CN110592050B - 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用 - Google Patents

一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用 Download PDF

Info

Publication number
CN110592050B
CN110592050B CN201910916090.1A CN201910916090A CN110592050B CN 110592050 B CN110592050 B CN 110592050B CN 201910916090 A CN201910916090 A CN 201910916090A CN 110592050 B CN110592050 B CN 110592050B
Authority
CN
China
Prior art keywords
leu
lys
ser
gly
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910916090.1A
Other languages
English (en)
Other versions
CN110592050A (zh
Inventor
顾亚云
曾旭辉
孙斐
丁伟华
赵喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201910916090.1A priority Critical patent/CN110592050B/zh
Publication of CN110592050A publication Critical patent/CN110592050A/zh
Application granted granted Critical
Publication of CN110592050B publication Critical patent/CN110592050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01166Heparanase (3.2.1.166)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用,所述双功能酶的氨基酸序列如SEQ ID NO.1和SEQ ID NO.2所示。本发明通过系统应用蛋白质理性设计原理,获得了一株高效降解透明质酸与硫酸乙酰肝素的双功能突变体(Gln270Lys/Ala388His/Tyr391Lys),成功实现了具有两种活性的人源乙酰肝素酶的高效表达,利用该双功能酶联合使用贝伐单抗,加强肿瘤组织的渗透性,相较于单独给药贝伐单抗组其抑瘤率提高了30.8%。

Description

一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用
技术领域
本发明属于生物医学领域,具体涉及一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用。
背景技术
抗体药物针对相应抗原具有高特异性、高亲和力和低细胞毒性的作用特征,在疾病治疗和诊断方面显示出其他药物难以比拟的优势。目前临床使用的抗体药物包括人源化抗体、去糖基化抗体、双特异性抗体、抗体药物偶联物以及阻断免疫检查点抗体等。在肿瘤治疗领域, 经过三十多年的发展,抗肿瘤抗体药物已成为癌症治疗中最重要的策略之一。目前,超过20种抗体药物被批准用于肿瘤的靶向治疗,但使用过程中常会出现耐药和使用剂量大等问题。例如,西妥昔单抗、曲妥珠单抗和贝伐单抗在对肺癌、胃癌、直肠癌以及其他实体瘤的临床治疗过程中均存在疗效降低和用量大等问题。研究人员进一步发现,肿瘤细胞外基质 (Extracellular Matrix,ECM)与抗体药物的药效和剂量之间存在直接关联,高表达的 ECM 在肿瘤细胞表面形成了复杂而致密的网状结构,可阻止抗体到达细胞表面作用于靶点,致使应答率低下。肿瘤细胞外基质(ECM)是一种非细胞的三维大分子网络结构,主要由异常表达的胶原蛋白、弹性蛋白、纤连蛋白、糖蛋白和糖胺聚糖等所组成,构成了肿瘤组织微环境中异常致密刚性的基底膜和间隙基质。研究表明,抗体药物都需要通过扩散或对流的方式从肿瘤血管中排出并转移至肿瘤间质中,但肿瘤间质中致密刚性的ECM作为一种天然的壁垒阻碍了药物的进一步传递。因此,靶向肿瘤细胞外基质是提高抗体药物应答率、降低药物临床剂量的有效途径之一。
大分子抗体药物在肿瘤中的穿透力取决于ECM组分的体积分数,特别是糖胺聚糖和胶原蛋白的比例。基于 ECM 阻碍单抗药物的运输这一瓶颈问题,研究人员针对不同肿瘤组织的ECM组成的异质性,提出了①降解硫酸乙酰肝素、②破坏透明质酸的结构和③减少胶原蛋白含量三种解决策略。因此,人工重塑细胞外基质中糖胺聚糖的结构和组成可能是提高大分子药物渗透性、降低其给药剂量的有效途径。
发明内容
本发明针对肿瘤细胞外基质中硫酸乙酰肝素、透明质酸等糖胺聚糖的过度表达形成异常致密的生理屏障,阻碍了抗体药物的有效渗透,最终导致药物治疗应答率低和剂量大等技术问题,通过系统应用蛋白质理性设计原理,理性改造获得了一株高效降解透明质酸与硫酸乙酰肝素的双功能突变体(Gln270Lys/Ala388His/Tyr391Lys),成功实现了具有两种活性的人源乙酰肝素酶的高效表达。
为了实现上述发明目的,本发明采用以下技术方案:
一种降解硫酸乙酰肝素和透明质酸的双功能酶,其氨基酸序列如SEQ ID NO.1和SEQ ID NO.2所示(下划线标出突变位点)。
SEQ ID NO.1(CHAIN A)
DPGKKFKNSTYSRSSVDVLYTFANCSGLDLIFGLNALLRTADLQWNSSNAQLLLDYCSSKGYNISWELGNEPNSFLKKAD
IFINGSQLGEDFIQLHKLLRKSTFKNAKLYGPDVGQPRRKTAKMLKSFLKAGGEVIDSVTWHHYYLNGRTATREDFLNPD
VLDIFISSVQKVFQVVESTRPGKKVWLGETSSAYGGGAPLLSDTFAAGFMWLDKLGLSARMGIEVVMRQVFFGAGNYHLV
DENFDPLPDYWLSLLFKKLVGTKVLMASVKGSKRRKLRVYLHCTNTDNPRYKEGDLTLYAINLHNVTKYLRLPYPFSNKQ
VDKYLLRPLGPHGLLSKSVQLNGLTLKMVDDQTLPPLMEKPLRPGSSLGLPAFSYSFFVIRNAKVAHCI
SEQ ID NO.2(CHAIN B)
KPGQDVVDLDFFTQEPLHLVSPSFLSVTIDANLATDPRFLILLGSPKLRTLARGLSPAYLRFGGTKTDFLIFDPKKE
编码上述双功能酶的基因,其核苷酸序列如SEQ ID NO.3和SEQ ID NO.4所示。
SEQ ID NO.3(CHAIN A)
aaaaagttcaagaacagcacctactcaagaagctctgtagatgtgctatacacttttgcaaactgctcaggactggacttgatctttggcctaaatgcgttattaagaacagcagatttgcagtggaacagttctaatgctcagttgctcctggactactgctcttccaaggggtataacatttcttgggaactaggcaatgaacctaacagtttccttaagaaggctgatattttcatcaatgggtcgcagttaggagaagattttattcaattgcataaacttctaagaaagtccaccttcaaaaatgcaaaactctatggtcctgatgttggtcagcctcgaagaaagacggctaagatgctgaagagcttcctgaaggctggtggagaagtgattgattcagttacatggcatcactactatttgaatggacggactgctaccaaggaagattttctaaaccctgatgtattggacatttttatttcatctgtgcaaaaagttttccaggtggttgagagcaccaggcctggcaagaaggtctggttaggagaaacaagctctgcatatggaggcggagcgcccttgctatccgacacctttgcagctggctttatgtggctggataaattgggcctgtcagcccgaatgggaatagaagtggtgatgaggcaagtattctttggagcaggaaactaccatttagtggatgaaaacttcgatcctttacctgattattggctatctcttctgttcaagaaattggtgggcaccaaggtgttaatggcaagcgtgaaaggttcaaagagaaggaagcttcgagtataccttcattgcacaaacactgacaatccaaggtataaagaaggagatttaactctgtatgccataaacctccataatgtcaccaagtacttgcggttaccctatcctttttctaacaagcaagtggataaataccttctaagacctttgggacctcatggattactttccaaatctgtccaactcaatggtctaactctaaagatggtggatgatcaaaccttgccacctttaatggaaaaacctctccggccaggaagttcactgggcttgccagctttctcatatagtttttttgtgataagaaatgccaaagttgctcattgcatc
SEQ ID NO.4(CHAIN B)
aaacaaggacaggacgtcgtggacctggacttcttcacccaggagccgctgcacctggtgagcccctcgttcctgtccgtcaccatcgacgccaacctggccaccgaccccaggttcctgatcctgctgggcagccccaagctgaggaccctggccaggggcctgagccccgcctacctgaggttcggcggcaccaagaccgacttcctgatcttcgaccccaagaaggag
包含上述双功能酶基因的重组载体,是将本发明的双功能酶基因插入到表达载体合适的限制性酶切位点之间,使其核苷酸序列可操作的与表达调控序列相连接。作为本发明的一个最优选的实施方案,优选为将本发明的乙酰肝素酶突变基因亚克隆至表达载体pET28a (+)中,得到重组表达载体。
包含上述双功能酶基因的重组菌株,优选所述菌株为大肠杆菌,优选为大肠杆菌BL21(DE3)。
上述双功能酶的制备方法,包括以下步骤:
步骤1,用上述重组载体转化宿主细胞,得重组菌株;
步骤2,培养重组菌株,诱导降解硫酸乙酰肝素和透明质酸的双功能酶编码基因表达;
步骤3,回收并纯化所表达的降解硫酸乙酰肝素和透明质酸的双功能酶。
上述双功能酶在制备抗肿瘤药物中的应用。
进一步地,所示抗肿瘤药物可以为一些大分子抗肿瘤药物,如抗体药物、多糖类药物等。
本发明通过系统应用蛋白质理性设计原理,获得了一株高效降解透明质酸与硫酸乙酰肝素的双功能突变体(Gln270Lys/Ala388His/Tyr391Lys),成功实现了具有两种活性的人源乙酰肝素酶的高效表达,利用该双功能酶联合使用贝伐单抗,加强肿瘤组织的渗透性,相较于单独给药贝伐单抗组其抑瘤率提高了30.8%。
附图说明
图1为本发明的双功能酶重塑细胞外基质以增强抗体药物疗效的作用机制图。
图2为实施例1中人源乙酰肝素酶双突变体I与透明质酸四糖结合二维平面图。
图3为实施例2中贝伐单抗单给药组与双功能酶-贝伐单抗联合给药组的抑瘤率结果。
具体实施方式
肿瘤细胞外基质中硫酸乙酰肝素、透明质酸等糖胺聚糖的过度表达形成异常致密的生理屏障,阻碍了抗体药物的有效渗透,最终导致药物治疗应答率低和剂量大等问题。因此,人工重塑细胞外基质中糖胺聚糖的结构和组成可能是提高大分子药物渗透性、降低其给药剂量的有效途径。发明人前期通过对野生型人源乙酰肝素酶(氨基酸序列如SEQ IDNO.5和SEQ ID NO.6所示)进行一系列分子改造获得具有微弱降解透明质酸新活性且保留硫酸乙酰肝素裂解能力的人源乙酰肝素酶双突变体I(Gln270Lys/Ala388His,如SEQ IDNO.7和SEQ ID NO.8所示),为人工重塑细胞外基质提供了可能。
乙酰肝素酶野生型氨基酸序列
SEQ ID NO.5(CHAIN A)
DPGKKFKNSTYSRSSVDVLYTFANCSGLDLIFGLNALLRTADLQWNSSNAQLLLDYCSSKGYNISWELGNEPNSFLKKAD
IFINGSQLGEDFIQLHKLLRKSTFKNAKLYGPDVGQPRRKTAKMLKSFLKAGGEVIDSVTWHHYYLNGRTATREDFLNPD
VLDIFISSVQKVFQVVESTRPGKKVWLGETSSAYGGGAPLLSDTFAAGFMWLDKLGLSARMGIEVVMRQVFFGAGNYHLV
DENFDPLPDYWLSLLFKKLVGTKVLMASVQGSKRRKLRVYLHCTNTDNPRYKEGDLTLYAINLHNVTKYLRLPYPFSNKQ
VDKYLLRPLGPHGLLSKSVQLNGLTLKMVDDQTLPPLMEKPLRPGSSLGLPAFSYSFFVIRNAKVAACI
SEQ ID NO.6(CHAIN B)
YPGQDVVDLDFFTQEPLHLVSPSFLSVTIDANLATDPRFLILLGSPKLRTLARGLSPAYLRFGGTKTDFLIFDPKKE
人源乙酰肝素酶双突变体I (Gln270Lys/Ala388His),其氨基酸序列如SEQ IDNO.5和SEQ ID NO.6所示(下划线标出突变位点)。
SEQ ID NO.7(CHAIN A)
DPGKKFKNSTYSRSSVDVLYTFANCSGLDLIFGLNALLRTADLQWNSSNAQLLLDYCSSKGYNISWELGNEPNSFLKKAD
IFINGSQLGEDFIQLHKLLRKSTFKNAKLYGPDVGQPRRKTAKMLKSFLKAGGEVIDSVTWHHYYLNGRTATREDFLNPD
VLDIFISSVQKVFQVVESTRPGKKVWLGETSSAYGGGAPLLSDTFAAGFMWLDKLGLSARMGIEVVMRQVFFGAGNYHLV
DENFDPLPDYWLSLLFKKLVGTKVLMASVKGSKRRKLRVYLHCTNTDNPRYKEGDLTLYAINLHNVTKYLRLPYPFSNKQ
VDKYLLRPLGPHGLLSKSVQLNGLTLKMVDDQTLPPLMEKPLRPGSSLGLPAFSYSFFVIRNAKVAHCI
SEQ ID NO.8(CHAIN B)
YPGQDVVDLDFFTQEPLHLVSPSFLSVTIDANLATDPRFLILLGSPKLRTLARGLSPAYLRFGGTKTDFLIFDPKKE
编码上述人源乙酰肝素酶双突变体I (Gln270Lys/Ala388His)的基因,其核苷酸序列如SEQ ID NO.9和SEQ ID NO.10所示。
SEQ ID NO.9(CHAIN A)
aaaaagttcaagaacagcacctactcaagaagctctgtagatgtgctatacacttttgcaaactgctcaggactggacttgatctttggcctaaatgcgttattaagaacagcagatttgcagtggaacagttctaatgctcagttgctcctggactactgctcttccaaggggtataacatttcttgggaactaggcaatgaacctaacagtttccttaagaaggctgatattttcatcaatgggtcgcagttaggagaagattttattcaattgcataaacttctaagaaagtccaccttcaaaaatgcaaaactctatggtcctgatgttggtcagcctcgaagaaagacggctaagatgctgaagagcttcctgaaggctggtggagaagtgattgattcagttacatggcatcactactatttgaatggacggactgctaccaaggaagattttctaaaccctgatgtattggacatttttatttcatctgtgcaaaaagttttccaggtggttgagagcaccaggcctggcaagaaggtctggttaggagaaacaagctctgcatatggaggcggagcgcccttgctatccgacacctttgcagctggctttatgtggctggataaattgggcctgtcagcccgaatgggaatagaagtggtgatgaggcaagtattctttggagcaggaaactaccatttagtggatgaaaacttcgatcctttacctgattattggctatctcttctgttcaagaaattggtgggcaccaaggtgttaatggcaagcgtgaaaggttcaaagagaaggaagcttcgagtataccttcattgcacaaacactgacaatccaaggtataaagaaggagatttaactctgtatgccataaacctccataatgtcaccaagtacttgcggttaccctatcctttttctaacaagcaagtggataaataccttctaagacctttgggacctcatggattactttccaaatctgtccaactcaatggtctaactctaaagatggtggatgatcaaaccttgccacctttaatggaaaaacctctccggccaggaagttcactgggcttgccagctttctcatatagtttttttgtgataagaaatgccaaagttgctcattgcatc
SEQ ID NO.10(CHAIN B)
taccaaggacaggacgtcgtggacctggacttcttcacccaggagccgctgcacctggtgagcccctcgttcctgtccgtcaccatcgacgccaacctggccaccgaccccaggttcctgatcctgctgggcagccccaagctgaggaccctggccaggggcctgagccccgcctacctgaggttcggcggcaccaagaccgacttcctgatcttcgaccccaagaaggag
本发明通过系统应用蛋白质理性设计原理,利用生物信息学软件分析了双突变体I的结构,在此基础上,理性改造获得了一株高效降解透明质酸与硫酸乙酰肝素的双功能突变体(Gln270Lys/Ala388His/Tyr391Lys),利用大肠杆菌表达系统BL21(DE3)/pET28A(+),成功实现了具有两种活性的人源乙酰肝素酶的高效表达,以硫酸乙酰肝素为底物时酶活达到15.2 U/mg,以透明质酸为底物时酶活达到3.56 U/mg。如图1所示,利用该双功能酶联合使用贝伐单抗,加强肿瘤组织的渗透性,相较于单独给药贝伐单抗组其抑瘤率提高了30.8%,为提高抗体药物的抗肿瘤疗效和降低临床使用剂量提供了可能。
下面结合具体实施例对本发明的技术方案作进一步说明,以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J .萨姆布鲁克一书中所列的具体方法进行,或者按照试剂盒和产品说明书进行。
实施例1
制备降解硫酸乙酰肝素和透明质酸的双功能酶
1. 生物信息学分析蛋白结构
如图2所示,以人源乙酰肝素酶的晶体结构(PDB ID: 5E8M)为模板,利用Discovery studio 2.5.5同源模建乙酰肝素酶突变体I蛋白的三维结构模型,并与透明质酸四糖底物进行CDOCKER柔性对接。结合文献报道,生物信息学分析发现Asp62/Glu343可能是双突变体I活性中心的关键氨基酸残基。分子对接结果表明双突变体I中氨基酸残基Asn64/Gly96/Thr97/Asn224/Tyr298/Tyr348/Gly349/Gln383/Val384/Gly389/Tyr391以氢键或疏水作用方式可能参与了透明质酸四糖的结合,在后续的研究中可以综合考虑氨基酸残基的结构和性质及其空间构型,对这些关键位点进行单点或多点的突变,进一步改善与透明质酸的结合能力,提高催化活性。
2. 乙酰肝素酶突变体的异源表达及分离纯化
以人源乙酰肝素酶双突变体I(Gln270Lys/Ala388His)为基础,分别对Asn64/Gly96/Thr97/Asn224/Tyr298/Tyr348/Gly349/Gln383/Val384/Gly389/Tyr391进行点突变为赖氨酸(Lys)精氨酸(Arg)组氨酸(His)。利用限制性内切酶Nde I / Xho I 将乙酰肝素酶突变基因(SEQ ID NO.3和SEQ ID NO.4所示)亚克隆至表达载体pET28a (+)中,并转化至大肠杆菌 BL21(DE3)中进行重组表达,从而筛选出最合适替换氨基酸。诱导表达条件为:0.8 mM异丙基硫代半乳糖苷 (IPTG),25 ℃条件下诱导可溶表达8-10 h。摇瓶诱导发酵后,10000 rpm、4 ℃ 冷冻离心收集突变菌体,30 Kpsi高压破碎获得C端含有组氨酸标签的乙酰肝素酶突变体粗酶液。
以0.5 mL/min的流速将所得乙酰肝素酶突变体上清液上样至镍柱(Ni SepharoseExcel),利用含有咪唑的PB缓冲液线性洗脱(10~500 mM咪唑),实时监测纯化过程,收集合并含突变体的洗脱组分,超滤浓缩、除盐后获得初步纯化的样品S1。将S1上样至强阴离子交换柱(Q Sepharose Fast Flow),然后NaCl线性洗脱(0 - 0.5 M),收集含SPAM1的组分即S2,超滤浓缩后再次检测电泳纯度。
依据目的蛋白纯度和杂蛋白情况再采用分子筛或疏水层析等纯化手段做进一步制备,最后超滤管浓缩蛋白并进行冻干处理,得到双功能酶。
3. 乙酰肝素酶突变体的活性分析
通过紫外可见分光光度计检测37 °C下该吸收波长下吸光度的变化值,进而计算乙酰肝素酶突变体的活力。活性测定如下:反应体系为 1 mL,其中含1 mg/mL底物溶液,50mM Tris-HCl 缓冲液(pH 7.4)及适量的酶液,37 ℃ 温度下测定2 min内232 nm处吸光度变化。一个酶活单位定义为在37 ℃ 条件下每分钟内消耗底物的微摩尔数,酶比活力定义为每毫克总蛋白具有的活力单位数。
突变体Gln270Lys/Ala388His/Tyr391Lys以硫酸乙酰肝素为底物时酶活达到15.2U/mg,以透明质酸为底物时酶活达到3.56 U/mg。
实施例2
体内提高肿瘤的渗透性及小鼠抑瘤率研究
经皮下注射50 μL 1 ×107人非小细胞肺癌 A549细胞/mL 皮下接种于BALB/c裸鼠中,构建裸鼠皮下移植瘤模型。
当肿瘤平均大小为200-350 mm3时,尾静脉分别注射生理盐水和双功能酶,设置生理盐水空白组、双功能酶阴性对照组(8 mg/kg)、贝伐单抗阳性对照组(10 mg/kg)、及不同剂量浓度比例的双功能酶纳米粒子和贝伐单抗联合给药实验组,处理数周后,观察并记录各受试组小鼠的存活情况。切取肿瘤组织,测定经不同处理前后瘤内组织间隙压力的变化(IFP)、肿瘤体积的变化等参数,并计算抑瘤率。
抑瘤率(inhibition rate%)= (对照组平均瘤重- 给药当天组肿瘤体积)/(对照组平均瘤重)*100%。
如图3所示,贝伐单抗(10 mg/kg)单给药组的抑瘤率为48.9%,IFP值为32 ± 0.55mmHg,双功能酶(8 mg/kg)与贝伐单抗(10 mg/kg)联合给药组的抑瘤率提高至79.7%,IFP值为19 ± 2.13 mmHg。由此可知,利用该双功能酶联合使用贝伐单抗,可加强肿瘤组织的渗透性,相较于单独给药贝伐单抗组其抑瘤率提高了30.8%。
序列表
<110> 南通大学
<120> 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用
<130> 20190926
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 389
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Asp Pro Gly Lys Lys Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val
1 5 10 15
Asp Val Leu Tyr Thr Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe
20 25 30
Gly Leu Asn Ala Leu Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser
35 40 45
Asn Ala Gln Leu Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile
50 55 60
Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp
65 70 75 80
Ile Phe Ile Asn Gly Ser Gln Leu Gly Glu Asp Phe Ile Gln Leu His
85 90 95
Lys Leu Leu Arg Lys Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro
100 105 110
Asp Val Gly Gln Pro Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe
115 120 125
Leu Lys Ala Gly Gly Glu Val Ile Asp Ser Val Thr Trp His His Tyr
130 135 140
Tyr Leu Asn Gly Arg Thr Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp
145 150 155 160
Val Leu Asp Ile Phe Ile Ser Ser Val Gln Lys Val Phe Gln Val Val
165 170 175
Glu Ser Thr Arg Pro Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser
180 185 190
Ala Tyr Gly Gly Gly Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly
195 200 205
Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu
210 215 220
Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val
225 230 235 240
Asp Glu Asn Phe Asp Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe
245 250 255
Lys Lys Leu Val Gly Thr Lys Val Leu Met Ala Ser Val Lys Gly Ser
260 265 270
Lys Arg Arg Lys Leu Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn
275 280 285
Pro Arg Tyr Lys Glu Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His
290 295 300
Asn Val Thr Lys Tyr Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln
305 310 315 320
Val Asp Lys Tyr Leu Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser
325 330 335
Lys Ser Val Gln Leu Asn Gly Leu Thr Leu Lys Met Val Asp Asp Gln
340 345 350
Thr Leu Pro Pro Leu Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu
355 360 365
Gly Leu Pro Ala Phe Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys
370 375 380
Val Ala His Cys Ile
385
<210> 2
<211> 77
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Lys Pro Gly Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu Pro
1 5 10 15
Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn
20 25 30
Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu
35 40 45
Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly
50 55 60
Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu
65 70 75
<210> 3
<211> 1158
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
aaaaagttca agaacagcac ctactcaaga agctctgtag atgtgctata cacttttgca 60
aactgctcag gactggactt gatctttggc ctaaatgcgt tattaagaac agcagatttg 120
cagtggaaca gttctaatgc tcagttgctc ctggactact gctcttccaa ggggtataac 180
atttcttggg aactaggcaa tgaacctaac agtttcctta agaaggctga tattttcatc 240
aatgggtcgc agttaggaga agattttatt caattgcata aacttctaag aaagtccacc 300
ttcaaaaatg caaaactcta tggtcctgat gttggtcagc ctcgaagaaa gacggctaag 360
atgctgaaga gcttcctgaa ggctggtgga gaagtgattg attcagttac atggcatcac 420
tactatttga atggacggac tgctaccaag gaagattttc taaaccctga tgtattggac 480
atttttattt catctgtgca aaaagttttc caggtggttg agagcaccag gcctggcaag 540
aaggtctggt taggagaaac aagctctgca tatggaggcg gagcgccctt gctatccgac 600
acctttgcag ctggctttat gtggctggat aaattgggcc tgtcagcccg aatgggaata 660
gaagtggtga tgaggcaagt attctttgga gcaggaaact accatttagt ggatgaaaac 720
ttcgatcctt tacctgatta ttggctatct cttctgttca agaaattggt gggcaccaag 780
gtgttaatgg caagcgtgaa aggttcaaag agaaggaagc ttcgagtata ccttcattgc 840
acaaacactg acaatccaag gtataaagaa ggagatttaa ctctgtatgc cataaacctc 900
cataatgtca ccaagtactt gcggttaccc tatccttttt ctaacaagca agtggataaa 960
taccttctaa gacctttggg acctcatgga ttactttcca aatctgtcca actcaatggt 1020
ctaactctaa agatggtgga tgatcaaacc ttgccacctt taatggaaaa acctctccgg 1080
ccaggaagtt cactgggctt gccagctttc tcatatagtt tttttgtgat aagaaatgcc 1140
aaagttgctc attgcatc 1158
<210> 4
<211> 231
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
aaacaaggac aggacgtcgt ggacctggac ttcttcaccc aggagccgct gcacctggtg 60
agcccctcgt tcctgtccgt caccatcgac gccaacctgg ccaccgaccc caggttcctg 120
atcctgctgg gcagccccaa gctgaggacc ctggccaggg gcctgagccc cgcctacctg 180
aggttcggcg gcaccaagac cgacttcctg atcttcgacc ccaagaagga g 231
<210> 5
<211> 389
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 5
Asp Pro Gly Lys Lys Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val
1 5 10 15
Asp Val Leu Tyr Thr Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe
20 25 30
Gly Leu Asn Ala Leu Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser
35 40 45
Asn Ala Gln Leu Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile
50 55 60
Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp
65 70 75 80
Ile Phe Ile Asn Gly Ser Gln Leu Gly Glu Asp Phe Ile Gln Leu His
85 90 95
Lys Leu Leu Arg Lys Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro
100 105 110
Asp Val Gly Gln Pro Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe
115 120 125
Leu Lys Ala Gly Gly Glu Val Ile Asp Ser Val Thr Trp His His Tyr
130 135 140
Tyr Leu Asn Gly Arg Thr Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp
145 150 155 160
Val Leu Asp Ile Phe Ile Ser Ser Val Gln Lys Val Phe Gln Val Val
165 170 175
Glu Ser Thr Arg Pro Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser
180 185 190
Ala Tyr Gly Gly Gly Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly
195 200 205
Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu
210 215 220
Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val
225 230 235 240
Asp Glu Asn Phe Asp Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe
245 250 255
Lys Lys Leu Val Gly Thr Lys Val Leu Met Ala Ser Val Gln Gly Ser
260 265 270
Lys Arg Arg Lys Leu Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn
275 280 285
Pro Arg Tyr Lys Glu Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His
290 295 300
Asn Val Thr Lys Tyr Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln
305 310 315 320
Val Asp Lys Tyr Leu Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser
325 330 335
Lys Ser Val Gln Leu Asn Gly Leu Thr Leu Lys Met Val Asp Asp Gln
340 345 350
Thr Leu Pro Pro Leu Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu
355 360 365
Gly Leu Pro Ala Phe Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys
370 375 380
Val Ala Ala Cys Ile
385
<210> 6
<211> 77
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 6
Tyr Pro Gly Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu Pro
1 5 10 15
Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn
20 25 30
Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu
35 40 45
Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly
50 55 60
Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu
65 70 75
<210> 7
<211> 389
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 7
Asp Pro Gly Lys Lys Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val
1 5 10 15
Asp Val Leu Tyr Thr Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe
20 25 30
Gly Leu Asn Ala Leu Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser
35 40 45
Asn Ala Gln Leu Leu Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile
50 55 60
Ser Trp Glu Leu Gly Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp
65 70 75 80
Ile Phe Ile Asn Gly Ser Gln Leu Gly Glu Asp Phe Ile Gln Leu His
85 90 95
Lys Leu Leu Arg Lys Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro
100 105 110
Asp Val Gly Gln Pro Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe
115 120 125
Leu Lys Ala Gly Gly Glu Val Ile Asp Ser Val Thr Trp His His Tyr
130 135 140
Tyr Leu Asn Gly Arg Thr Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp
145 150 155 160
Val Leu Asp Ile Phe Ile Ser Ser Val Gln Lys Val Phe Gln Val Val
165 170 175
Glu Ser Thr Arg Pro Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser
180 185 190
Ala Tyr Gly Gly Gly Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly
195 200 205
Phe Met Trp Leu Asp Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu
210 215 220
Val Val Met Arg Gln Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val
225 230 235 240
Asp Glu Asn Phe Asp Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe
245 250 255
Lys Lys Leu Val Gly Thr Lys Val Leu Met Ala Ser Val Lys Gly Ser
260 265 270
Lys Arg Arg Lys Leu Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn
275 280 285
Pro Arg Tyr Lys Glu Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His
290 295 300
Asn Val Thr Lys Tyr Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln
305 310 315 320
Val Asp Lys Tyr Leu Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser
325 330 335
Lys Ser Val Gln Leu Asn Gly Leu Thr Leu Lys Met Val Asp Asp Gln
340 345 350
Thr Leu Pro Pro Leu Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu
355 360 365
Gly Leu Pro Ala Phe Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys
370 375 380
Val Ala His Cys Ile
385
<210> 8
<211> 77
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 8
Tyr Pro Gly Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu Pro
1 5 10 15
Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn
20 25 30
Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu
35 40 45
Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly
50 55 60
Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu
65 70 75
<210> 9
<211> 1158
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
aaaaagttca agaacagcac ctactcaaga agctctgtag atgtgctata cacttttgca 60
aactgctcag gactggactt gatctttggc ctaaatgcgt tattaagaac agcagatttg 120
cagtggaaca gttctaatgc tcagttgctc ctggactact gctcttccaa ggggtataac 180
atttcttggg aactaggcaa tgaacctaac agtttcctta agaaggctga tattttcatc 240
aatgggtcgc agttaggaga agattttatt caattgcata aacttctaag aaagtccacc 300
ttcaaaaatg caaaactcta tggtcctgat gttggtcagc ctcgaagaaa gacggctaag 360
atgctgaaga gcttcctgaa ggctggtgga gaagtgattg attcagttac atggcatcac 420
tactatttga atggacggac tgctaccaag gaagattttc taaaccctga tgtattggac 480
atttttattt catctgtgca aaaagttttc caggtggttg agagcaccag gcctggcaag 540
aaggtctggt taggagaaac aagctctgca tatggaggcg gagcgccctt gctatccgac 600
acctttgcag ctggctttat gtggctggat aaattgggcc tgtcagcccg aatgggaata 660
gaagtggtga tgaggcaagt attctttgga gcaggaaact accatttagt ggatgaaaac 720
ttcgatcctt tacctgatta ttggctatct cttctgttca agaaattggt gggcaccaag 780
gtgttaatgg caagcgtgaa aggttcaaag agaaggaagc ttcgagtata ccttcattgc 840
acaaacactg acaatccaag gtataaagaa ggagatttaa ctctgtatgc cataaacctc 900
cataatgtca ccaagtactt gcggttaccc tatccttttt ctaacaagca agtggataaa 960
taccttctaa gacctttggg acctcatgga ttactttcca aatctgtcca actcaatggt 1020
ctaactctaa agatggtgga tgatcaaacc ttgccacctt taatggaaaa acctctccgg 1080
ccaggaagtt cactgggctt gccagctttc tcatatagtt tttttgtgat aagaaatgcc 1140
aaagttgctc attgcatc 1158
<210> 10
<211> 231
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
taccaaggac aggacgtcgt ggacctggac ttcttcaccc aggagccgct gcacctggtg 60
agcccctcgt tcctgtccgt caccatcgac gccaacctgg ccaccgaccc caggttcctg 120
atcctgctgg gcagccccaa gctgaggacc ctggccaggg gcctgagccc cgcctacctg 180
aggttcggcg gcaccaagac cgacttcctg atcttcgacc ccaagaagga g 231

Claims (6)

1.一种降解硫酸乙酰肝素和透明质酸的双功能酶,其氨基酸序列如SEQ ID NO.1和SEQID NO.2所示。
2.编码权利要求1所述双功能酶的基因,其核苷酸序列如SEQ ID NO.3和SEQ ID NO.4所示。
3.包含权利要求2所述基因的重组载体,是将权利要求2所述基因亚克隆至表达载体pET28a (+)中得到。
4.包含权利要求2所述基因的重组菌株。
5.权利要求1所述双功能酶的制备方法,其特征在于:包括以下步骤:
步骤1,用权利要求3所述的重组载体转化宿主细胞,得重组菌株;
步骤2,培养重组菌株,诱导降解硫酸乙酰肝素和透明质酸的双功能酶编码基因表达;
步骤3,回收并纯化所表达的降解硫酸乙酰肝素和透明质酸的双功能酶。
6.权利要求1所述的双功能酶与贝伐单抗联合在制备抗肿瘤药物中的应用。
CN201910916090.1A 2019-09-26 2019-09-26 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用 Active CN110592050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910916090.1A CN110592050B (zh) 2019-09-26 2019-09-26 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910916090.1A CN110592050B (zh) 2019-09-26 2019-09-26 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用

Publications (2)

Publication Number Publication Date
CN110592050A CN110592050A (zh) 2019-12-20
CN110592050B true CN110592050B (zh) 2022-11-04

Family

ID=68863675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910916090.1A Active CN110592050B (zh) 2019-09-26 2019-09-26 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用

Country Status (1)

Country Link
CN (1) CN110592050B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506416A (ja) * 2003-09-26 2007-03-22 イステイチユート・デイ・リチエルケ・デイ・ビオロジア・モレコラーレ・ピ・アンジエレツテイ・エツセ・ピー・アー 合成ヘパラナーゼ分子及びその使用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Molecular model of human heparanase with proposed binding mode of a heparan sulfate oligosaccharide and catalytic amino acids;Nicolas Sapay等;《Biopolymers》;20110721;第97卷(第1期);21-34 *
乙酰肝素酶的调控及在肿瘤治疗中的应用;靳浩等;《安徽医学》;20160430;第37卷(第04期);489-491 *

Also Published As

Publication number Publication date
CN110592050A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN105189562A (zh) Il-15异源二聚体蛋白及其用途
CN100424096C (zh) 含有hiv转导结构域的生存素突变体及制备方法和应用
JP7080053B2 (ja) 腫瘍の治療のための、キヌレニンを枯渇させる酵素の投与
CN106432460A (zh) 肿瘤抗原蛋白及肿瘤疫苗
AU2020406768A1 (en) Interleukin-2 derivative
US10875903B2 (en) Bifunctional fusion proteins to inhibit angiogenesis in tumor microenvironment and to activate adaptive immune responses and the genes and uses thereof
CN104342444B (zh) 一种重组trail蛋白及其制备方法和用途
CN112386678B (zh) 多肽或其衍生物的应用
CN110592050B (zh) 一种降解硫酸乙酰肝素和透明质酸的双功能酶及其应用
CN107236046B (zh) 一种重组人内皮抑素融合蛋白及其制备方法和应用
CN107805282A (zh) 一种靶向疗法和免疫疗法联合的多肽
CN104558198A (zh) GLP-1类似物和amylin类似物的融合蛋白制备及其用途
CN111057144A (zh) 基因重组高稳定性胶原寡肽mys-1及其制备方法与应用
CN110527680B (zh) 一种透明质酸裂解酶及其基因与应用
CN103232543B (zh) 具有Tumstatin活性的重组蛋白Tumstatin-CD137L4及其制备和应用
CN105985447B (zh) 一种白蛋白结合型肿瘤坏死因子相关凋亡诱导配体变异体及其制备方法和用途
CN101144081B (zh) 核苷酸分子trail及其在制备治疗肿瘤药物中的应用
CN113980133A (zh) 抗体及其在抗肿瘤中的应用
CN102690342B (zh) 抗癌止痛肽vkvr及其制备方法与应用
CN1110322C (zh) 单克隆抗体Fab&#39;-平阳霉素偶联物及其抗肿瘤作用
CN110305221A (zh) 一种增强型抗肿瘤融合蛋白及制备方法及用途
CN107141354A (zh) 一种融合蛋白及光敏剂复合物及其制备方法和应用
CN116057071B (zh) 重组灵芝免疫调节蛋白新突变体及其应用
CN112794902B (zh) AP-2alpha抗体及其在制备宫颈癌药物中的用途
CN111574590B (zh) 一种具有抗肿瘤功能的多肽及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant