Cr(VI)中的应用。
CN202010677018.0A 2020-07-14 2020-07-14 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用 Active CN111729683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010677018.0A CN111729683B (zh) 2020-07-14 2020-07-14 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010677018.0A CN111729683B (zh) 2020-07-14 2020-07-14 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111729683A true CN111729683A (zh) 2020-10-02
CN111729683B CN111729683B (zh) 2023-01-31

Family

ID=72655337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010677018.0A Active CN111729683B (zh) 2020-07-14 2020-07-14 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111729683B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921823A (zh) * 2021-10-09 2022-01-11 西安热工研究院有限公司 一种CuO/O-g-C3N4锂离子电池负极材料及其制备方法
CN114377716A (zh) * 2022-01-14 2022-04-22 中国科学院大学 一种氧掺杂氮化碳材料的制备及用途
CN115254173A (zh) * 2022-08-30 2022-11-01 西安交通大学 一种石墨相氮化碳光催化剂及其制备方法、系统和应用
CN115301273A (zh) * 2022-08-19 2022-11-08 新乡医学院 O-g-C3N4光催化耦合过硫酸盐及其制备方法和在降解抗性基因中的应用
CN115591567A (zh) * 2022-10-09 2023-01-13 江苏大学(Cn) 一种氧掺杂棕色碳氮聚合物光催化剂的制备方法和应用
CN115814834A (zh) * 2022-11-30 2023-03-21 江汉大学 一种简单的溶剂后处理增强石墨氮化碳材料性能改性方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108568307A (zh) * 2018-04-11 2018-09-25 辽宁大学 氧掺杂多孔的g-C3N4光催化剂及其制备方法与应用
CN110227533A (zh) * 2019-07-05 2019-09-13 燕山大学 一种石墨相氮化碳光催化剂及其制备方法与应用
US20190330061A1 (en) * 2018-04-28 2019-10-31 Soochow University Honeycomb-like homo-type heterojunction carbon nitride composite material and preparation method thereof, and application in catalytic treatment of waste gas
CN110433844A (zh) * 2019-08-08 2019-11-12 盐城工学院 一种用于高效处理含Cr6+废水的(B,O)共掺杂g-C3N4光催化剂的制备方法
CN110665532A (zh) * 2019-10-25 2020-01-10 广东石油化工学院 一种氮缺陷g-C3N4光催化剂、制备方法及其应用
CN110665530A (zh) * 2019-10-16 2020-01-10 东北石油大学 一种氧掺杂介孔石墨相氮化碳的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108568307A (zh) * 2018-04-11 2018-09-25 辽宁大学 氧掺杂多孔的g-C3N4光催化剂及其制备方法与应用
US20190330061A1 (en) * 2018-04-28 2019-10-31 Soochow University Honeycomb-like homo-type heterojunction carbon nitride composite material and preparation method thereof, and application in catalytic treatment of waste gas
CN110227533A (zh) * 2019-07-05 2019-09-13 燕山大学 一种石墨相氮化碳光催化剂及其制备方法与应用
CN110433844A (zh) * 2019-08-08 2019-11-12 盐城工学院 一种用于高效处理含Cr6+废水的(B,O)共掺杂g-C3N4光催化剂的制备方法
CN110665530A (zh) * 2019-10-16 2020-01-10 东北石油大学 一种氧掺杂介孔石墨相氮化碳的制备方法
CN110665532A (zh) * 2019-10-25 2020-01-10 广东石油化工学院 一种氮缺陷g-C3N4光催化剂、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RONG TANG ET AL.: "Preparation of oxygen-doped graphitic carbon nitride and its visible-light photocatalytic performance on bisphenol A degradation", 《WATER SCIENCE & TECHNOLOGY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921823A (zh) * 2021-10-09 2022-01-11 西安热工研究院有限公司 一种CuO/O-g-C3N4锂离子电池负极材料及其制备方法
CN114377716A (zh) * 2022-01-14 2022-04-22 中国科学院大学 一种氧掺杂氮化碳材料的制备及用途
CN115301273A (zh) * 2022-08-19 2022-11-08 新乡医学院 O-g-C3N4光催化耦合过硫酸盐及其制备方法和在降解抗性基因中的应用
CN115254173A (zh) * 2022-08-30 2022-11-01 西安交通大学 一种石墨相氮化碳光催化剂及其制备方法、系统和应用
CN115591567A (zh) * 2022-10-09 2023-01-13 江苏大学(Cn) 一种氧掺杂棕色碳氮聚合物光催化剂的制备方法和应用
CN115814834A (zh) * 2022-11-30 2023-03-21 江汉大学 一种简单的溶剂后处理增强石墨氮化碳材料性能改性方法

Also Published As

Publication number Publication date
CN111729683B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN111729683B (zh) 氧掺杂类石墨相氮化碳光催化剂及其制备方法和应用
Ye et al. Constructing a system for effective utilization of photogenerated electrons and holes: photocatalytic selective transformation of aromatic alcohols to aromatic aldehydes and hydrogen evolution over Zn3In2S6 photocatalysts
CN110201703B (zh) 一种多元金属掺杂氮化碳复合材料的制备方法
Han et al. Synergistic effects of phosphorous/sulfur co-doping and morphological regulation for enhanced photocatalytic performance of graphitic carbon nitride nanosheets
Lu et al. Constructing Z-scheme SnO 2/N-doped carbon quantum dots/ZnSn (OH) 6 nanohybrids with high redox ability for NO x removal under VIS-NIR light
CN109985618B (zh) 一种H占据BiVO4-OVs的光催化材料、制备方法及其应用
Zhang et al. Boosted photocatalytic nitrogen fixation by bismuth and oxygen vacancies in Bi 2 MoO 6/BiOBr composite structures
CN108325555B (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN112892611B (zh) 鱼鳞片管状氮化碳及其制备方法和应用
CN108906090B (zh) 一种具有p-n异质结的光催化复合材料及其制备方法和应用
CN111330615B (zh) 一种纳米氯氧化铋/氮化碳复合材料及其制备方法和应用
Chen et al. Tailoring aromatic ring-terminated edges of gC 3 N 4 nanosheets for efficient photocatalytic hydrogen evolution with simultaneous antibiotic removal
Cong et al. Oxygen-modified graphitic carbon nitride with nitrogen-defect for metal-free visible light photocatalytic H2O2 evolution
CN110624588A (zh) D-g-C3N4可见光催化材料的制备方法及应用
Dang et al. Synergy of nitrogen vacancies and partially broken hydrogen bonds in graphitic carbon nitride for superior photocatalytic hydrogen evolution under visible light
Liu et al. Decorating Ag 3 PO 4 nanodots on mesoporous silica-functionalized NaYF 4: Yb, Tm@ NaLuF 4 for efficient sunlight-driven photocatalysis: synergy of broad spectrum absorption and pollutant adsorption-enrichment
Zhang et al. Controllable synthesis of the defect-enriched MoO 3− x nanosheets as an effective visible-light photocatalyst for the degradation of organic dyes
CN112316970A (zh) 一种多缺陷石墨相氮化碳光催化剂的制备方法和应用
CN114471711B (zh) 一种聚噻吩-氮化碳复合光催化剂及其制备方法和应用
Xie et al. Synthesis of mesoporous TiO 2-coupled Fe 2 O 3 as efficient visible nano-photocatalysts for degrading colorless pollutants
CN108671956B (zh) 一种离子填充石墨相氮化碳纳米片的制备方法
CN111672528A (zh) 改性氮化碳光催化剂及其制备方法和应用
Tian et al. Hierarchical h-, m-and n-BiPO 4 microspheres: facile synthesis and application in the photocatalytic decomposition of refractory phenols and benzene
Trang et al. Synthesis, Characterization, and Photocatalytic Activity of g‐C3N4/GaN‐ZnO Composite
Zhou et al. Highly efficient photocatalytic performance of BiI/Bi 2 WO 6 for degradation of tetracycline hydrochloride in an aqueous phase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant