CN110646479A - 一种比率电化学传感器用于检测对乙酰氨基苯酚 - Google Patents

一种比率电化学传感器用于检测对乙酰氨基苯酚 Download PDF

Info

Publication number
CN110646479A
CN110646479A CN201910566442.5A CN201910566442A CN110646479A CN 110646479 A CN110646479 A CN 110646479A CN 201910566442 A CN201910566442 A CN 201910566442A CN 110646479 A CN110646479 A CN 110646479A
Authority
CN
China
Prior art keywords
ferrocene
graphene oxide
solution
electrode
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910566442.5A
Other languages
English (en)
Inventor
郭慧君
王振宇
李健华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN201910566442.5A priority Critical patent/CN110646479A/zh
Publication of CN110646479A publication Critical patent/CN110646479A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于二茂铁‑氧化石墨烯复合物修饰的玻碳电极构建的电化学传感器,用于高效检测对乙酰氨基苯酚(4‑AC)。首先,通过超声的方法制备二茂铁‑氧化石墨烯复合物悬浊液,然后加入一定量萘芬溶液,形成二茂铁‑氧化石墨烯复合物溶液。然后将上述溶液滴涂于玻碳电极表面将其作为工作电极,Ag/AgCl电极作为参比电极,以Pt丝电极为辅助电极。其中,二茂铁在电化学驱动力作用下产生的氧化还原峰作为电极表面的参比信号,然后以含有不同浓度的、4‑AC的磷酸盐缓冲溶液(PBS)为电解液进行电化学检测,乙酰氨基苯酚与二茂铁峰电流的比作为最后结果从而构成了比率传感器,可以消除背景峰电流的干扰和检测仪器自身带来的系统误差。

Description

一种比率电化学传感器用于检测对乙酰氨基苯酚
技术领域
本发明属于电化学传感器研究领域,具体涉及一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法。
背景技术
作为常用的解热镇痛药,对乙酰氨基苯酚已被广泛使用,用作缓解发烧和疼痛的有效药物。虽然乙酰氨基苯酚是相对的安全的药物,但是过量的乙酰氨基苯酚可能导致致命的肝毒性和肾毒性。因此,准确检测药物样品中的乙酰氨基苯酚的含量有助于药品质量控制,避免含量过量对人体健康构成严重危害。对于乙酰氨基苯酚的分析检测方法很多,例如分光光度法,荧光光度法,化学发光,色谱,电泳等。这些方法存在着成本高,操作复杂,灵敏性差等缺点。相比之下,电化学检测方法具有操作简单、费用低、性能好、灵敏度高、低成本的仪器、小仪器尺寸、简单操作和现场监测的优点,使其成为药物分析较好的选择。
关于化学/生物传感系统,准确的信号强度响应是十分重要的因素。由于存在很多会干扰电化学传感器识别检测信号分子的内在和外在影响因素,如传感材料含量、检测仪器工作效率和检测环境条件等。因此,单电化学信号输出模式可能会带来检测稳定性差,重复性和可靠性低等问题,使其实际应用收到了很大的限制。为了克服这些缺点,我们在此提出了一个双信号输出模式。在生物传感系统中引入一个附加信号源作为参比信号,将检测目标信号与参比信号进行求比值,作为目标信号的检测值。这样就可以降低干扰因素对检测信号的影响,从而达到精准检测目标物质浓度的目的。
发明内容
本发明公开了一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法,其中二茂铁-氧化石墨烯复合物为修饰物附着在电极表面,用于提高电极的催化性能,而且二茂铁作为参比信号源,可以得到目标检测信号的比率值,降低干扰因素对于检测结果的影响。二茂铁-氧化石墨烯复合物修饰电极构建的生物传感体系,达到高灵敏、低成本、高稳定的比率检测乙酰氨基苯酚的目标。
1. 本发明通过下述方案实现:一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法,其特征在于包括如下步骤:
(1)首先将一定量的二茂铁与氧化石墨烯溶液混合,超声30分钟。
(2)将(1)中的溶液置于离心机中,离心3~4次,直到洗至溶液无色为止,最后将上述复合物置于一定温度条件下干燥,得到纯净二茂铁-氧化石墨烯复合物。
(3)将(2)中制备的复合物分散于二次水中,配制成一定浓度的二茂铁-氧化石墨烯溶液,加入一定量萘芬溶液,制得一定浓度的二茂铁-氧化石墨烯复合物悬浮液。
(4)将玻碳电极置于含有纳米氧化铝粉末的麂皮上抛光至呈镜面,然后在乙醇溶液中超声20~30秒,再将其置于二次水中超20~30秒,最后用氮气将其吹干,获得预处理好的裸玻碳电极。
(5)取一定量(3)中制备悬浮液滴涂于预处理好的裸玻碳电极表面,直到干燥,便得到二茂铁-氧化石墨烯复合物修饰的工作电极,并将二茂铁-氧化石墨烯复合物修饰的工作电极置于含有不同浓度对乙酰氨基苯酚的磷酸盐缓冲溶液中进行电化学检测。
2. 步骤(1)一定量的二茂铁的用量为3~4mg/ml。
3. 步骤(1)中所用的氧化石墨烯的量为5mg/ml。
4. 步骤(2)中所述的烘干复合物的所需的温度为50~70℃。
5. 步骤(3)中所述的加入一定量萘芬溶液,萘芬的用量为200μL/ml, 目的是使形成的二茂铁-氧化石墨烯复合物结合稳定,使其滴涂在裸玻碳电极表面稳定,不易掉落。
6.步骤(3)中所述的一定温度条件下,其温度为70~100℃。
7.步骤(4)中所述的一定量萘芬溶液,目的是使形成的MnO2-MWCNTs复合物结合稳定,使其滴涂在金纳米颗粒聚酰亚胺聚合物膜表面稳定,不易掉落。
8. 步骤(3)中所述的制得一定浓度的二茂铁-氧化石墨烯复合物悬浮液,一定浓度为2mg/ml。
9. 步骤(5)中所述的取一定量(3)中制备悬浮液滴涂于预处理好的裸玻碳电极表面,一定量为3~5μL。
10. 步骤(5)中所述磷酸盐缓冲溶液的pH为7.4。
11. 步骤(5)中所用到的磷酸盐缓冲溶液,其浓度为5mM。
具体实施方式
以下结合附图与实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
图1中二茂铁-氧化石墨烯复合物修饰电极用来检测磷酸钠缓冲溶液(pH 7.4)中不同浓度的4-AC的循环伏安曲线
实施例1:首先将60mg二茂铁加入20ml, 5mg/ml的氧化石墨烯溶液混合,超声30分钟。将上述步骤制得的复合物溶液置于离心机中,离心3~4次,直到洗至溶液无色为止,最后将上述复合物置于50℃条件下干燥,得到纯净二茂铁-氧化石墨烯复合物。将二茂铁-氧化石墨烯复合物分散于二次水中,配制成2mg/ml的二茂铁-氧化石墨烯复合物溶液,加入400μL萘芬溶液,制得2mg/ml的二茂铁-氧化石墨烯复合物悬浮液。将玻碳电极置于含有纳米氧化铝粉末的麂皮上抛光至呈镜面,然后在乙醇溶液中超声20秒,再将其置于二次水中超声20秒,最后用氮气将其吹干,获得预处理好的裸玻碳电极;取3μL二茂铁-氧化石墨烯复合物悬浮液涂于预处理好的裸玻碳电极表面,直到干燥,便得到二茂铁-氧化石墨烯复合物修饰的工作电极。将二茂铁-氧化石墨烯复合物修饰的工作电极置于含有不同浓度对乙酰氨基苯酚的5mM磷酸盐缓冲溶液 (pH 7.4) 中进行电化学检测。
实施例2:首先将40mg二茂铁加入10ml, 5mg/ml的氧化石墨烯溶液混合,超声30分钟。将上述步骤制得的复合物溶液置于离心机中,离心3~4次,直到洗至溶液无色为止,最后将上述复合物置于60℃条件下干燥,得到纯净二茂铁-氧化石墨烯复合物。将二茂铁-氧化石墨烯复合物分散于二次水中,配制成3mg/ml的二茂铁-氧化石墨烯复合物溶液,加入600μL萘芬溶液,制得3mg/ml的二茂铁-氧化石墨烯复合物悬浮液。将玻碳电极置于含有纳米氧化铝粉末的麂皮上抛光至呈镜面,然后在乙醇溶液中超声25秒,再将其置于二次水中超声25秒,最后用氮气将其吹干,获得预处理好的裸玻碳电极;取4μL二茂铁-氧化石墨烯复合物悬浮液涂于预处理好的裸玻碳电极表面,直到干燥,便得到二茂铁-氧化石墨烯复合物修饰的工作电极。将二茂铁-氧化石墨烯复合物修饰的工作电极置于含有不同浓度对乙酰氨基苯酚的5mM磷酸盐缓冲溶液 (pH 7.4) 中进行电化学检测。
实施例3:首先将45mg二茂铁加入25ml, 5mg/ml的氧化石墨烯溶液混合,超声30分钟。将上述步骤制得的复合物溶液置于离心机中,离心3~4次,直到洗至溶液无色为止,最后将上述复合物置于70℃条件下干燥,得到纯净二茂铁-氧化石墨烯复合物。将二茂铁-氧化石墨烯复合物分散于二次水中,配制成4mg/ml的二茂铁-氧化石墨烯复合物溶液,加入800μL萘芬溶液,制得4mg/ml的二茂铁-氧化石墨烯复合物悬浮液。将玻碳电极置于含有纳米氧化铝粉末的麂皮上抛光至呈镜面,然后在乙醇溶液中超声30秒,再将其置于二次水中超声30秒,最后用氮气将其吹干,获得预处理好的裸玻碳电极;取5μL二茂铁-氧化石墨烯复合物悬浮液涂于预处理好的裸玻碳电极表面,直到干燥,便得到二茂铁-氧化石墨烯复合物修饰的工作电极。将二茂铁-氧化石墨烯复合物修饰的工作电极置于含有不同浓度对乙酰氨基苯酚的5mM磷酸盐缓冲溶液 (pH 7.4) 中进行电化学检测。
附图说明
图1是电极循环伏案扫描曲线图。

Claims (5)

1.一种比率电化学传感器用于检测对乙酰氨基苯酚,其特征在于该方法包括如下合成步骤:
(1)首先将一定量的二茂铁与氧化石墨烯溶液混合,超声30分钟。
(2)将(1)中的溶液置于离心机中,离心3~4次,直到洗至溶液无色为止,最后将上述复合物置于一定温度条件下干燥,得到纯净二茂铁-氧化石墨烯复合物。
(3)将(2)中制备的复合物分散于二次水中,配制成一定浓度的二茂铁-氧化石墨烯溶液,加入一定量萘芬溶液,制得一定浓度的二茂铁-氧化石墨烯复合物悬浮液。
(4)将玻碳电极置于含有纳米氧化铝粉末的麂皮上抛光至呈镜面,然后在乙醇溶液中超声20~30秒,再将其置于二次水中超声20~30秒,最后用氮气将其吹干,获得预处理好的裸玻碳电极。
(5)取一定量(3)中制备悬浮液滴涂于预处理好的裸玻碳电极表面,直到干燥,便得到二茂铁-氧化石墨烯复合物修饰的工作电极,并将二茂铁-氧化石墨烯复合物修饰的工作电极置于含有不同浓度对乙酰氨基苯酚的磷酸盐缓冲溶液中进行电化学检测。
2.如权利要求1所述一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法,其特征在于,步骤(1)一定量的二茂铁的用量为3~4mg/ml,所用的氧化石墨烯的量为5mg/ml。
3.如权利要求1所述一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法,其特征在于,步骤(2)中所述的一定温度为50~70℃。
4.如权利要求1所述一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法,其特征在于,步骤(3)中所述的加入一定量萘芬溶液,萘芬的用量为200μL/ml,目的是使形成的二茂铁-氧化石墨烯复合物结合稳定,使其滴涂在裸玻碳电极表面稳定,不易掉落,所述的制得一定浓度的二茂铁-氧化石墨烯复合物悬浮液,一定浓度为2mg/ml。
5.如权利要求1所述一种比率电化学传感器用于检测对乙酰氨基苯酚的制备方法,其特征在于,步骤(5)中所述的取一定量(3)中制备悬浮液滴涂于预处理好的裸玻碳电极表面,一定量为3~5μL,所述磷酸盐缓冲溶液的pH为7.4且其浓度为5mM。
CN201910566442.5A 2019-06-27 2019-06-27 一种比率电化学传感器用于检测对乙酰氨基苯酚 Pending CN110646479A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910566442.5A CN110646479A (zh) 2019-06-27 2019-06-27 一种比率电化学传感器用于检测对乙酰氨基苯酚

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910566442.5A CN110646479A (zh) 2019-06-27 2019-06-27 一种比率电化学传感器用于检测对乙酰氨基苯酚

Publications (1)

Publication Number Publication Date
CN110646479A true CN110646479A (zh) 2020-01-03

Family

ID=69009454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910566442.5A Pending CN110646479A (zh) 2019-06-27 2019-06-27 一种比率电化学传感器用于检测对乙酰氨基苯酚

Country Status (1)

Country Link
CN (1) CN110646479A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024792A (zh) * 2020-01-07 2020-04-17 哈尔滨理工大学 一种基于花状氧化锌@二茂铁功能化三维石墨烯的电化学传感电极

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063316A (ja) * 1992-06-19 1994-01-11 Nikkiso Co Ltd 修飾電極およびその修飾方法
US20060113187A1 (en) * 2004-11-22 2006-06-01 Deng David Z Biosensors comprising semiconducting electrodes or ruthenium containing mediators and method of using the same
CN1914331A (zh) * 2004-02-06 2007-02-14 拜尔健康护理有限责任公司 作为生物传感器的内部参照的可氧化种类和使用方法
WO2012134257A1 (en) * 2011-03-14 2012-10-04 Mimos Berhad Carbon nanotube-modified electrode
CN103278541A (zh) * 2013-04-19 2013-09-04 宁波大学 用于检测双酚a的电化学生物传感器及其制备方法和应用
CN103604858A (zh) * 2013-11-20 2014-02-26 南京理工大学 一种pedot/go/gce电极对药物对乙酰氨基酚的电化学检测方法
CN104062330A (zh) * 2014-06-11 2014-09-24 汕头大学 一种检测凝血酶的电化学发光生物传感器及其制备方法
US20180052134A1 (en) * 2016-08-22 2018-02-22 King Fahd University Of Petroleum And Minerals Graphite electrode comprising electrochemically reduced graphene oxide and methods thereof
CN108490053A (zh) * 2018-03-08 2018-09-04 清华大学 一种三维石墨烯基比例型信号放大适体传感器及其制备方法与应用
CN108726515A (zh) * 2018-05-31 2018-11-02 西北师范大学 具有三维结构还原氧化石墨烯-二茂铁复合材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063316A (ja) * 1992-06-19 1994-01-11 Nikkiso Co Ltd 修飾電極およびその修飾方法
CN1914331A (zh) * 2004-02-06 2007-02-14 拜尔健康护理有限责任公司 作为生物传感器的内部参照的可氧化种类和使用方法
US20060113187A1 (en) * 2004-11-22 2006-06-01 Deng David Z Biosensors comprising semiconducting electrodes or ruthenium containing mediators and method of using the same
WO2012134257A1 (en) * 2011-03-14 2012-10-04 Mimos Berhad Carbon nanotube-modified electrode
CN103278541A (zh) * 2013-04-19 2013-09-04 宁波大学 用于检测双酚a的电化学生物传感器及其制备方法和应用
CN103604858A (zh) * 2013-11-20 2014-02-26 南京理工大学 一种pedot/go/gce电极对药物对乙酰氨基酚的电化学检测方法
CN104062330A (zh) * 2014-06-11 2014-09-24 汕头大学 一种检测凝血酶的电化学发光生物传感器及其制备方法
US20180052134A1 (en) * 2016-08-22 2018-02-22 King Fahd University Of Petroleum And Minerals Graphite electrode comprising electrochemically reduced graphene oxide and methods thereof
CN108490053A (zh) * 2018-03-08 2018-09-04 清华大学 一种三维石墨烯基比例型信号放大适体传感器及其制备方法与应用
CN108726515A (zh) * 2018-05-31 2018-11-02 西北师范大学 具有三维结构还原氧化石墨烯-二茂铁复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NING XIA ET AL.,: "Nanocomposites of Graphene with Ferrocene or Hemin: Preparation and Application in Electrochemical Sensing", 《JOURNAL OF NANOMATERIALS》, pages 1 - 9 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024792A (zh) * 2020-01-07 2020-04-17 哈尔滨理工大学 一种基于花状氧化锌@二茂铁功能化三维石墨烯的电化学传感电极
CN111024792B (zh) * 2020-01-07 2023-04-25 哈尔滨理工大学 一种基于花状氧化锌@二茂铁功能化三维石墨烯的电化学传感电极

Similar Documents

Publication Publication Date Title
Pundir et al. Determination of glycated hemoglobin with special emphasis on biosensing methods
Babaei et al. A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples
Liu et al. Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin
Liu et al. A non-enzymatic electrochemical sensor for detection of sialic acid based on a porphine/graphene oxide modified electrode via indicator displacement assay
Hatamluyi et al. Quantitative biodetection of anticancer drug rituxan with DNA biosensor modified PAMAM dendrimer/reduced graphene oxide nanocomposite
Zhong et al. An electrochemical immunosensor for simultaneous multiplexed detection of neuron-specific enolase and pro-gastrin-releasing peptide using liposomes as enhancer
Wu et al. Electrochemiluminescent aptamer-sensor for alpha synuclein oligomer based on a metal–organic framework
Zhao et al. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin
CN110006968B (zh) 基于快速扫描循环伏安技术检测汞离子的电化学生物传感器的制备方法及其应用
Pankratova et al. Electrochemical sensing of blood proteins for mild traumatic brain injury (mTBI) diagnostics and prognostics: towards a point-of-care application
Bangaleh et al. A new potentiometric sensor for determination and screening phenylalanine in blood serum based on molecularly imprinted polymer
Nikoleli et al. Development of an electrochemical biosensor for the rapid detection of cholera toxin using air stable lipid films with incorporated ganglioside GM1
Wang et al. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper
Zhao et al. Determination of oxalate and citrate in urine by capillary electrophoresis using solid‐phase extraction and capacitively coupled contactless conductivity based on an improved mini‐cell
CN110646479A (zh) 一种比率电化学传感器用于检测对乙酰氨基苯酚
Stefan et al. S‐perindopril assay using a potentiometric, enantioselective membrane electrode
Li et al. A novel strategy of electrochemically treated ZrOCl2 doped carbon paste electrode for sensitive determination of daidzein
Xie et al. A novel enzyme-immobilized flow cell used as end-column chemiluminescent detection interface in open-tubular capillary electrochromatography
Sun et al. Simultaneous determination of lidocaine, proline and lomefloxacin in human urine by CE with electrochemiluminescence detection
Zhao et al. Gold nanoparticle‐enhanced capillary electrophoresis‐chemiluminescence assay of trace uric acid
Kamel et al. Screen‐printed electrochemical sensors for label‐free potentiometric and impedimetric detection of human serum albumin
Kurita et al. Differential measurement with a microfluidic device for the highly selective continuous measurement of histamine released from rat basophilic leukemia cells (RBL-2H3)
Wu et al. Electron transfer-based norepinephrine detection with high sensitivity regulated by polyethyleneimine molecular weight
Kassahun et al. Input of electroanalytical methods for the determination of diclofenac: a review of recent trends and developments
Radi Applications of stripping voltammetry at carbon paste and chemically modified carbon paste electrodes to pharmaceutical analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200103

WD01 Invention patent application deemed withdrawn after publication