CN110556415A - 一种高可靠性外延栅的SiC MOSFET器件及其制备方法 - Google Patents

一种高可靠性外延栅的SiC MOSFET器件及其制备方法 Download PDF

Info

Publication number
CN110556415A
CN110556415A CN201910883909.9A CN201910883909A CN110556415A CN 110556415 A CN110556415 A CN 110556415A CN 201910883909 A CN201910883909 A CN 201910883909A CN 110556415 A CN110556415 A CN 110556415A
Authority
CN
China
Prior art keywords
sic
region
gate
epitaxial layer
mosfet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910883909.9A
Other languages
English (en)
Other versions
CN110556415B (zh
Inventor
姚金才
陈宇
朱超群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Hester Technology Co Ltd
Original Assignee
Shenzhen Hester Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hester Technology Co Ltd filed Critical Shenzhen Hester Technology Co Ltd
Priority to CN201910883909.9A priority Critical patent/CN110556415B/zh
Publication of CN110556415A publication Critical patent/CN110556415A/zh
Application granted granted Critical
Publication of CN110556415B publication Critical patent/CN110556415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种高可靠性外延栅的SiC MOSFET器件,同时,本发明还提供了一种高可靠性外延栅的SiC MOSFET器件的制备方法。本发明由于绝缘介质栅是通过外延高电阻率的本征SiC得到,与衬底外延SiC晶格常数匹配度高,可以降低SiC MOSFET器件介质层与碳化硅间的界面态密度,从而降低对载流子输运的散射,提高载流子迁移率。SiC的介电常数与SiO2相比较高,可以缓解电场过于集中在栅介质层,同时SiC的临界电场远高于SiO2,所以可以提高SiC MOSFET器件的抗击穿能力和稳定性。

Description

一种高可靠性外延栅的SiC MOSFET器件及其制备方法
技术领域
本发明属于半导体技术领域,具体涉及一种高可靠性外延栅的SiC MOSFET器件,同时,本发明还涉及一种高可靠性外延栅的SiC MOSFET器件的制备方法。
背景技术
碳化硅(SiC)是一种优异性能的宽禁带半导体,不但具有禁带宽、热导率高、击穿场强高、饱和电子漂移速率高等特点,而且还具有极好的物理及化学稳定性、极强的抗辐照能力和机械强度等。因此,SiC可用于研制高温、大功率、高频功率器件。目前,SiC基MOS功率器件的绝缘介质栅主要是通过热氧化得到的SiO2,热氧化SiC衬底而形成的SiO2层的介电常数和SiC相比较低,使得SiO2内部的场强比SiC衬底高,常常导致SiO2比SiC先被击穿,显示不出SiC材料的优越性。其次、SiO2与SiC衬底之间有较多的界面态,界面态对载流子的散射导致MOS器件沟道的载流子迁移率比SiC体材料低一个数量级,这就需要寻找新的合适的介质层,取代SiO2以提高4H-SiC基MOSFET器件的电子迁移率及可靠性。
发明内容
本发明的目的在于提供一种高可靠性外延栅的SiC MOSFET器件及其制备方法,以解决上述背景技术中提出现有技术中不仅工作效率低下,而且浪费大量人力的问题。
为实现上述目的,本发明采用了如下技术方案:
一种高可靠性外延栅的SiC MOSFET器件的制备方法,包括如下步骤:
S1、选取SiC衬底和SiC外延层,对SiC衬底和SiC外延层进行清洗并且干燥;
S2、在SiC外延层表面上进行铝离子注入,形成P-well阱区;
S3、在P-well阱区上表面进行氮离子注入,形成源极接触n+区域;
S4、在源极接触n+区域上表面进行铝离子注入,形成源极接触P+区域;
S5、对注入的杂质离子进行高温激活;
S6、对高温激活后的SiC衬底和SiC外延层进行表面处理,使SiC外延层上表面干净、平坦,适合进行再次SiC外延;
S7、在SiC外延层上表面进行本征SiC层外延,形成绝缘SiC外延层,以此作为SiCMOSFET器件的绝缘栅介质层;
S8、在绝缘SiC外延层上淀积多晶硅栅极,并且对绝缘SiC外延层和多晶硅栅极光刻、刻蚀,刻蚀出接触孔区域;
S9、绝缘介质层的沉积以及光刻、刻蚀,形成源极接触孔;
S10、源极金属的沉积、光刻刻蚀以及高温合金,与源极接触n+区域和源极接触P+区域形成良好欧姆接触;
S11、晶圆背面漏极金属的沉积以及高温合金,形成SiC MOSFET器件器件结构,完成制备。
优选的,所述步骤S2包括:
S21、通过低压热壁化学气相淀积法在SiC外延层正面淀积一层厚度为1.5μm的Al作为P-well阱区离子注入的阻挡层,通过光刻和刻蚀形成P-well阱区注入区;
S22、在650℃的温度下对SiC外延层正面进行多次Al离子注入,在P-well阱区注入区形成深度为0.5μm,掺杂浓度为3×1018cm-3的P-well阱区;
S23、采用磷酸去除SiC外延层正面的Al,并且清洗干燥。
优选的,所述步骤S3包括:
S31、通过低压热壁化学气相淀积法在SiC外延层正面淀积一层厚度为1μm的Al作为源极接触n+区域离子注入的阻挡层,通过光刻和刻蚀形成源极接触n+区域注入区;
S32、在500℃的温度下对SiC外延层正面进行多次氮离子注入,在源极接触n+区域注入区形成深度为0.25μm,掺杂浓度为1×1019cm-3的源极接触n+区域;
S33、采用磷酸去除SiC外延层正面的Al,并且清洗干燥。
优选的,所述步骤S4包括:
S41、通过低压热壁化学气相淀积法在SiC外延层正面淀积一层厚度为1.5μm的Al作为源极接触P+区域离子注入的阻挡层,通过光刻和刻蚀形成源极接触P+区域注入区;
S42、在650℃的温度下对SiC外延层正面进行多次Al离子注入,在源极接触P+区域注入区形成深度为0.5μm,掺杂浓度为1×1019cm-3的源极接触P+区域;
S43、采用磷酸去除SiC外延层正面的Al,并且清洗干燥。
优选的,所述步骤S5包括:
采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作碳膜保护,然后在1700℃氩气氛围中进行离子激活退火10min。
优选的,所述步骤S6包括:
通过氧等离子体去除碳膜,采用RCA清洗标准对碳化硅表面进行清洗,烘干。
优选的,所述步骤S7包括:
在SiC外延层上表面外延生长厚度为50nm的绝缘SiC外延层,其工艺条件是:外延温度为1600℃,压力100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气。
优选的,所述步骤S8包括:
用低压热壁化学气相淀积法在绝缘SiC外延层上表面淀积生长200nm的多晶硅,然后通过光刻、刻蚀保留住栅氧化膜上的多晶硅,形成磷离子掺杂浓度为1×1020cm-3,厚度为200nm的多晶硅栅极,其工艺条件是:淀积温度为600℃,淀积压强为60Pa,反应气体采用硅烷和磷化氢,载运气体采用氦气。
本发明还提供了一种高可靠性外延栅的SiC MOSFET器件,所述高可靠性外延栅的SiC MOSFET器件由以上所述的高可靠性外延栅的SiC MOSFET器件的制备方法制备得到。
本发明的技术效果和优点:
由于绝缘介质栅是通过外延高电阻率的本征SiC得到,与衬底外延SiC晶格常数匹配度高,可以降低SiC MOSFET器件介质层与碳化硅间的界面态密度,从而降低对载流子输运的散射,提高载流子迁移率。SiC的介电常数与SiO2相比较高,可以缓解电场过于集中在栅介质层,同时SiC的临界电场远高于SiO2,所以可以提高SiC MOSFET器件的抗击穿能力和稳定性。
附图说明
图1~10为本发明的一种高可靠性外延栅的SiC MOSFET器件的制备方法的工艺过程的截面结构示意图。
图中:101、SiC衬底;102、SiC外延层;103、P-well阱区;104、源极接触n+区域;105、源极接触P+区域;106、绝缘SiC外延层;106-1、接触孔区域;107、多晶硅栅极;108、绝缘介质层;108-1、源极接触孔;109、源极金属;110、晶圆背面漏极金属。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种高可靠性外延栅的SiC MOSFET器件的制备方法,包括如下步骤:
S1、如图1所示,选取SiC衬底101和SiC外延层102,对SiC衬底101和SiC外延层102进行清洗并且干燥;
S2、如图2所示,在SiC外延层102表面上进行铝离子注入,形成P-well阱区103;
S21、通过低压热壁化学气相淀积法在SiC外延层102正面淀积一层厚度为1.5μm的Al作为P-well阱区103离子注入的阻挡层,通过光刻和刻蚀形成P-well阱区103注入区;
S22、在650℃的温度下对SiC外延层102正面进行多次Al离子注入,在P-well阱区103注入区形成深度为0.5μm,掺杂浓度为3×1018cm-3的P-well阱区103如图2所示;
S23、采用磷酸去除SiC外延层102正面的Al,并且清洗干燥;
S3、如图3所示,在P-well阱区103上表面进行氮离子注入,形成源极接触n+区域104;
S31、通过低压热壁化学气相淀积法在SiC外延层102正面淀积一层厚度为1μm的Al作为源极接触n+区域104离子注入的阻挡层,通过光刻和刻蚀形成源极接触n+区域104注入区;
S32、在500℃的温度下对SiC外延层102正面进行多次氮离子注入,在源极接触n+区域104注入区形成深度为0.25μm,掺杂浓度为1×1019cm-3的源极接触n+区域104;
S33、采用磷酸去除SiC外延层102正面的Al,并且清洗干燥;
S4、如图4所示,在源极接触n+区域104上表面进行铝离子注入,形成源极接触P+区域105;
S41、通过低压热壁化学气相淀积法在SiC外延层102正面淀积一层厚度为1.5μm的Al作为源极接触P+区域105离子注入的阻挡层,通过光刻和刻蚀形成源极接触P+区域105注入区;
S42、在650℃的温度下对SiC外延层102正面进行多次Al离子注入,在源极接触P+区域105注入区形成深度为0.5μm,掺杂浓度为1×1019cm-3的源极接触P+区域105;
S43、采用磷酸去除SiC外延层102正面的Al,并且清洗干燥;
S5、对注入的杂质离子进行高温激活,采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作碳膜保护,然后在1700℃氩气氛围中进行离子激活退火10min;
S6、对高温激活后的SiC衬底101和SiC外延层102进行表面处理,通过氧等离子体去除碳膜,采用RCA清洗标准对碳化硅表面进行清洗,烘干,使SiC外延层102上表面干净、平坦,适合进行再次SiC外延;
S7、如图5所示,在SiC外延层102上表面进行本征SiC层外延,在SiC外延层102上表面外延生长厚度为50nm的绝缘SiC外延层106,其工艺条件是:外延温度为1600℃,压力100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气,形成绝缘SiC外延层106,以此作为SiC MOSFET器件的绝缘栅介质层;
S8、如图6所示,在绝缘SiC外延层106上淀积多晶硅栅极107,用低压热壁化学气相淀积法在绝缘SiC外延层106上表面淀积生长200nm的多晶硅,然后通过光刻、刻蚀保留住栅氧化膜上的多晶硅,形成磷离子掺杂浓度为1×1020cm-3,厚度为200nm的多晶硅栅极107,其工艺条件是:淀积温度为600℃,淀积压强为60Pa,反应气体采用硅烷和磷化氢,载运气体采用氦气,并且对绝缘SiC外延层106和多晶硅栅极107光刻、刻蚀,刻蚀出接触孔区域106-1;
S9、如图7和图8所示,绝缘介质层108的沉积以及光刻、刻蚀,形成源极接触孔108-1;
S10、如图9所示,源极金属109的沉积、光刻刻蚀以及高温合金,与源极接触n+区域104和源极接触P+区域105形成良好欧姆接触;
S11、如图10所示,晶圆背面漏极金属110的沉积以及高温合金,形成SiC MOSFET器件器件结构,完成制备。
本发明还提供了一种高可靠性外延栅的SiC MOSFET器件,该高可靠性外延栅的SiC MOSFET器件由以上的高可靠性外延栅的SiC MOSFET器件的制备方法制备得到。
综上,由于绝缘介质栅是通过外延高电阻率的本征SiC得到,与衬底外延SiC晶格常数匹配度高,可以降低SiC MOSFET器件介质层与碳化硅间的界面态密度,从而降低对载流子输运的散射,提高载流子迁移率。SiC的介电常数与SiO2相比较高,可以缓解电场过于集中在栅介质层,同时SiC的临界电场远高于SiO2,所以可以提高SiC MOSFET器件的抗击穿能力和稳定性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,包括如下步骤:
S1、选取SiC衬底和SiC外延层,对SiC衬底和SiC外延层进行清洗并且干燥;
S2、在SiC外延层表面上进行铝离子注入,形成P-well阱区;
S3、在P-well阱区上表面进行氮离子注入,形成源极接触n+区域;
S4、在源极接触n+区域上表面进行铝离子注入,形成源极接触P+区域;
S5、对注入的杂质离子进行高温激活;
S6、对高温激活后的SiC衬底和SiC外延层进行表面处理,使SiC外延层上表面干净、平坦,适合进行再次SiC外延;
S7、在SiC外延层上表面进行本征SiC层外延,形成绝缘SiC外延层,以此作为SiCMOSFET器件的绝缘栅介质层;
S8、在绝缘SiC外延层上淀积多晶硅栅极,并且对绝缘SiC外延层和多晶硅栅极光刻、刻蚀,刻蚀出接触孔区域;
S9、绝缘介质层的沉积以及光刻、刻蚀,形成源极接触孔;
S10、源极金属的沉积、光刻刻蚀以及高温合金,与源极接触n+区域和源极接触P+区域形成良好欧姆接触;
S11、晶圆背面漏极金属的沉积以及高温合金,形成SiC MOSFET器件器件结构,完成制备。
2.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,所述步骤S2包括:
S21、通过低压热壁化学气相淀积法在SiC外延层正面淀积一层厚度为1.5μm的Al作为P-well阱区离子注入的阻挡层,通过光刻和刻蚀形成P-well阱区注入区;
S22、在650℃的温度下对SiC外延层正面进行多次Al离子注入,在P-well阱区注入区形成深度为0.5μm,掺杂浓度为3×1018cm-3的P-well阱区;
S23、采用磷酸去除SiC外延层正面的Al,并且清洗干燥。
3.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,所述步骤S3包括:
S31、通过低压热壁化学气相淀积法在SiC外延层正面淀积一层厚度为1μm的Al作为源极接触n+区域离子注入的阻挡层,通过光刻和刻蚀形成源极接触n+区域注入区;
S32、在500℃的温度下对SiC外延层正面进行多次氮离子注入,在源极接触n+区域注入区形成深度为0.25μm,掺杂浓度为1×1019cm-3的源极接触n+区域;
S33、采用磷酸去除SiC外延层正面的Al,并且清洗干燥。
4.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,所述步骤S4包括:
S41、通过低压热壁化学气相淀积法在SiC外延层正面淀积一层厚度为1.5μm的Al作为源极接触P+区域离子注入的阻挡层,通过光刻和刻蚀形成源极接触P+区域注入区;
S42、在650℃的温度下对SiC外延层正面进行多次Al离子注入,在源极接触P+区域注入区形成深度为0.5μm,掺杂浓度为1×1019cm-3的源极接触P+区域;
S43、采用磷酸去除SiC外延层正面的Al,并且清洗干燥。
5.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,所述步骤S5包括:
采用RCA清洗标准对碳化硅表面进行清洗,烘干后制作碳膜保护,然后在1700℃氩气氛围中进行离子激活退火10min。
6.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,所述步骤S6包括:
通过氧等离子体去除碳膜,采用RCA清洗标准对碳化硅表面进行清洗,烘干。
7.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于,所述步骤S7包括:
在SiC外延层上表面外延生长厚度为50nm的绝缘SiC外延层,其工艺条件是:外延温度为1600℃,压力100mbar,反应气体采用硅烷和丙烷,载运气体采用纯氢气。
8.根据权利要求1所述的一种高可靠性外延栅的SiC MOSFET器件的制备方法,其特征在于:所述步骤S8包括:
用低压热壁化学气相淀积法在绝缘SiC外延层上表面淀积生长200nm的多晶硅,然后通过光刻、刻蚀保留住栅氧化膜上的多晶硅,形成磷离子掺杂浓度为1×1020cm-3,厚度为200nm的多晶硅栅极,其工艺条件是:淀积温度为600℃,淀积压强为60Pa,反应气体采用硅烷和磷化氢,载运气体采用氦气。
9.一种高可靠性外延栅的SiC MOSFET器件,其特征在于,所述高可靠性外延栅的SiCMOSFET器件由权利要求1~8中任意一项所述的高可靠性外延栅的SiC MOSFET器件的制备方法制备得到。
CN201910883909.9A 2019-09-18 2019-09-18 一种高可靠性外延栅的SiC MOSFET器件及其制备方法 Active CN110556415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910883909.9A CN110556415B (zh) 2019-09-18 2019-09-18 一种高可靠性外延栅的SiC MOSFET器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910883909.9A CN110556415B (zh) 2019-09-18 2019-09-18 一种高可靠性外延栅的SiC MOSFET器件及其制备方法

Publications (2)

Publication Number Publication Date
CN110556415A true CN110556415A (zh) 2019-12-10
CN110556415B CN110556415B (zh) 2022-09-27

Family

ID=68740708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910883909.9A Active CN110556415B (zh) 2019-09-18 2019-09-18 一种高可靠性外延栅的SiC MOSFET器件及其制备方法

Country Status (1)

Country Link
CN (1) CN110556415B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291951A2 (en) * 1987-05-22 1988-11-23 Fujitsu Limited A semiconductor field effect transistor using single crystalline silicon carbide as a gate insulating layer
JP2004228172A (ja) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd 半導体装置
JP2009266871A (ja) * 2008-04-22 2009-11-12 Panasonic Corp 炭化珪素半導体装置およびその製造方法
CN102244099A (zh) * 2011-06-23 2011-11-16 西安电子科技大学 外延沟道的SiCIEMOSFET器件及制备方法
US20150034971A1 (en) * 2012-02-24 2015-02-05 Rohm Co., Ltd. Semiconductor device and method for manufacturing same
US20150287818A1 (en) * 2014-04-03 2015-10-08 Acreo Swedish Ict Ab Semiconductor structure
CN105140283A (zh) * 2015-07-28 2015-12-09 国网智能电网研究院 一种碳化硅MOSFETs功率器件及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291951A2 (en) * 1987-05-22 1988-11-23 Fujitsu Limited A semiconductor field effect transistor using single crystalline silicon carbide as a gate insulating layer
JP2004228172A (ja) * 2003-01-20 2004-08-12 Fuji Electric Device Technology Co Ltd 半導体装置
JP2009266871A (ja) * 2008-04-22 2009-11-12 Panasonic Corp 炭化珪素半導体装置およびその製造方法
CN102244099A (zh) * 2011-06-23 2011-11-16 西安电子科技大学 外延沟道的SiCIEMOSFET器件及制备方法
US20150034971A1 (en) * 2012-02-24 2015-02-05 Rohm Co., Ltd. Semiconductor device and method for manufacturing same
US20150287818A1 (en) * 2014-04-03 2015-10-08 Acreo Swedish Ict Ab Semiconductor structure
CN105140283A (zh) * 2015-07-28 2015-12-09 国网智能电网研究院 一种碳化硅MOSFETs功率器件及其制作方法

Also Published As

Publication number Publication date
CN110556415B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN103928344B (zh) 一种基于N型纳米薄层来提高N型DiMOSFET沟道迁移率方法
JP4793293B2 (ja) 炭化珪素半導体装置及びその製造方法
CN102194885B (zh) N型隐埋沟道的碳化硅demosfet器件及制备方法
CN102227000B (zh) 基于超级结的碳化硅mosfet器件及制备方法
JP3784393B2 (ja) 半導体装置及びその製造方法
CN106711207B (zh) 一种纵向沟道的SiC结型栅双极型晶体管及其制备方法
CN102832248A (zh) 基于半超结的碳化硅mosfet及制作方法
CN101859706A (zh) 碳化硅半导体装置的制造方法及碳化硅半导体装置
CN103035521B (zh) 实现少子存储层沟槽型igbt的工艺方法
CN108257859B (zh) 一种栅氧化层的制备方法及mosfet功率器件
JP2003086816A (ja) SiC基板、SiC半導体素子及びその製造方法
JP2009266871A (ja) 炭化珪素半導体装置およびその製造方法
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
CN108257861B (zh) 一种栅氧化层的制备方法及mos功率器件
CN108257858B (zh) 一种高k栅介质层的制备方法及碳化硅MOS功率器件
CN105140283A (zh) 一种碳化硅MOSFETs功率器件及其制作方法
JP2012160485A (ja) 半導体装置とその製造方法
CN111048580A (zh) 一种碳化硅绝缘栅双极晶体管及其制作方法
US20110169015A1 (en) Bipolar semiconductor device and method for manufacturing same
US20120231617A1 (en) Method of manufacturing semiconductor device
CN103681256B (zh) 一种碳化硅mosfet器件及其制作方法
CN101536162A (zh) 制造碳化硅半导体装置的方法
CN103930996A (zh) 半导体器件
TW201237960A (en) Production method for semiconductor device
CN110600366B (zh) (100)晶向金刚石n沟道结型场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant