CN110560140A - 弱发光g-C3N4光催化剂及其制备方法和应用 - Google Patents

弱发光g-C3N4光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110560140A
CN110560140A CN201910930212.2A CN201910930212A CN110560140A CN 110560140 A CN110560140 A CN 110560140A CN 201910930212 A CN201910930212 A CN 201910930212A CN 110560140 A CN110560140 A CN 110560140A
Authority
CN
China
Prior art keywords
photocatalyst
weak luminescence
melamine
weak
benzoic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910930212.2A
Other languages
English (en)
Inventor
王绩伟
鲍勇霖
敖韵琪
丁勇
梅勇
刘雯
杨涵
黄峻霆
张璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201910930212.2A priority Critical patent/CN110560140A/zh
Publication of CN110560140A publication Critical patent/CN110560140A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了弱发光g‑C3N4光催化剂及其制备方法和应用。以三聚氰胺和苯甲酸为原料,利用苯甲酸对三聚氰胺前驱体改性,通过焙烧制备g‑C3N4光催化剂。本发明制备的g‑C3N4拥有较低的光致发光强度,抑制了光生载流子的复合,能够有效提高能量转换的效率从而提高了光催化效率。本发明制备的g‑C3N4拥有多缝隙的表面形貌,有利于光生载流子输送到半导体光催化剂表面。本发明具有成本低和方便操作的优点。利用其在可见光照射下可降解罗丹明B等有害物质,在环境净化和清洁能源生产中具有重要的实际应用价值。

Description

弱发光g-C3N4光催化剂及其制备方法和应用
技术领域
本发明属于光催化材料技术领域,具体涉及通过改性前驱体制备弱发光g-C3N4光催化剂的方法及应用。
背景技术
随着能源与环境问题愈发制约现代社会的发展,光催化技术受到日益广泛的关注。光催化材料能够利用太阳光水解制氢,还可以分解有害物质,解决人类发展所面临的能量与环境问题。目前,光催化剂受光照射后产生的电子-空穴对复合率大,光子利用效率低,光催化活性不高。因此对半导体光催化剂进行改性研究是有必要的,改性的目的和作用包括提高激发电荷分离,抑制载流子复合以提高量子效率。
一种有机的石墨相氮化碳(g-C3N4),仅由C和N元素组成,展示了非金属光催化剂消除污染物的巨大潜力。g-C3N4是一种稳定的尖晶石材料,具有合适的带隙和独特的性能以及稳定的光化学特性,在颜料、防火材料、光化学分解水制氢和锂离子电池的阳极材料等领域都有着广泛的应用,而且还是可见光降解有机污染物的高效光催化剂。纯的g-C3N4光催化剂由于比表面积较低和快速的光生电子空穴复合,使其光催化效率很低,因而应用上受到限制。
发明内容
本发明的目的是提供一种制备方法简单、操作方便、成本低、条件温和、催化效率高的弱发光g-C3N4光催化剂的制备方法。
本发明采用的技术方案是:弱发光g-C3N4光催化剂,制备方法包括如下步骤:于三聚氰胺溶液中,逐滴加入苯甲酸的乙醇溶液,60-70℃下搅拌反应2-3h,超声30min,烘干;将烘干后的产物,研磨,置于马弗炉中,空气环境下,焙烧,得弱发光g-C3N4光催化剂。
进一步的,所述三聚氰胺溶液,是将三聚氰胺固体加入到乙醇与水的混合溶液中,水浴60℃搅拌30min至溶解均匀。
进一步的,按摩尔比,三聚氰胺:苯甲酸=200:(1-10)。
进一步的,所述焙烧,是置于马弗炉中温度为500℃-550℃下焙烧4-5h。
进一步的,焙烧时升温速率为5℃/min。
上述的弱发光g-C3N4光催化剂在可见光下催化降解有机染料中的应用。
进一步的,方法如下:将上述的弱发光g-C3N4光催化剂加入到含有有机染料的溶液中,避光搅拌,使其充分接触,然后在电流20A、300W氙灯作为光源下进行催化降解。
进一步的,所述有机染料为罗丹明B。
本发明的有益效果是:
g-C3N4是一种非金属N型半导体,由于其具有良好的化学稳定性、热学稳定性以及光电特性而受到人们的广泛关注,其禁带宽度为2.7eV,可以吸收波长小于460nm的可见光,但是其量子效率仍然很低,它的弱可见光吸收响应,高的电荷复合,小的比表面积,光生电子-空穴易复合,从而导致较小的光催化活性。为了提高g-C3N4的光催化活性,本发明用苯甲酸对三聚氰胺前驱体进行改性制备了弱发光g-C3N4光催化剂,本发明制备的g-C3N4拥有较低的光致发光强度和多缝隙的表面形貌。较低的光致发光强度能够有效提高能量转换的效率,光生载流子会在输送到半导体光催化剂表面时进行复合。从而发光发热,影响其光催化效率。经过处理后的g-C3N4发光强度有所降低,抑制了光生载流子的复合,从而提高了光催化效率。而半导体表面出现大量缝隙,也有利于光生载流子输送到半导体光催化剂表面。
通过本发明的方法制备的催化剂稳定性好,化学性质稳定,可以重复使用。因此相同时间可见光下降解罗丹明B的降解率相比于纯的g-C3N4从54.9%提高到86.9%。
附图说明
图1为实施例1制备的纯的g-C3N4光催化剂的XRD图。
图2为实施例1制备的纯的g-C3N4光催化剂的SEM图。
图3为实施例1制备的弱发光g-C3N4光催化剂的XRD图。
图4为实施例1制备的弱发光g-C3N4光催化剂的SEM图。
图5为纯g-C3N4催化剂和弱发光g-C3N4催化剂的光致发光图。
图6为不同摩尔比制备的弱发光g-C3N4催化剂的降解效率图。
图7为纯g-C3N4催化剂和弱发光g-C3N4(2B)催化剂在光催化降解罗丹明B效率图。
具体实施方式
实施例1
(一)纯的g-C3N4光催化剂
制备方法:量取2.52克三聚氰胺加入氧化铝坩埚,转移到马弗炉中,在空气气氛下,于550℃,焙烧4h(升温速率为5℃·min-1),得到纯的g-C3N4光催化剂。
(二)弱发光g-C3N4光催化剂
将2.52克(0.02mol)的三聚氰胺固体加入100ml的50%(v/v)乙醇溶液中,水浴60℃搅拌30min至溶解均匀。将0.0122g苯甲酸(0.001mol)加入20ml无水乙醇中,搅拌20min至溶解均匀后,逐滴加入到三聚氰胺的乙醇溶液中。水浴60℃搅拌2h,超声30min。所得产物转移到烘箱中70℃下烘干12小时,得到白色中间产物。将所得白色中间产物,研磨,放入氧化铝坩埚内,转移到马弗炉中,空气环境下,在550℃,焙烧4h(升温速率5℃每分钟),得到弱发光g-C3N4光催化剂粉末。
(三)检测
图1为纯的g-C3N4光催化剂样品的XRD检测。由图1可见,在13.1度和27.4度出现两个衍射峰,分别对应于g-C3N4的(002)和(100)晶面,从图中可以看出样品具有较好的结晶度。
图2为纯的g-C3N4光催化剂样品的SEM检测。由图2可见,纯的g-C3N4显示典型的块状结构,同时样品在扫描电镜图像中没有显示出孔隙的存在。
图3为弱发光g-C3N4光催化剂样品的XRD测试。由图3可见,样品具有较好的结晶度,如图3所示XRD图像在13.1度和27.4度出现两个衍射峰,分别对应于g-C3N4的(002)和(100)晶面。由于纯的g-C3N4和弱发光g-C3N4的XRD特征峰相似,说明用苯甲酸改性三聚氰胺前驱体制备的弱发光g-C3N4过程中没有影响g-C3N4的类石墨层的形成。
图4为弱发光g-C3N4光催化剂样品的SEM测试。由图4可见,样品在扫描电镜图像中呈粗糙的表面且带有多处缝隙。
图5为弱发光g-C3N4光催化剂和纯的g-C3N4的光致发光图,可以看出在相同激发强度下,弱发光g-C3N4的发光强度比纯的g-C3N4有明显下降。
实施例2
三聚氰胺与苯甲酸的摩尔比对弱发光g-C3N4光催化剂在可见光下催化降解罗丹明B的影响
(一)不同摩尔比的弱发光g-C3N4光催化剂的制备
表1
制备方法如下:将2.52克(0.02mol)的三聚氰胺固体加入100ml的50%(v/v)乙醇溶液中,水浴60℃搅拌30min至溶解均匀。如表1将苯甲酸加入20ml无水乙醇中,搅拌20min至溶解均匀后,逐滴加入到三聚氰胺的乙醇溶液中。水浴60℃搅拌2h,超声30min。所得产物转移到烘箱中70℃下烘干12小时,得到白色中间产物。将所得白色中间产物,研磨,放入氧化铝坩埚内,转移到马弗炉中,空气环境下,在550℃,焙烧4h(升温速率5℃每分钟),分别制得不同摩尔比的弱发光g-C3N4光催化剂粉末。
(二)弱发光g-C3N4光催化剂在可见光下催化降解罗丹明B
方法如下:分别称取纯g-C3N4、实施例1和实施例2制备的弱发光g-C3N4光催化剂0.05g加入到50mL质量分数为10mg/L的罗丹明B溶液中,避光搅拌30min,使其充分接触。以300W氙灯为光源,光电流调节到20A位置,调节光源位置,使光源中心正照射到样品表面,固定好位置后,分别将不同催化剂与罗丹明B的混合溶液放于光源下方,每隔20分钟取2mL溶液,对样品进行吸光度测试,考察罗丹明B的降解情况。
图6为不同摩尔比制备的光催化剂的降解效率图。由图6可见,样品6B的光催化降解效果和未经改性前驱体的样品0B几乎一致,没有明显提高。随着摩尔比的增加,降解效率一直在提升,在摩尔比为三聚氰胺:苯甲酸=100:1在照射100min时的降解效果最好,罗丹明B的降解率从未经改性前驱体样品的54.9%提高到86.9%,如图7所示,体现出弱发光g-C3N4更高的催化能力。之后随摩尔比的增加,降解效率减弱,但与未经改性前驱体的样品0B相比,都有所提高。
综上所述,用苯甲酸改性前驱体的方法得到了弱发光g-C3N4,这种方法得到的弱发光g-C3N4拥有大的比表面积和高孔隙率,因此能为催化反应提供了更多的活性位,导致弱发光g-C3N4拥有高的光催化活性。

Claims (8)

1.弱发光g-C3N4光催化剂,其特征在于,制备方法包括如下步骤:于三聚氰胺溶液中,逐滴加入苯甲酸的乙醇溶液,60-70℃下搅拌反应2-3h,超声30min,烘干;将烘干后的产物,研磨,置于马弗炉中,空气环境下,焙烧,得弱发光g-C3N4光催化剂。
2.根据权利要求1所述的弱发光g-C3N4光催化剂,其特征在于,所述三聚氰胺溶液,是将三聚氰胺固体加入到乙醇与水的混合溶液中,水浴60℃搅拌30min至溶解均匀。
3.根据权利要求1所述的弱发光g-C3N4光催化剂,其特征在于,按摩尔比,三聚氰胺:苯甲酸=200:(1-10)。
4.根据权利要求1所述的弱发光g-C3N4光催化剂,其特征在于,所述焙烧,是置于马弗炉中温度为500℃-550℃下焙烧4-5h。
5.根据权利要求4所述的弱发光g-C3N4光催化剂,其特征在于,焙烧时升温速率为5℃/min。
6.权利要求1-5任一项所述的弱发光g-C3N4光催化剂在可见光下催化降解有机染料中的应用。
7.根据权利要求6所述的应用,其特征在于,方法如下:将权利要求1-5任一项所述的弱发光g-C3N4光催化剂加入到含有有机染料的溶液中,避光搅拌,使其充分接触,然后在电流20A、300W氙灯作为光源下进行催化降解。
8.根据权利要求7所述的应用,其特征在于,所述有机染料为罗丹明B。
CN201910930212.2A 2019-09-29 2019-09-29 弱发光g-C3N4光催化剂及其制备方法和应用 Pending CN110560140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910930212.2A CN110560140A (zh) 2019-09-29 2019-09-29 弱发光g-C3N4光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910930212.2A CN110560140A (zh) 2019-09-29 2019-09-29 弱发光g-C3N4光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110560140A true CN110560140A (zh) 2019-12-13

Family

ID=68783062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910930212.2A Pending CN110560140A (zh) 2019-09-29 2019-09-29 弱发光g-C3N4光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110560140A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739159A (zh) * 2022-12-07 2023-03-07 浙江科磊新材料有限公司 一种海泡石-氮化碳复合光催化剂的制备方法及其制品和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664835A (zh) * 2016-04-01 2016-06-15 山东农业大学 一种有机羧酸辅助批量制备多孔氮化碳材料的方法
CN106238086A (zh) * 2016-07-28 2016-12-21 华南理工大学 一种苯环修饰类石墨相氮化碳光催化剂及制备方法与应用
US20170232427A1 (en) * 2016-02-16 2017-08-17 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN109331857A (zh) * 2018-11-16 2019-02-15 辽宁大学 一种多孔富碳g-C3N4光催化剂的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170232427A1 (en) * 2016-02-16 2017-08-17 The George Washington University Doped graphitic carbon nitrides, methods of making and uses of the same
CN105664835A (zh) * 2016-04-01 2016-06-15 山东农业大学 一种有机羧酸辅助批量制备多孔氮化碳材料的方法
CN106238086A (zh) * 2016-07-28 2016-12-21 华南理工大学 一种苯环修饰类石墨相氮化碳光催化剂及制备方法与应用
CN109331857A (zh) * 2018-11-16 2019-02-15 辽宁大学 一种多孔富碳g-C3N4光催化剂的制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739159A (zh) * 2022-12-07 2023-03-07 浙江科磊新材料有限公司 一种海泡石-氮化碳复合光催化剂的制备方法及其制品和应用

Similar Documents

Publication Publication Date Title
CN108144635B (zh) 一种石墨相氮化碳-硫化镉复合材料的制备方法
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN108380237A (zh) 氮缺陷石墨相氮化碳纳米片光催化剂及其制备方法与应用
Zhang et al. Boosted photocatalytic nitrogen fixation by bismuth and oxygen vacancies in Bi 2 MoO 6/BiOBr composite structures
CN107876079B (zh) 一种硫掺杂氧化锌量子点修饰多孔石墨相碳化氮复合材料的制备方法及其应用
CN110075905B (zh) 一种异质结光催化剂CaSb2O6/g-C3N4的制备方法及其应用
CN107715896B (zh) 一种BiOI/BiVO4复合光催化剂及其制备方法、应用
CN109331857A (zh) 一种多孔富碳g-C3N4光催化剂的制备方法和应用
CN112774715B (zh) 一种钒酸铋高结晶氮化碳异质结光催化剂及其制备方法与应用
CN107098429B (zh) 一种BiVO4/BiPO4复合材料及其制备方法和应用
CN109569673B (zh) 一种具有优异光催化性能的缺陷BiOI-BiOBr复合光催化材料的制备方法
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN112007679B (zh) 一种Co/V双金属掺杂g-C3N4光催化剂及其制备方法和应用
CN112316970A (zh) 一种多缺陷石墨相氮化碳光催化剂的制备方法和应用
CN114618537A (zh) 一种红磷/钛酸锶异质结光催化剂及制备方法及应用
CN113578313B (zh) 一种锰掺杂软铋矿光催化剂及其制备方法和在同步降解六价铬和有机污染物中的应用
CN111672528A (zh) 改性氮化碳光催化剂及其制备方法和应用
CN113413899A (zh) 一种全天候光催化复合材料的制备方法及其应用
CN109382088A (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
CN110560140A (zh) 弱发光g-C3N4光催化剂及其制备方法和应用
CN116212966B (zh) 一种间接z型多组分铋基mof异质结及其制备方法和应用
CN112495402A (zh) 一种二硫化钼负载钴掺杂氧化锌光催化降解材料及制法
CN113509952B (zh) 一种镱铒共掺杂Yb-Er/g-C3N4光催化剂及其合成方法和应用
CN110102326B (zh) 一种纳米金负载多孔炭改性氮化碳复合光催化材料及其制备方法与应用
CN111939957A (zh) 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191213