CN110649275A - 一种Co2P/NPC电催化剂的制备方法 - Google Patents

一种Co2P/NPC电催化剂的制备方法 Download PDF

Info

Publication number
CN110649275A
CN110649275A CN201910911968.2A CN201910911968A CN110649275A CN 110649275 A CN110649275 A CN 110649275A CN 201910911968 A CN201910911968 A CN 201910911968A CN 110649275 A CN110649275 A CN 110649275A
Authority
CN
China
Prior art keywords
npc
electrocatalyst
polypyrrole
drying
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910911968.2A
Other languages
English (en)
Other versions
CN110649275B (zh
Inventor
孙盼盼
张丹
左壮
田良愉
孙小华
黄妞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201910911968.2A priority Critical patent/CN110649275B/zh
Publication of CN110649275A publication Critical patent/CN110649275A/zh
Application granted granted Critical
Publication of CN110649275B publication Critical patent/CN110649275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种Co2P/NPC电催化剂的制备方法。在超纯水中加入甲基橙,在冰水浴的条件下加入六水合氯化铁(FeCl3·6H2O),再依次加入吡咯(C4H5N)和六氯三聚磷腈(NPCl2)3,在黑暗条件下持续搅拌24h,经过抽滤、洗涤干燥得到前驱体聚吡咯。将聚吡咯放于含有六水合硝酸钴(Co(NO3)2·6H2O)的超纯水中超声,静置;然后经过离心,干燥,将得到的样品置于含有二甲基咪唑(C4H6N2)的超纯水中静置,离心、洗涤干燥。随后将样品置于管式炉中在惰性气氛中高温煅烧得到一种Co2P/NPC电催化剂,该催化剂同时具有优异的氧还原/析出电催化活性。

Description

一种Co2P/NPC电催化剂的制备方法
技术领域
本发明涉及一种Co2P/NPC电催化剂的制备方法,属于氧还原/析出应用领域。
背景技术
电催化在清洁能源转换技术中(燃料电池和金属空气电池)起着核心作用,而氧析出反应(OER)和氧还原反应(ORR)是这些技术的关键过程。由于这两个反应均是四电子转移过程,缓慢的动力学严重限制了能源转换效率,因此,发展高性价比的氧电极催化剂是迫切需要的。贵金属Pt/C、RuO2和IrO2是目前公认的高性能氧电催化剂,但是高成本、低储量、耐久性差严重限制了它们的大规模商业化应用。此外,Pt/C具有优异的ORR性能,但OER性能较差,而RuO2和IrO2具有优异的OER性能,但ORR性能较差。因此,研究高效、廉价、且同时具有ORR和OER性能的双功能催化剂替代贵金属催化剂,具有非常重要的实际意义。
近年来,非贵金属电催化剂的研究已经取得很多进展,其中,氮掺杂碳(N-C)体系由于具有低成本、比表面积大、电催化活性高、稳定性好等优势成为人们的研究热点。目前,相比于优异的ORR电催化性能,N-C的OER性能仍不能和商用的RuO2和IrO2相匹敌,有待进一步改善。而引入第二组分材料,构造复合结构,从而获得多重活性位点是实现优异双功能的重要手段。前期的研究表明,金属钴的磷化物如Co2P等具有优异的析氢性能,但其ORR/OER性能很少被研究。将N-C和Co2P复合,有望获得优异的ORR/OER双功能活性。但是,现有的合成技术中由于很难做到N-C和Co2P的有效复合,虽然实现了ORR/OER双功能活性,但存在ORR4e-电子转移效率低、OER过电位较高的问题,因此双功能性较差。
发明内容
针对上述技术问题,本发明以含P的聚吡咯为前驱体,通过浸泡Co盐和一步高温热解制备得到了负载Co2P的N和P共掺杂的碳管(Co2P/NPC)。在本工作中,聚吡咯中的P源既掺杂在N-C中,也和金属Co化合形成了Co2P,增强了N-C和Co2P的结合作用,因此获得了优异的ORR和OER双功能活性和稳定性。
本发明的技术方案包括以下步骤:
步骤1:将C14H14N3SO3Na加入到超纯水中,在冰水浴搅拌的环境中加入FeCl3·6H2O,再依次加入C4H5N和(NPCl2)3,避光持续搅拌24h,经过抽滤、洗涤干燥得到前驱体聚吡咯;所述的C14H14N3SO3Na、FeCl3·6H2O、C4H5N和(NPCl2)3的质量比为1-3:2-10:0.5-8:0.05-0.6。
步骤2:将聚吡咯放于含有Co(NO3)2·6H2O超纯水溶液中超声,静置5-24h,离心干燥;将得到的样品置于含有C4H6N2的超纯水溶液中静置5-24h,离心干燥。将样品放于管式炉中央经过700-1000 oC惰性气氛中高温退火1~3h,得到Co2P/NPC电催化剂。本步骤中,退火气氛为高纯N2或Ar,管式炉升温速率2~10oC/min。所述的聚吡咯、Co(NO3)2·6H2O与C4H6N2的质量比为3-6:25-90:8-25。
本发明的技术方案在制备前驱体聚吡咯时加入一定量的 (NPCl2)3,经过热解,成功地制备出N、P共掺杂碳的催化剂,有效地提高氧还原性能。通过一步法将P掺杂在N-C中,高温热解引入Co2P活性位点;
Co2P/NPC电催化剂电催化活性高,稳定性好。ORR半波电位达到0.85V,塔菲斜率达到48.2mV dec-1,优于商业化Pt/C;OER在电流密度为10mA cm-2处过电位为320 mV,塔菲斜率59.6mV dec-1,优于RuO2
附图说明
图1为实例1所制备的样品的XRD图谱。
图2为实例1所制备的样品的SEM(a)和TEM(b)图。
图3为实例1所制备的样品的BET和孔隙分布图。
图4为实例1所制备的样品的OER LSV曲线和塔菲尔斜率图。
图5为实例2所制备的样品的ORR LSV曲线和塔菲尔斜率图。
图6为实例2所制备的样品的ORR和OER LSV全谱图。
图7为实例3所制备的样品的ORR稳定性图。
具体实施方式:
实施例1:
(1)将0.1gC14H14N3SO3Na加入120mL超纯水中,在冰水浴搅拌的环境中加
入0.48g FeCl3·6H2O,加入0.2mL C4H5N;再加入57.3mg (NPCl2)3,常温条件下避光持续搅拌24h,经过抽滤、洗涤、干燥得到前驱体聚吡咯;
(2)将60mg聚吡咯放于含有0.29g的Co(NO3)2·6H2O超纯水溶液(10ml)中
超声20min,静置12h,离心洗涤干燥;将得到的样品置于含有0.082g C4H6N2的超纯水溶液(10ml)中静置12h,离心洗涤干燥。将得到的样品放于管式炉中央经过900 oC高温热解1h,得到Co2P/NPC电催化剂。本步骤中,退火气氛为高纯Ar,管式炉升温速率10oC/min。
图1为该实例下制备的Co2P/NPC电催化剂的XRD图,低角度处的宽包为石墨化碳的(001)峰,高角度处的衍射峰对应Co2P的衍射峰(标准卡片PDF#32-0306)。通过SEM分析(图2(a)),可以看到样品为纤维状形貌,表面较粗糙,且负载了一些颗粒。图2(b)为样品的TEM图,从图中可以看出纤维是中空管状,直径约为50-100 nm,管壁较厚(20-30 nm)。表面负载有Co2P纳米颗粒,直径约50-80nm。
BET分析(图3)表明Co2P/NPC具有较大的比表面积,为343.6m2/g,孔隙集中在4nm左右。这归因于P的掺杂使碳管表面变粗糙从而具有较高的比表面积,将促进催化反应的进行。将样品滴于玻碳电极上测试其OER性能(图4),可以看出在电流密度为10mA cm-2处,电位为1.55V vs. RHE,对应过电位320 mV,同时计算得到其塔菲斜率为59.6mV dec-1,显示了优异的OER性能,优于商用RuO2(62.1 mV dec-1)。
实施例2:
(1)将0.1gC14H14N3SO3Na加入120mL超纯水中,在冰水浴搅拌的环境中加入0.48gFeCl3·6H2O,加入0.2mL C4H5N;再加入57.3mg (NPCl2)3,常温条件下避光持续搅拌24h,经过抽滤、洗涤、干燥得到前驱体聚吡咯;
(2)将60mg聚吡咯放于含有0.29g的Co(NO3)2·6H2O超纯水溶液(10ml)中超声20min,静置5h,离心洗涤干燥;将得到的样品置于含有0.082g C4H6N2的超纯水溶液(10ml)中静置5h,离心洗涤干燥。将得到的样品放于管式炉中央经过900 oC高温热解1h,得到Co2P/NPC电催化剂。本步骤中,退火气氛为高纯Ar,管式炉升温速率10oC/min。
图5为该实例下制备的Co2P/NPC电催化剂的氧还原LSV及其塔菲斜率图,从图中可以看出,在1600rpm下,其半波电位为0.85V vs. RHE,塔菲斜率达到48.2mV dec-1,显示出优异的氧还原性能,优于商业化Pt/C(70.3 mV dec-1)。图6为该实例下制备的Co2P/NPC电催化剂在0.1MKOH溶液中测得的ORR和OER全谱图,从图中可以看出样品的OER-ORR电位差为0.76V,显示出优异的氧电催化双功能性。
实施例3:
(1)将0.1g C14H14N3SO3Na加入120mL超纯水中,在冰水浴搅拌的环境中加入0.48gFeCl3·6H2O,加入0.2mL C4H5N;再加入57.3mg (NPCl2)3,常温条件下避光持续搅拌24h,经过抽滤、洗涤、干燥得到前驱体聚吡咯;将60mg聚吡咯放于含有0.29g的Co(NO3)2·6H2O超纯水溶液(10ml)中超声20min,静置2h,离心洗涤干燥;将得到的样品置于含有0.082g C4H6N2的超纯水溶液(10ml)中静置2h,离心洗涤干燥。将得到的样品放于管式炉中央经过900 oC高温热解1h,得到Co2P/NPC电催化剂。本步骤中,退火气氛为高纯Ar,管式炉升温速率10oC/min。
图7为该实例下制备的Co2P/NPC电催化剂的ORR稳定性图,从图中可以看到,在1600rpm下,经过恒压6300s后,样品电流仅衰减5%,表现出优异的氧还原稳定性。

Claims (4)

1.一种Co2P/NPC电催化剂的制备方法,其特征在于:包括如下步骤:
(1)将C14H14N3SO3Na加入到超纯水中,在冰水浴搅拌的环境下加入FeCl3·6H2O,再依次加入C4H5N和(NPCl2)3,避光持续搅拌24-28h,经过抽滤、洗涤干燥得到前驱体聚吡咯;
(2)将步骤(1)制备得到的聚吡咯放于Co(NO3)2·6H2O超纯水溶液中超声,静置5-24h,离心干燥,将得到的样品置于C4H6N2的超纯水溶液中静置5-24h后再次离心干燥,将得到的样品放于管式炉中央经过700-1000 oC惰性气氛中进行退火1~3h,得到Co2P/NPC电催化剂。
2.根据权利要求1所述的Co2P/NPC电催化剂的制备方法,其特征在于:步骤(1)中C14H14N3SO3Na、FeCl3·6H2O、C4H5N和(NPCl2)3的质量比为1-3:2-10:0.5-8:0.05-0.6。
3.根据权利要求1所述的Co2P/NPC电催化剂的制备方法,其特征在于:步骤(2)中聚吡咯、Co(NO3)2·6H2O与C4H6N2的质量比为3-6:25-90:8-25。
4.根据权利要求1所述的Co2P/NPC电催化剂的制备方法,其特征在于:步骤(2)中退火气氛为高纯N2或Ar,管式炉升温速率2~10oC/min。
CN201910911968.2A 2019-09-25 2019-09-25 一种Co2P/NPC电催化剂的制备方法 Active CN110649275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910911968.2A CN110649275B (zh) 2019-09-25 2019-09-25 一种Co2P/NPC电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910911968.2A CN110649275B (zh) 2019-09-25 2019-09-25 一种Co2P/NPC电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110649275A true CN110649275A (zh) 2020-01-03
CN110649275B CN110649275B (zh) 2022-04-08

Family

ID=68992077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910911968.2A Active CN110649275B (zh) 2019-09-25 2019-09-25 一种Co2P/NPC电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110649275B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599805A (zh) * 2020-12-16 2021-04-02 三峡大学 一种CoSb/NC电催化剂的制备方法及应用
CN112795947A (zh) * 2020-12-21 2021-05-14 中国石油大学(北京) 一种氮磷掺杂碳包裹的金属磷化物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140024521A1 (en) * 2010-04-26 2014-01-23 Los Alamos National Security, Llc Nitrogen-Doped Carbon-Supported Cobalt-Iron Oxygen Reduction Catalyst
CN107051559A (zh) * 2017-05-08 2017-08-18 中南大学 一种氧还原和析氧磷化钴@npc双功能复合催化剂及其制备方法和应用
CN108539217A (zh) * 2018-04-19 2018-09-14 常州大学 氮硫共掺杂碳纳米管的制备方法及其应用
CN108927185A (zh) * 2018-08-02 2018-12-04 临沂大学 一种杂原子掺杂碳纳米管负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN109473659A (zh) * 2018-12-07 2019-03-15 杭州电子科技大学 一种聚吡咯纳米管/Co3O4颗粒复合材料及制备方法
CN109755601A (zh) * 2019-02-16 2019-05-14 天津大学 一种多级孔结构过渡金属氧还原催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140024521A1 (en) * 2010-04-26 2014-01-23 Los Alamos National Security, Llc Nitrogen-Doped Carbon-Supported Cobalt-Iron Oxygen Reduction Catalyst
CN107051559A (zh) * 2017-05-08 2017-08-18 中南大学 一种氧还原和析氧磷化钴@npc双功能复合催化剂及其制备方法和应用
CN108539217A (zh) * 2018-04-19 2018-09-14 常州大学 氮硫共掺杂碳纳米管的制备方法及其应用
CN108927185A (zh) * 2018-08-02 2018-12-04 临沂大学 一种杂原子掺杂碳纳米管负载磷化铁纳米粒子的氧还原催化剂及其制备方法
CN109473659A (zh) * 2018-12-07 2019-03-15 杭州电子科技大学 一种聚吡咯纳米管/Co3O4颗粒复合材料及制备方法
CN109755601A (zh) * 2019-02-16 2019-05-14 天津大学 一种多级孔结构过渡金属氧还原催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LILI FAN等: "N,P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions", 《DALTON TRANSACTIONS》 *
YU LI等: "Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes cersus globules in conductivity enhancement", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
YUE YU等: "General methon for synthesis Transition-Metal Phosphide (Fe2P,Co2P,Ni2P)/nitrogen and phosphide doped carbon materials with yolk-shell structure for oxygen reduction reaction", 《CHEMCATCHEM》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599805A (zh) * 2020-12-16 2021-04-02 三峡大学 一种CoSb/NC电催化剂的制备方法及应用
CN112795947A (zh) * 2020-12-21 2021-05-14 中国石油大学(北京) 一种氮磷掺杂碳包裹的金属磷化物及其制备方法和应用
CN112795947B (zh) * 2020-12-21 2021-11-19 中国石油大学(北京) 一种氮磷掺杂碳包裹的金属磷化物及其制备方法和应用

Also Published As

Publication number Publication date
CN110649275B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Li et al. Vapor–solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis
Jiang et al. Interpenetrating triphase cobalt‐based nanocomposites as efficient bifunctional oxygen electrocatalysts for long‐lasting rechargeable Zn–air batteries
Ma et al. The surface engineering of cobalt carbide spheres through N, B co-doping achieved by room-temperature in situ anchoring effects for active and durable multifunctional electrocatalysts
Xuan et al. Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts
Zhu et al. The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis
Zhu et al. Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting
Sanetuntikul et al. Cobalt and nitrogen co-doped hierarchically porous carbon nanostructure: a bifunctional electrocatalyst for oxygen reduction and evolution reactions
Wan et al. Oxygen-evolution catalysts based on iron-mediated nickel metal–organic frameworks
Lv et al. A Br-regulated transition metal active-site anchoring and exposure strategy in biomass-derived carbon nanosheets for obtaining robust ORR/HER electrocatalysts at all pH values
CN110142058B (zh) 一种F127诱导的三维多孔FeNi-NC双功能电催化剂及其制备方法
CN109921041B (zh) 一种非贵金属氮掺杂空心碳纳米管电催化剂的制备及应用
Peng et al. Polydopamine coated prussian blue analogue derived hollow carbon nanoboxes with FeP encapsulated for hydrogen evolution
JP2003515237A (ja) 高差圧電気化学電池
Xiong et al. In-situ self-templating construction of FeNi/N co-doped 3D porous carbon from bimetallic ions-coordinated porous organic polymer for rechargeable zinc-air batteries
Chang et al. Fabrication of bimetallic Co/Zn leaf blade structure template derived Co3O4-ZIF/Zn and its ORR catalytic performance for MFC
CN109037716B (zh) 一种氮掺杂碳载铁基氧还原催化剂及其制备方法和用途
Yan et al. Hierarchical cobalt phosphide hollow nanoboxes as high performance bifunctional electrocatalysts for overall water splitting
Li et al. Conductive metal–Organic frameworks endow high-efficient oxygen evolution of La0· 6Sr0· 4Co0· 8Fe0· 2O3 perovskite oxide nanofibers
CN113186548B (zh) 一种氮和磷共掺杂碳层包裹磷化二钴催化剂及其制备方法和应用
CN110649275B (zh) 一种Co2P/NPC电催化剂的制备方法
CN110560117A (zh) 一种双金属钴钌-氮磷掺杂多孔碳电催化剂及其制备方法与应用
Ghosh et al. Bifunctional catalytic activity of solvothermally synthesized CeO2 nanosphere/NiO nanoflake nanocomposites
Zheng et al. Space‐Confined Anchoring of Fe− Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction
CN112877715B (zh) 一种多孔碳负载磷化钌催化剂的制备方法及其应用
Li et al. 0.03 V electrolysis voltage driven hydrazine assisted hydrogen generation on NiCo phosphide nanowires supported NiCoHydroxide nanosheets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant