CN110612593B - 远程等离子体氧化室 - Google Patents

远程等离子体氧化室 Download PDF

Info

Publication number
CN110612593B
CN110612593B CN201880029034.XA CN201880029034A CN110612593B CN 110612593 B CN110612593 B CN 110612593B CN 201880029034 A CN201880029034 A CN 201880029034A CN 110612593 B CN110612593 B CN 110612593B
Authority
CN
China
Prior art keywords
liner
opening
nozzle
connector
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880029034.XA
Other languages
English (en)
Chinese (zh)
Other versions
CN110612593A (zh
Inventor
克里斯托弗·S·奥尔森
埃里克·克哈雷·施诺
劳拉·哈夫雷
阿古斯·索菲安·查德拉
柴塔尼亚·A·普拉萨德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN110612593A publication Critical patent/CN110612593A/zh
Application granted granted Critical
Publication of CN110612593B publication Critical patent/CN110612593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • External Artificial Organs (AREA)
CN201880029034.XA 2017-05-31 2018-03-27 远程等离子体氧化室 Active CN110612593B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762513200P 2017-05-31 2017-05-31
US62/513,200 2017-05-31
PCT/US2018/024539 WO2018222256A1 (en) 2017-05-31 2018-03-27 Remote plasma oxidation chamber

Publications (2)

Publication Number Publication Date
CN110612593A CN110612593A (zh) 2019-12-24
CN110612593B true CN110612593B (zh) 2022-09-13

Family

ID=64455931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880029034.XA Active CN110612593B (zh) 2017-05-31 2018-03-27 远程等离子体氧化室

Country Status (6)

Country Link
US (1) US11615944B2 (enExample)
JP (1) JP7125427B2 (enExample)
KR (2) KR102509014B1 (enExample)
CN (1) CN110612593B (enExample)
TW (1) TWI798210B (enExample)
WO (1) WO2018222256A1 (enExample)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD882536S1 (en) * 2017-04-28 2020-04-28 Applied Materials, Inc. Plasma source liner
US10847337B2 (en) 2018-01-24 2020-11-24 Applied Materials, Inc. Side inject designs for improved radical concentrations
CN118841306A (zh) * 2018-12-20 2024-10-25 应用材料公司 用于供应改良的气流至处理腔室的处理空间的方法和设备
US20220223383A1 (en) * 2019-04-05 2022-07-14 Applied Materials, Inc. Process system with variable flow valve
KR20210094694A (ko) * 2020-01-21 2021-07-30 삼성전자주식회사 기판 처리 장치, 물질막 증착 장치, 및 상압 화학 기상 증착 장치
WO2022020639A1 (en) * 2020-07-24 2022-01-27 Lam Research Corporation Showerhead with reduced interior volumes
KR102522687B1 (ko) * 2020-10-20 2023-04-18 에이피시스템 주식회사 박막 제조 장치
TWI876185B (zh) * 2022-07-14 2025-03-11 美商應用材料股份有限公司 對稱半導體處理腔室

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450116B1 (en) * 1999-04-22 2002-09-17 Applied Materials, Inc. Apparatus for exposing a substrate to plasma radicals
US8067061B2 (en) * 2007-10-25 2011-11-29 Asm America, Inc. Reaction apparatus having multiple adjustable exhaust ports
CN103189957A (zh) * 2010-10-05 2013-07-03 Oc欧瑞康巴尔斯公司 用于真空加工聚合物基板的原位调节
KR20160125053A (ko) * 2015-04-21 2016-10-31 (주)뉴젠텍 정렬 키 구조의 원격 플라즈마 소스 블록

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729827A (ja) 1993-07-13 1995-01-31 Kawasaki Steel Corp 半導体基板の製造方法および装置
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US6170428B1 (en) * 1996-07-15 2001-01-09 Applied Materials, Inc. Symmetric tunable inductively coupled HDP-CVD reactor
US5935334A (en) * 1996-11-13 1999-08-10 Applied Materials, Inc. Substrate processing apparatus with bottom-mounted remote plasma system
JP2001118799A (ja) * 1999-10-22 2001-04-27 Matsushita Electric Ind Co Ltd ガスの導入と流れの制御方法およびその装置
JP2002151486A (ja) 2000-10-30 2002-05-24 Applied Materials Inc 基体処理方法及び装置並びに基体処理装置の運転方法
US6576564B2 (en) * 2000-12-07 2003-06-10 Micron Technology, Inc. Photo-assisted remote plasma apparatus and method
JP3676680B2 (ja) 2001-01-18 2005-07-27 東京エレクトロン株式会社 プラズマ装置及びプラズマ生成方法
EP1310466A3 (en) * 2001-11-13 2003-10-22 Tosoh Corporation Quartz glass parts, ceramic parts and process of producing those
JP2004091848A (ja) * 2002-08-30 2004-03-25 Tokyo Electron Ltd 薄膜形成装置の原料ガス供給系および薄膜形成装置
US20070051471A1 (en) * 2002-10-04 2007-03-08 Applied Materials, Inc. Methods and apparatus for stripping
US20050221618A1 (en) * 2004-03-31 2005-10-06 Amrhein Frederick J System for controlling a plenum output flow geometry
JP4572100B2 (ja) * 2004-09-28 2010-10-27 日本エー・エス・エム株式会社 プラズマ処理装置
JP4934595B2 (ja) 2005-01-18 2012-05-16 エーエスエム アメリカ インコーポレイテッド 薄膜成長用反応装置
JP2007157885A (ja) 2005-12-02 2007-06-21 Mitsui Eng & Shipbuild Co Ltd 原料ガス供給装置
US10225919B2 (en) * 2011-06-30 2019-03-05 Aes Global Holdings, Pte. Ltd Projected plasma source
WO2013051248A1 (ja) * 2011-10-07 2013-04-11 東京エレクトロン株式会社 プラズマ処理装置
US20130168377A1 (en) * 2011-12-29 2013-07-04 Stmicroelectronics Pte Ltd. Adapter for coupling a diffusion furnace system
KR102376982B1 (ko) 2015-04-14 2022-03-21 삼성전자주식회사 세라믹을 이용하여 파티클 저감 효과를 가지는 원격 플라즈마 발생장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450116B1 (en) * 1999-04-22 2002-09-17 Applied Materials, Inc. Apparatus for exposing a substrate to plasma radicals
US8067061B2 (en) * 2007-10-25 2011-11-29 Asm America, Inc. Reaction apparatus having multiple adjustable exhaust ports
CN103189957A (zh) * 2010-10-05 2013-07-03 Oc欧瑞康巴尔斯公司 用于真空加工聚合物基板的原位调节
KR20160125053A (ko) * 2015-04-21 2016-10-31 (주)뉴젠텍 정렬 키 구조의 원격 플라즈마 소스 블록

Also Published As

Publication number Publication date
JP7125427B2 (ja) 2022-08-24
KR20230047477A (ko) 2023-04-07
TW201907044A (zh) 2019-02-16
US20180347045A1 (en) 2018-12-06
US11615944B2 (en) 2023-03-28
KR20200003426A (ko) 2020-01-09
TWI798210B (zh) 2023-04-11
JP2020522132A (ja) 2020-07-27
KR102509014B1 (ko) 2023-03-13
WO2018222256A1 (en) 2018-12-06
CN110612593A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN110612593B (zh) 远程等离子体氧化室
CN109616428B (zh) 带有多个加热区的基板支撑件
JP2017226863A (ja) ガス混合装置および基板処理装置
JP7387794B2 (ja) 遠隔プラズマ酸化チャンバ用ドッグボーン入口錐体輪郭
CN108140551A (zh) 用于半导体制造的晶片处理的高生产率pecvd工具
TWI762897B (zh) 具有可變流量閥的處理系統
TW201611155A (zh) 基板處理裝置的反應器
KR102894603B1 (ko) 가변 유동 밸브를 갖는 프로세스 시스템
US12272531B2 (en) Dual pressure oxidation method for forming an oxide layer in a feature
TW202431352A (zh) 用於磊晶沉積操作之批次處理的盒結構與相關方法
KR20250117403A (ko) 이중 분배 스포크 및 고밀도 홀을 갖는 극저체적 샤워헤드

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant