CN110639529B - 一种可见光催化还原去除六价铀的催化剂和方法及应用 - Google Patents

一种可见光催化还原去除六价铀的催化剂和方法及应用 Download PDF

Info

Publication number
CN110639529B
CN110639529B CN201910865308.5A CN201910865308A CN110639529B CN 110639529 B CN110639529 B CN 110639529B CN 201910865308 A CN201910865308 A CN 201910865308A CN 110639529 B CN110639529 B CN 110639529B
Authority
CN
China
Prior art keywords
znfe
visible light
catalyst
photocatalytic
hexavalent uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910865308.5A
Other languages
English (en)
Other versions
CN110639529A (zh
Inventor
袁立永
石伟群
梁鹏亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of High Energy Physics of CAS
Original Assignee
Institute of High Energy Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of High Energy Physics of CAS filed Critical Institute of High Energy Physics of CAS
Priority to CN201910865308.5A priority Critical patent/CN110639529B/zh
Publication of CN110639529A publication Critical patent/CN110639529A/zh
Application granted granted Critical
Publication of CN110639529B publication Critical patent/CN110639529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种可见光催化还原去除六价铀的催化剂和方法及应用。所述催化剂为ZnFe2O4。本发明所提供的光催化还原去除六价铀的催化剂廉价易制备,兼具可见光影响和磁分离特性。本发明去除六价铀的方法,在室温氮气气氛中可见光条件即可去除U(VI),还具有很好的光催化活性,对于U(VI)(50ppm)去除率在1h内接近100%。ZnFe2O4光催化还原去除U(VI)简单,绿色,高效,在放射性环境修复方面具有应用前景。

Description

一种可见光催化还原去除六价铀的催化剂和方法及应用
技术领域
本发明涉及放射性废水处理技术领域,具体涉及一种可见光催化还原去除六价铀的催化剂和方法及应用。
背景技术
铀是常用的核燃料资源。铀矿开采和放射性废物处理等一系列核工业活动会不可避免地向环境中释放铀。铀具有化学毒性和放射毒性,对生态环境安全和人体健康产生潜在威胁。因此环境中铀的分离去除是紧迫同时也是具有重要现实意义的研究课题。过去的几十年里已经开发了许多分离去除放射性核素的方法,例如蒸发浓缩法,溶剂萃取法,吸附法和化学沉淀法等等。虽然这些方法在一定程度上取得了令人振奋的结果,但是这些方法也存在一定的缺陷。例如,蒸发浓缩法能耗大,而吸附法和化学沉淀法会造成二次污染等。
易溶的U(VI)是自然环境中铀的主要存在形式,将可溶的U(VI)还原为微溶的U(IV)是有效减少铀污染的可行方法。目前已报道的还原去除U(VI)的方法包括化学还原法,生物还原法和光催化还原法,在这些方法中光催化还原法因其简单、绿色、高效的特点逐渐成为当前的研究热点。迄今为止,已经报道了TiO2及其复合物,Ti3C2/SrTiO3等用于光催化还原去除U(VI)。虽然这些材料在紫外光下具有较高的光催化活性,但是紫外光只占太阳光的5%,光能利用率低。随后研究者们发现Fe2O3/rGO,Sn-In2S3和非金属(B,S,P)掺杂C3N4等在可见光下可以去除U(VI)。然而这些光催化材料同样存在诸如光催化效率低(Fe2O3/rGO)和成本较高(Sn-In2S3)等缺点,同时这些材料光催化后难以分离回收,在一定程度上限制了其在实际体系中的应用。因此,目前迫切需要寻求兼具价格低廉、易回收和可见光响应的等特点的材料用于光催化还原去除U(VI)。
具有过渡金属尖晶石结构的ZnFe2O4由于其低成本、可见光响应(Eg≈1.9eV)、光化学稳定性良好和磁性可回收等特点而受到广泛关注。研究表明,ZnFe2O4在可见光下可以降解有机物,去除NO,产氢和还原Cr(VI)。ZnFe2O4还原去除U(VI)目前尚未有相关报导。此外,ZnFe2O4具有不同的形貌结构。形貌结构是否会影响ZnFe2O4本身的光催化活性值得仔细研究。目前,亟需提供一种新的光催化还原去除U(VI)的方法。
发明内容
本发明的目的在于克服现有技术的在处理含铀废水方面的不足之处,提供简单高效适用性强的一种可见光催化还原去除六价铀(U(VI))的催化剂和方法及应用。
具体而言,本发明目的在于提供一种用于可见光催化还原去除六价铀的催化剂,所述催化剂为ZnFe2O4。本发明的ZnFe2O4催化剂廉价易制备,兼具可见光响应和磁分离特性。
本发明另一目的在于提供一种用于可见光催化还原去除六价铀的催化体系,所述催化体系中,催化剂为颗粒状ZnFe2O4、棒状ZnFe2O4或微球状ZnFe2O4,优选为棒状ZnFe2O4;和/或,所述催化体系中还含有空穴捕获剂,优选为CH3OH。
本发明又一目的在于提供一种可见光催化还原去除六价铀的方法,在含U(VI)废液中加入光催化剂和空穴捕获剂,在光照条件下进行光催化还原反应,所述光催化剂为ZnFe2O4。利用本发明所述去除六价铀的方法,在室温氮气气氛中可见光条件下即可去除U(VI),对于50mLU(VI)(50ppm)去除率在1h内接近100%。ZnFe2O4光催化还原去除U(VI)简单,绿色,高效,在放射性环境修复方面具有应用前景。
根据本发明的一些优选实施方式,所述ZnFe2O4为纳米颗粒状ZnFe2O4、棒状ZnFe2O4或微球状ZnFe2O4
根据本发明的一些优选实施方式,所述ZnFe2O4为棒状ZnFe2O4;优选的,所述棒状ZnFe2O4的直径为300~800nm,长度为5~20μm,和/或,所述ZnFe2O4的用量为0.1~0.6g/L。所述催化剂的用量是相对于废液的体积的用量。本发明选取了纳米颗粒状,棒状和微球状ZnFe2O4做光催化剂,以CH3OH做空穴捕获剂,在室温氮气气氛中可见光条件下去除U(VI)。三种样品中,棒状ZnFe2O4具有最好的光催化活性。
根据本发明的一些优选实施方式,所述空穴捕获剂为CH3OH。经发明人意外发现,棒状ZnFe2O4与空穴捕获剂CH3OH存在协同效应,可见光照射下ZnFe2O4被激发后,生成电子-空穴对,光生电子将易溶的U(VI)还原为微溶的U(IV)。CH3OH的存在可以消耗空穴,提高电子与空穴的分离效率,从而显著提高U(VI)的还原去除效率。
根据本发明的一些优选实施方式,所述CH3OH的用量为0.24~0.96mol/L,优选为0.24~0.48mol/L,所述CH3OH的用量是相对于所述废液的体积的用量,所述废液总体积优选为50mL。
根据本发明的一些优选实施方式,所述反应在室温、氮气气氛和可见光照射条件下进行;和/或,所述反应的时间为0~2h,优选为1~2h。
根据本发明的一些优选实施方式,初始反应的pH值为3~6;优选为5。
根据本发明的一些优选实施方式,通过以棒状ZnFe2O4做光催化剂,催化剂用量优选为0.2g/L,CH3OH的剂量优选为0.48mol/L,初始反应pH值优选为5;本发明对于50mLU(VI)(50ppm)去除率在1h内接近100%,同时棒状ZnFe2O4具有良好的光催化稳定性和磁分离特性。本发明所提供的ZnFe2O4光催化还原去除U(VI)简单,绿色,高效,在放射性环境修复方面具有应用前景。
本发明再一目的在于提供一种所述的可见光催化还原去除六价铀的方法在放射性环境修复中的应用,优选在含U(VI)放射性废水治理中的应用。
本发明的有益效果至少在于:本发明采用ZnFe2O4催化剂制备方法简单,成本低廉,在可见光下光催化高效去除U(VI),棒状ZnFe2O4对于50mLU(VI)(50ppm)去除率在1h内可接近100%,同时棒状ZnFe2O4具有良好的光催化稳定性和磁性分离特性。实验结果表明,ZnFe2O4光催化还原去除U(VI)简单、绿色、高效,在放射性环境修复方面具有潜在应用前景。
附图说明
图1为本发明所提供的ZnFe2O4样品的XRD图;
图2为本发明所提供的ZnFe2O4样品的氮气吸附脱附曲线图;
图3为本发明所提供的ZFO-1的SEM照片;
图4为本发明所提供的ZFO-2的SEM照片;
图5为本发明所提供的ZFO-3的SEM照片;
图6为本发明所提供的ZFO-2的TEM照片;
图7为本发明所提供的样品光催化去除U(VI)活性曲线图;
图8为本发明所提供的样品催化剂用量的影响图;
图9为本发明所提供的检测结果空穴捕获剂CH3OH剂量影响图;
图10为本发明所提供的检测结果pH影响示意图;
图11为本发明所提供的对比例1的检测结果示意图;
图12为本发明所提供的对比例2的检测结果示意图;
图13为本发明所提供的ZFO-2光催化循环实验结果示意图;
图14为本发明所提供的ZFO-2磁力分离实验示意图。
具体实施方式
下面以优选的实施例对本发明技术方案进一步说明。本领域技术人员应当知晓,以下实施例只用来说明本发明,而不用来限制本发明的范围。
若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,实施例中加入的各原料除特别说明外,均为市售常规原料。
实施例1-3
三种不同形貌的ZnFe2O4的制备,具体步骤分别如下:
(1)所使用的ZnFe2O4纳米颗粒(记为ZFO-1)购买于阿拉丁试剂公司。
(2)棒状形貌的ZnFe2O4棒(记为ZFO-2)的制备,具体步骤如下:制备溶液A:2mmolZnSO4·7H2O和4mmol(NH4)Fe(SO4)·6H2O溶于10mL去离子水和30mL乙二醇的混合液,磁力搅拌30min。制备溶液B:6mmol C2H2O4·2H2O溶于10mL去离子水和30mL乙二醇的混合液。溶液B逐滴加入溶液A中,磁力搅拌60min。然后混合液转入100ml反应釜,在烘箱中120℃保持24h。冷却至室温后过滤得到黄色固体,用去离子水和乙醇反复洗涤黄色固体,然后将黄色固体在80℃干燥12h。最后将干燥后的黄色固体置于小瓷舟中,在马弗炉中以1℃/min升温速率升至400℃,在400℃恒温2h,冷却至室温后得到ZFO-2。
(3)微球状形貌的ZnFe2O4(记为ZFO-3)的制备,具体步骤如下:1mmol Zn(CH3COO)2·2H2O和2mmol Fe(NO3)3·9H2O溶于8mL丙三醇和30mL异丙醇的混合液,然后将混合液转入50ml反应釜,在烘箱中180℃保持12h。冷却至室温后离心得到绿色固体,用去离子水和乙醇反复洗涤黄色固体,然后将绿色固体在80℃干燥12h。干燥后的绿色固体在马弗炉中以2℃/min升温速率升至400℃,保温2h,冷却至室温后得到ZFO-3。
对上述实施例1-3中ZnFe2O4样品进行检测,图1(实施例1-3中制备ZnFe2O4样品的XRD)表明上述实施例中成功制备了不同形貌的ZnFe2O4。图2(ZnFe2O4样品的氮气吸附脱附曲线)表明,ZFO-2(纳米棒状的ZnFe2O4)具有最大的比表面积和孔体积。图3-6反应了上述实施例中ZnFe2O4的微观形貌,实施例1(ZFO-1)为纳米颗粒状ZnFe2O4,实施例2(ZFO-2)为纳米棒状ZnFe2O4,实施例3(ZFO-3)为微球状ZnFe2O4
实施例4
本实施例提供棒状ZnFe2O4光催化还原去除U(VI)的方法,具体步骤如下:
光催化实验在200mL玻璃光催化反应器中进行,用配有420nm滤光片(可见光)的300W氙灯做光源,利用恒温水槽将反应温度稳定在25±0.5℃。10±0.5mg ZnFe2O4样品(以ZFO-2作光催化剂,)放入37.5mL去离子水中,搅拌1h后加入24mmol CH3OH(空穴消耗剂)和12.5mL浓度为200mg/L的U(VI)母液,用可忽略体积的NaOH(0.1mol/L)或HCl(0.1mol/L)调节溶液的pH值至实验所需值。光催化反应前,在氮气气氛中磁力搅拌2h,确保无氧条件和吸附达到平衡。光照一定时间后,用1mL的针式注射器从反应器中吸取0.4mL的液体,液体经0.22μm的水相滤头过滤后待测。
实施例5-6
与实施例4相同,区别仅在于,反应的催化剂分别选用ZFO-1、ZFO-3做光催化剂。
通过对实施例4-6进行光催化反应结果检测。检测结果如图7所示,ZFO-1,ZFO-2和ZFO-3对于50mLU(VI)(50ppm)去除率在1h分别为62%,98%和79%,这说明ZFO-2具有最好的光催化效果。
实施例7-9
与实施例4相同,区别仅在于,反应的催化剂用量分别为0.1g/L,0.4g/L、0.6g/L。
通过对实施例7-9进行光催化结果检测。检测结果如图8所示,催化剂用量为0.1g/L、0.2g/L、0.4g/L和0.6g/L时对于50mL U(VI)(50ppm)1h去除率分别为82%,98%,90%和60%,表明催化剂用量优选为0.2g/L。
实施例10-11
与实施例4相同,区别仅在于,空穴捕获剂用量0.24mol/L和0.96mol/L
通过对实施例10-12进行光催化结果检测。检测结果如图9所示,空穴捕获剂用量为0.24mol/L、0.48mol/L和0.96mol/L时对于50mL U(VI)(50ppm)1h去除率分别为82%,98%和98%,表明CH3OH用量优选为0.48mol/L。
实施例12-14
与实施例4相同,区别仅在于,pH值分别为3、4、6,通过对实施例13-16进行光催化结果检测。检测结果如图10所示,pH值分别为3、4、5和6时对于50mL U(VI)(50ppm)1h去除率分别为0,20%,98%和90%,表明初始反应pH值优选为5。
对比例1
采用与实施例4相同的方法,其不同仅在于,将ZnFe2O4改为常用的可见光催化剂氮化碳(g-C3N4)。本对比例制备的方法如下:称量10g尿素至于100ml的坩埚中,坩埚的上层包裹一层锡箔纸。将坩埚置于马弗炉中,以2.5℃/min升温速率升至520℃,保温2h,冷却至室温后得到g-C3N4。对对比例进行光催化结果检测,对比结果如11所示,g-C3N4对于50mL U(VI)(50ppm)1h去除率仅为62%,而ZnFe2O4去除率为98%,表明在该实验条件下ZnFe2O4具有更优异的光催化活性。
对比例2
采用与实施例4相同的方法,其不同仅在于,不加入CH3OH空穴捕获剂。对对比例进行光催化结果检测。检测结果如12所示,不加入CH3OH时,ZnFe2O4对于50mL U(VI)(50ppm)1h去除率仅为3%,而当甲醇剂量为0.48mol/L时,其去除率增加到98%。表明CH3OH作为空穴捕获剂在本催化体系中是不可或缺的。
实施例15
对ZnFe2O4进行循环稳定性,具体如下:以实施例2中制备的ZFO-2做光催化剂,U(VI)(50ppm)溶液50mL,催化剂用量为0.2g/L,CH3OH用量为0.48mol/L,初始反应pH为5,光催化反应2h后过滤,然后将过滤出的样品在0.1mol/L Na2CO3洗涤12h以洗涤出吸附在样品表面的U(VI),过滤洗涤后将样品在80℃干燥12h。干燥后以与上述同样的条件做光催化实验,接着重复上述过滤洗涤步骤,光催化实验循环3次,图13为本实验例所提供的ZFO-2光催化循环实验结果示意图,表明ZFO-2光催化循环稳定性良好。
实施例16
对ZnFe2O4进行磁分离测试,具体如下:将磁铁置于盛有ZFO-2悬浮液小瓶附近。图14表明,悬浮的ZFO-2聚集在瓶壁上,获得了澄清透明的溶液,表明ZFO-2具有良好的磁响应特性,可通过外加磁场实现催化剂的便捷分离回收,这对于实际应用具有重要意义。
本技术领域内的一般技术人员应当认识到,上述实施例仅是用来说明本发明,而并非用作对本发明的限定,只要在本发明的实质精神范围内,对上述实施例的变换、变型都将落在本发明权利要求的范围内。

Claims (3)

1.一种可见光催化还原去除六价铀的方法,其特征在于,在含U(VI)废液中加入光催化剂和空穴捕获剂,在光照条件下进行光催化还原反应,所述光催化剂为棒状ZnFe2O4,所述棒状ZnFe2O4的直径为300~800nm,长度为5~20μm,所述空穴捕获剂为CH3OH;所述ZnFe2O4的用量为0.2g/L,所述CH3OH的用量为0.48mol/L;所述反应在室温、氮气气氛和可见光照射条件下进行;所述反应的时间为1~2h;初始反应的pH值为5。
2.权利要求1所述可见光催化还原去除六价铀的方法在放射性环境修复中的应用。
3.根据权利要求2所述的应用,其特征在于,在含U(VI)放射性废水治理中的应用。
CN201910865308.5A 2019-09-12 2019-09-12 一种可见光催化还原去除六价铀的催化剂和方法及应用 Active CN110639529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910865308.5A CN110639529B (zh) 2019-09-12 2019-09-12 一种可见光催化还原去除六价铀的催化剂和方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910865308.5A CN110639529B (zh) 2019-09-12 2019-09-12 一种可见光催化还原去除六价铀的催化剂和方法及应用

Publications (2)

Publication Number Publication Date
CN110639529A CN110639529A (zh) 2020-01-03
CN110639529B true CN110639529B (zh) 2021-02-09

Family

ID=68991762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910865308.5A Active CN110639529B (zh) 2019-09-12 2019-09-12 一种可见光催化还原去除六价铀的催化剂和方法及应用

Country Status (1)

Country Link
CN (1) CN110639529B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415653C (zh) * 2005-03-24 2008-09-03 上海大学 纳米尖晶石型ZnFe2O4的制备方法
CN101289228A (zh) * 2008-06-03 2008-10-22 浙江理工大学 一种多孔铁酸锌纳米棒的制备方法
CN103754953B (zh) * 2014-01-28 2015-07-22 南京信息工程大学 多形貌纳米铁酸锌的制备方法
TWI542409B (zh) * 2014-10-09 2016-07-21 國立清華大學 水處理用試劑套組、光催化劑製造方法及其用途
CN106378171B (zh) * 2016-08-17 2019-03-08 浙江工业大学 一种磁性ZnFe2O4/g-C3N4复合光催化材料的制备方法
CN107555526B (zh) * 2017-09-26 2020-10-13 浙江工商大学 一种复合可见光催化剂处理含铬废水的方法
CN108686665B (zh) * 2018-05-10 2022-04-15 南昌航空大学 一种纳米棒铁酸锌原位复合片层二氧化钛光催化材料的制备方法
CN109876815B (zh) * 2019-04-15 2022-04-22 江西科技师范大学 石墨烯/ZnFe2O4复合可见光催化剂及其制备方法

Also Published As

Publication number Publication date
CN110639529A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
He et al. Facile synthesis of Fe3O4@ MIL-100 (Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100 (Fe)
Li et al. An overview and recent progress in the heterogeneous photocatalytic reduction of U (VI)
CN112354555B (zh) 一种金属单原子负载碳氮聚合物催化剂及其制备方法
CN106892482B (zh) 一种黑色TiO2纳米材料及其制备方法与应用
CN110624566B (zh) CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
Wu The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline
CN111018041A (zh) 光催化还原处理含铀废水的聚吡咯石墨相氮化碳复合材料制备方法及应用
CN107311263B (zh) 一种含铬离子废水处理并副产含铬催化剂的方法
CN110550695B (zh) 一种砂岩型铀矿中选取处理放射性含铀废水材料的方法
CN114192146B (zh) 一种基于空间限域效应的磁性富微孔碳基钴催化剂及其制备方法、应用
CN106582654A (zh) 一种新型碳基材料负载尖晶石的催化剂及其制备方法
CN113083277B (zh) 用于光催化还原六价铀的富含氧空位的纳米ZnO的制备方法及应用
CN102658192A (zh) 处理生物难降解有机废水的催化剂制备方法及应用
EP3412361A1 (en) Method for preparing particulate form caesium-removal inorganic ion adsorbent and product and application thereof
Liu et al. Carbon quantum dots sensitized 2D/2D carbon nitride nanosheets/bismuth tungstate for visible light photocatalytic degradation norfloxacin
CN102357323A (zh) 一种纳米氧化铁改性石英砂滤材及其制备方法
CN108636338B (zh) 一种Fe/C复合固体吸附剂及其制备方法和应用
CN110639529B (zh) 一种可见光催化还原去除六价铀的催化剂和方法及应用
CN112169804B (zh) 一种氧化锌负载铜基多金属合金催化剂及其制备方法和应用
CN112007644B (zh) 基于盐模板法回收芬顿污泥制备二维Fe/Fe3O4光催化剂的方法
CN103578594B (zh) 一种使用纳米Fe3O4-CeO2材料去除放射性核素的方法
CN110540243B (zh) 无定型羟基氧化铁的制备方法及吸附有机物后的回收方法
Shan et al. A novel readily recyclable Fe3O4/ZnO/loofah biochar composite for efficient degradation of organic pollutants under visible light
CN108837819B (zh) 铁酸锌膨润土复合光催化剂及其制备方法与应用
CN116832777A (zh) 一种碳基材料及其制备方法和应用、含铀废水净化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant