CN110535032B - 一种高速工温dfb激光器及其制造方法 - Google Patents

一种高速工温dfb激光器及其制造方法 Download PDF

Info

Publication number
CN110535032B
CN110535032B CN201910878645.8A CN201910878645A CN110535032B CN 110535032 B CN110535032 B CN 110535032B CN 201910878645 A CN201910878645 A CN 201910878645A CN 110535032 B CN110535032 B CN 110535032B
Authority
CN
China
Prior art keywords
layer
waveguide
epitaxial
inp
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910878645.8A
Other languages
English (en)
Other versions
CN110535032A (zh
Inventor
单智发
张永
陈阳华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epihouse Optoelectronic Co ltd
Original Assignee
Epihouse Optoelectronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epihouse Optoelectronic Co ltd filed Critical Epihouse Optoelectronic Co ltd
Priority to CN201910878645.8A priority Critical patent/CN110535032B/zh
Publication of CN110535032A publication Critical patent/CN110535032A/zh
Application granted granted Critical
Publication of CN110535032B publication Critical patent/CN110535032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种高速工温DFB激光器,该激光器的外延结构包括InP衬底,InP衬底上沉积有缓冲层,缓冲层的左上方沉积有纵向限制层;缓冲层的右上方由下往上依次沉积有光栅层、过度层、有源区下限制层、下波导层、量子阱、上波导层和有源区上限制层;纵向限制层与有源区上限制层的上端齐平且两者上方沉积一腐蚀阻挡层;腐蚀阻挡层的上方依次沉积有联接层、第一势垒渐变层、第二势垒渐变层和欧姆接触层;该激光器的表面设置有绝缘层。本发明电阻低,调制速率快,高温特性好;避免了含Al的材料暴露在水氧环境下,提高了器件的可靠性;采用大尺寸芯片结构,在芯片表面蒸镀高热导率材料,芯片散热佳,高温特性好,有利于工作在宽温度范围。

Description

一种高速工温DFB激光器及其制造方法
技术领域
本发明属于DFB激光器开发技术领域,具体涉及一种高速工温DFB激光器及其制造方法。
背景技术
随着5G商用的日益临近,窄线宽、高边模抑制比和调制速率高的动态单模分布反馈激光器(DFB-LD)成为首选光源。DFB采用折射率周期性变化的光栅调制,具有良好的单纵模特性,边模抑制比可达35dB以上,调制速率可达50GHz以上,可以满足5G移动网络高速率/低时延的应用要求。由于5G网络应用于户外,要求能在-40~85℃下均能达到高的调制速率,然而在高温下,激光器的载流子泄露严重,且过量的热的声子易把载流子踢出量子阱区,严重影响高温调制速率。
DFB激光器在半导体内部建立起布拉格光栅,依靠光的分布反馈实现单纵模的选择,具有高速、窄线宽及动态单纵模工作特性,且DFB激光器能在更宽的工作温度与工作电流范围内抑制普通FP激光器的模式跳变,极大地改善器件的噪声特性,在5G移动通信领域具有广泛的应用。
为了解决DFB激光器高温调制速率下降严重的问题,我们设计了一种高速工温DFB激光器,改善芯片表面的散热,提高高温带宽,使激光器能工作在-40~85℃的温度范围。
发明内容
为克服上述现有技术中的不足,本发明目的在于提供一种高速工温DFB激光器及其制造方法。
为实现上述目的及其他相关目的,本发明提供了一种高速工温DFB激光器,该激光器的外延结构包括InP衬底,所述InP衬底上沉积有缓冲层,所述缓冲层的左上方沉积有纵向限制层;所述缓冲层的右上方由下往上依次沉积有光栅层、过度层、有源区下限制层、下波导层、量子阱、上波导层和有源区上限制层;所述纵向限制层与所述有源区上限制层的上端齐平且两者上方沉积一腐蚀阻挡层;所述腐蚀阻挡层的上方依次沉积有联接层、第一势垒渐变层、第二势垒渐变层和欧姆接触层;该激光器的表面设置有绝缘层。
优选的技术方案为:该外延结构的脊波导结构上蒸镀有正面电极,该外延结构的InP衬底背面蒸镀有背面电极;该激光器的管芯一端蒸镀有反射率为90%的高反射膜,另一端蒸镀有反射率为0.03%的低反射膜。
优选的技术方案为:所述光栅层为张应变结构且应变量为500-1000ppm。
优选的技术方案为:所述光栅层的厚度为40~60nm。
优选的技术方案为:所述绝缘层的材料为氧化石墨烯高热导层材料或者金钢石高热导层材料。
优选的技术方案为:所述第一势垒渐变层、第二势垒渐变层的波长分别为1300nm和1500nm。
本发明还公开了一种高速DFB激光器的制备方法,其包括如下步骤:步骤一:以InP作为生长衬底,在InP衬底上依次生长缓冲层和光栅层,,获得第一外延结构;然后取出外延片,旋涂光刻胶,利用全息光刻或电子束光刻的方法形成光栅图形,再利用光学光刻的方法定义出第一波导区,并采用化学湿法腐蚀的方法形成部分光栅;步骤二:在步骤一的基础上进行第二次外延生长;首先,在PH3气体的保护下,缓慢升温至550℃,然后以脉冲的方式通入TMIn作为源气体生长InP,当InP层厚度完全覆盖光栅后,升温至正常外延生长温度670℃,增加TMIn的流量,从下往上依次快速生长InP层、波导层和腐蚀截止层,获得第二外延结构;步骤三:采用PECVD在第二外延结构上方沉积介质层,然后采用光学光刻的方法,定义并保护住第二波导区,采用湿法刻蚀的方法,去除未被保护的腐蚀截止层和波导层,形成部分波导层,完成纵向限制层并获得第三外延结构,纵向限制层上方留有左腐蚀截止层;步骤四:将去除部分波导层后的第三外延结构进行第三次外延生长;首先,在PH3气体的保护下,缓慢升温至外延生长温度670℃,缓慢沉积过度层,然后形成有源区下限制层、下波导层、量子阱、上波导层、有源区上限制层和右腐蚀截止层,获得第四外延结构;步骤五:去除第四外延结构上的SiO2介质层,然后把该外延片放到MOCVD设备中,进行第四次外延生长;依次生长联接层、第一势垒渐变层、第二势垒渐变层和欧姆接触层,获得第五外延结构;步骤六:外延生长完成后,通过DFB激光器工艺,定义脊波导区;步骤七:在脊波导区结构上蒸镀正面电极,利用光刻露出部分区域,采用蒸镀或悬涂的方法形成高热导层材料。
优选的技术方案为:所述步骤四中,通过第三次外延生长后生成的右腐蚀截止层,需与第二次外延生长的左腐蚀截止层紧密连接,形成完整的腐蚀阻挡层。
优选的技术方案为:所述第二波导区区域小于所述第一波导区区域。
由于上述技术方案运用,本发明与现有技术相比具有的优点是:
本发明采用N光栅结构,采用InGaAsP波导层替代部分有源区,形成的DFB激光器阈值低,电阻低,且调制速率快,高温特性好;先生长InGaAsP波导层,然后生长量子阱有源区,避免了含Al的材料暴露在水氧环境下,提高了器件的可靠性;采用大尺寸芯片结构,在芯片表面蒸镀高热导率材料,芯片散热佳,高温特性好,有利于工作在宽温度范围。
附图说明
图1为本发明外延结构示意图。
图2为第一外延结构示意图。
图3为DFB部分光栅示意图。
图4为第二外延结构示意图。
图5为第三外延结构示意图(去除部分波导层后的外延结构)。
图6为第二波导区区域和第一波导区区域以及两者区域对比示意图。
图7为第四外延结构示意图(有源区生长后的外延层)。
图8为脉冲气流法生长光栅掩埋层示意图。
图9为实施例一形成的芯片结构示意图。
图10为实施例二形成的芯片结构示意图。
以上附图中,InP衬底01,缓冲层02,光栅层03,纵向限制层04,过度层05,有源区下限制层06,下波导层07,量子阱08,上波导层09,有源区上限制层10,腐蚀阻挡层11,联接层12,第一势垒渐变层13,第二势垒渐变层14,欧姆接触层15,InP层050,波导层040,左腐蚀截止层111,右腐蚀截止层110,介质层000。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1~图10。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
一种高速DFB激光器,该激光器的外延结构如图1所示,包括InP衬底01,InP衬底01上沉积有缓冲层02,缓冲层02的左上方沉积有纵向限制层04;缓冲层02的右上方由下往上依次沉积有光栅层03、过度层05、有源区下限制层06、下波导层07、量子阱08、上波导层09和有源区上限制层10;纵向限制层04与有源区上限制层10的上端齐平且两者上方沉积一腐蚀阻挡层11;腐蚀阻挡层11的上方依次沉积有联接层12、第一势垒渐变层13、第二势垒渐变层14和欧姆接触层15;该激光器的表面设置有绝缘层。光栅层03为张应变结构且应变量为500-1000ppm。光栅层03的厚度为40~60nm。腐蚀阻挡层11的厚度为40~60nm。过度层05的厚度为26~30nm。缓冲层02的厚度为8~12nm。第一势垒渐变层13、第二势垒渐变层14的波长分别为1300nm和1500nm。
一种高速DFB激光器的制备方法,其包括如下步骤:
步骤一:以InP作为生长衬底,在InP衬底01上依次生长缓冲层02和光栅层,获得第一外延结构,如图2所示,然后取出外延片,旋涂光刻胶,利用全息光刻或电子束光刻的方法形成光栅图形,再利用光学光刻的方法定义出第一波导区,并采用化学湿法腐蚀的方法形成部分光栅;如图3所示。
步骤二:在步骤一的基础上进行第二次外延生长;首先,在PH3气体的保护下,缓慢升温至550℃,然后以脉冲的方式通入TMIn作为源气体生长InP,当InP层050厚度完全覆盖光栅后,升温至正常外延生长温度670℃,增加TMIn的流量,从下往上依次快速生长InP层050、波导层040和腐蚀截止层,获得第二外延结构;如图4所示。
步骤三:采用PECVD在第二外延结构上方沉积介质层000,然后采用光学光刻的方法,定义并保护住第二波导区,采用湿法刻蚀的方法,去除未被保护的腐蚀截止层和波导层040,形成部分波导层,完成纵向限制层04并获得第三外延结构,纵向限制层04上方留有左腐蚀截止层111;如图5所示。
步骤四:将去除部分波导层后的第三外延结构进行第三次外延生长;首先,在PH3气体的保护下,缓慢升温至外延生长温度670℃,缓慢沉积过度层05,然后形成有源区下限制层06、下波导层07、量子阱08、上波导层09、有源区上限制层10和右腐蚀截止层110,获得第四外延结构;如图7所示。
步骤五:去除第四外延结构上的SiO2介质层000,然后把该外延片放到MOCVD设备中,进行第四次外延生长;依次生长联接层12、第一势垒渐变层13、第二势垒渐变层14和欧姆接触层15,获得第五外延结构;如图1所示。
步骤六:外延生长完成后,通过DFB激光器工艺,定义脊波导区。
步骤七:在脊波导区结构上蒸镀正面电极,然后利用光刻露出部分区域,采用蒸镀或悬涂的方法形成高热导层材料,值得注意的是,高热导层材料需要覆盖ridge,以减小热量对有源区的影响。然后将InP衬底减薄,在减薄的InP衬底背面蒸镀背面电极;在管芯一端蒸镀高反射薄膜(90%反射率),另一端蒸镀低反射膜(0.03%反射率),即完成DFB激光器芯片的制作。
管芯:是指在集成电路中制造集成块所用的芯片。在此上面由几十至数以万计到----N个数的电子元件所组成的电路就称为集成电路,而这个集成元件的芯片就是集成电路的管芯。
步骤四中,通过第三次外延生长后生成的右腐蚀截止层110,需与第二次外延生长的左腐蚀截止层111紧密连接,形成完整的腐蚀阻挡层11。如图7所示。
第二波导区区域小于第一波导区区域。第二波导区面积小于第一波导区,在有源区与波导层连接区域的正下方无光栅,有利于提高DFB激光器的单模良率,第二波导区和第一波导区的区域对比如图6所示。
实施例一:
以电导率为2-8x1018cm-2的InP作为生长衬底,放入到Aixtron公司的MOCVD系统中生长。反应室压力为50mbar,生长温度为670℃,以H2为载气,三甲基铟(TMIn)、三甲基镓(TMGa)、三甲基铝(TMAl)、二乙基锌(DeZn)、硅烷(SiH4)、砷烷(AsH3)和磷烷(PH3)等为反应源气体,依次生长N-InP缓冲层,N-InGaAsP光栅层,N-InP过度层。其中,光栅层厚度为50nm,值得注意的是,光栅层N-InGaAsP为张应变,应变量为500-1000ppm.
然后取出生长完的外延片,采用全息光刻或电子束光刻的方式形成光栅,光栅周期为203nm,深度为70nm。同时,采用光学光刻方法形成波层区域B,改区域宽为20um,长为75um。外延片清洗后,然后再次放入到MOCVD外延炉中,生长二次外延层。
首先,在900sccm的PH3气体的保护下,反应室缓慢升温至550℃,然后将TMIn、SiH4一起以脉冲的方式通入到MOCVD反应室内慢速生长InP,其中,TMIn的Source流量设定为10sccm,SiH4作为掺杂剂,以双稀释管路通入到反应室中,其Source、Dilute、inject的流量分别为10、800、5,双稀释管路通入到反应室的气体浓度可通过以下公式计算:
其中,S是实际通入到反应室的气体流量,FSource、FDilute、FInject分别代表Source、Dilute、Injetct的流量。
InP二次外延层的生长速率与In的流量呈线性关系,一般可通过以下公式来计算:
其中,V是InP的生长速率,CInP为InP通入到反应室的浓度,其值可由MOCVD设备上连接与MFC与五二阀的Epison III气体浓度监测仪精确测量,当InP的Souce流量为10时,其浓度为87摩尔浓度。可以计算得到10sccm的In流量生长InP的速率为0.0028nm/s。当In流量增加为720sccn时,In浓度为7300摩尔浓度。InP的生长速率为0.2nm/s。
如图8所示,给出了反应室内的温度、气体脉冲通入方式与生长时间的关系。在t1=2秒的时间内脉冲开,通入TMIn和SiH4,生长InP形核层;在t2=2秒的时间内脉冲关,让形核层原子有足够的时间迁移到其能量最低点;在t3=15秒时间内脉冲开,再次通入TMIn和SiH4,生长一定厚度的外延层;在t4=2秒时间内脉冲关,形成稳定的外延层。t4时间后进入到下一个循环。脉冲式生长方法中,一直保护PH3的高分压比(900sccm),有利于减少升温过程中P的挥发,先以短脉冲通入TMIn、SiH4,在衬底上形成一层非常薄的形核层并使之形成稳定态,减少堆垛层错和空位,然后在形核层基础上生长一定厚度的外延层,可显著降低半导体外延层缺陷密度。采用这种脉冲气流生长,每个循环耗时21秒,生长厚度约0.048nm。生长1500个循环,即t5=525min,生长的InP外延层厚度为72nm,然后反应室温度升高到670℃,继续生长InP过度层28nm,然后生长InGaAsP波导层170nm。InGaAsP波导层波长为1200+/-20nm。然后生长腐蚀截止层InGaAsP,厚度为50nm,波长为1100nm。
二次外延生长完,先采用PECVD沉积介质膜SiO2,厚度为45nm。然后采用光学光刻的方法定义第二波导区,宽度为20um,长度为60um。去除非第二波导区的SiO2,然后以SiO2为掩膜,采用HBr溶液刻蚀去除未被覆盖区域的110nm的InGaAsP腐蚀截止层,和1200nm的InGaAsP波导层。由于HBr腐蚀InP速度极慢,因此,溶液在InP层界面截止,然后采用H2SO4处理表面后,快速放入到MOCVD设备中,生长量子阱有源区。
第三次外延先慢速沉积10nm的InP缓冲层,然后生长AlInAs限制层、非掺杂的折射率渐变的AlGaInAs下波导层、9个周期的AlGaInAs量子阱、非掺杂的折射率渐变的AlGaInAs上波导层、P型AlInAs限制层、波长为1100nm的InGaAsP腐蚀阻挡层。值得注意的是,波长为1100nm的InGaAsP腐蚀阻挡层(右腐蚀截止层)需与第二次外延生长的1100nm的InGaAsP腐蚀阻挡层(左腐蚀截止层)完整连接。
然后取出外延片,去除SiO2介质层并采用0-4℃的HBr溶液腐蚀掉30nm1100nm的InGaAsP。然后外延片表面清洗后,再次放入到MOCVD腔体中,生长InP联接层,以及波长为1300nm和1500nm的InGaAsP势垒过渡层,以及InGaAs欧姆接触层等,即形成完整的DFB的外延结构。
外延层生长完成后,利用光刻与刻蚀工艺,形成脊波导结构,然后在脊波导结构上蒸镀正面电极,然后利用光刻露出部分区域,采用悬涂的方法形成氧化石墨烯高热导层材料,氧化石墨烯热导率大于1000W/(m·K),比半导体外延层材料的热导率大10倍以上(半导体外延层村料的热导率一般小于10W/(m·K))。值得注意的是,高热导层材料需要覆盖ridge,以减小热量对有源区的影响。然后将InP衬底减薄,在减薄的InP衬底背面蒸镀背面电极;在管芯一端蒸镀高反射薄膜(90%反射率),另一端蒸镀低反射膜(0.03%反射率),即完成DFB激光器芯片的制作。芯片正面俯视图如图9所示。
实施例二:
外延片制备过程与实施例一相同。
当外延片生长完成后,利用光刻与刻蚀工艺,形成脊波导结构,然后在脊波导结构上蒸镀正面电极,然后利用光刻露出部分区域,采用PECVD的方法形成金钢石高热导层材料,金钢石热导率大于20W/(m·K),是目前已知的的热导率最高的半导体材料,且其硬度高,化学性质稳定。值得注意的是,金刚石材料不能覆盖ridge,避免在高温下,应力不一致导致ridge损伤。然后将InP衬底减薄,在减薄的InP衬底背面蒸镀背面电极;在管芯一端蒸镀高反射薄膜(90%反射率),另一端蒸镀低反射膜(0.03%反射率),即完成DFB激光器芯片的制作。芯片正面俯视图如图10所示。
注:其它一些高热导材料如氧化铝,氮化硅等均可用于本发明高热层材料。以下为多种材料的热导率对照表。
半导体材料 Si Ge GaAs GaP GaN AlN 3C-SiC 6H-SiC 金刚石
热导率(W/cm·K) 1.5 0.6 0.46 0.5 1.5 2.5 3.2 3.6 20
陶瓷、玻璃 硼硅玻璃 熔融石英 氮化硅 氧化铝 蓝宝石 BeO
热导率(W/cm·K) 75 150 2000 3000 3700 26000
聚合物材料 聚丙烯 聚氯乙烯 聚碳酸酯 尼龙6,6 聚四氟乙烯 低密度聚乙烯 高密度聚乙烯
热导率(W/cm·K) 0.12 0.17 0.22 0.24 0.25 0.3 0.5
纯金属材料 Nb Fe Zn W Al Cu Ag
热导率(W/m·K) 52 80 113 178 250 390 420
本发明采用N光栅结构,采用InGaAsP波导层替代部分有源区,形成的DFB激光器阈值低,电阻低,且调制速率快,高温特性好;先生长InGaAsP波导层,然后生长量子阱有源区,避免了含Al的材料暴露在水氧环境下,提高了器件的可靠性;采用大尺寸芯片结构,在芯片表面蒸镀高热导率材料,芯片散热佳,高温特性好,有利于工作在宽温度范围。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (3)

1.一种高速DFB激光器的制备方法,其特征在于:其包括如下步骤:
步骤一:以InP作为生长衬底,在InP衬底(01)上依次生长缓冲层(02)和光栅层,获得第一外延结构;然后取出外延片,旋涂光刻胶,利用全息光刻或电子束光刻的方法形成光栅图形,再利用光学光刻的方法定义出第一波导区,并采用化学湿法腐蚀的方法形成部分光栅;
步骤二:在步骤一的基础上进行第二次外延生长;首先,在PH3气体的保护下,缓慢升温至550℃,然后以脉冲的方式通入TMIn作为源气体生长InP,当InP层(050)厚度完全覆盖光栅后,升温至正常外延生长温度670℃,增加TMIn的流量,从下往上依次快速生长InP层(050)、波导层(040)和腐蚀截止层,获得第二外延结构;
步骤三:采用PECVD在第二外延结构上方沉积介质层(000),然后采用光学光刻的方法,定义并保护住第二波导区,采用湿法刻蚀的方法,去除未被保护的腐蚀截止层和波导层(040),形成部分波导层,完成纵向限制层(04)并获得第三外延结构,纵向限制层(04)上方留有左腐蚀截止层(111);
步骤四:将去除部分波导层后的第三外延结构进行第三次外延生长;首先,在PH3气体的保护下,缓慢升温至外延生长温度670℃,缓慢沉积过度层(05),然后形成有源区下限制层(06)、下波导层(07)、量子阱(08)、上波导层(09)、有源区上限制层(10)和右腐蚀截止层(110),获得第四外延结构;
步骤五:去除第四外延结构上的SiO2介质层(000),然后把该外延片放到MOCVD设备中,进行第四次外延生长;依次生长联接层(12)、第一势垒渐变层(13)、第二势垒渐变层(14)和欧姆接触层(15),获得第五外延结构;
步骤六:外延生长完成后,通过DFB激光器工艺,定义脊波导区;
步骤七:在脊波导区结构上蒸镀正面电极,利用光刻露出部分区域,采用蒸镀或悬涂的方法形成高热导层材料。
2.根据权利要求1所述的一种高速DFB激光器的制备方法,其特征在于:所述步骤四中,通过第三次外延生长后生成的右腐蚀截止层(110),需与第二次外延生长的左腐蚀截止层(111)紧密连接,形成完整的腐蚀阻挡层(11)。
3.根据权利要求1所述的一种高速DFB激光器的制备方法,其特征在于:所述第二波导区区域小于所述第一波导区区域。
CN201910878645.8A 2019-09-18 2019-09-18 一种高速工温dfb激光器及其制造方法 Active CN110535032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910878645.8A CN110535032B (zh) 2019-09-18 2019-09-18 一种高速工温dfb激光器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910878645.8A CN110535032B (zh) 2019-09-18 2019-09-18 一种高速工温dfb激光器及其制造方法

Publications (2)

Publication Number Publication Date
CN110535032A CN110535032A (zh) 2019-12-03
CN110535032B true CN110535032B (zh) 2024-04-05

Family

ID=68668934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910878645.8A Active CN110535032B (zh) 2019-09-18 2019-09-18 一种高速工温dfb激光器及其制造方法

Country Status (1)

Country Link
CN (1) CN110535032B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490449A (zh) * 2020-04-24 2020-08-04 江苏华兴激光科技有限公司 一种四元系张应变半导体激光外延片及其制备方法
CN112366520B (zh) * 2020-10-23 2022-07-08 湖北光安伦芯片有限公司 一种高速dfb激光器的制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703974A (en) * 1995-07-13 1997-12-30 Nec Corporation Semiconductor photonic integrated circuit and fabrication process therefor
JPH1027935A (ja) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd 半導体発光装置およびその製造方法
JP2007294565A (ja) * 2006-04-24 2007-11-08 Mitsubishi Electric Corp 半導体レーザ
CN101227061A (zh) * 2007-12-28 2008-07-23 武汉光迅科技股份有限公司 可调谐半导体激光器的制作方法及可调谐半导体激光器
CN107069426A (zh) * 2017-06-30 2017-08-18 苏州全磊光电有限公司 一种dfb激光器外延片及其制造方法
CN207069287U (zh) * 2017-06-30 2018-03-02 苏州全磊光电有限公司 一种dfb激光器外延片
CN109510063A (zh) * 2019-01-15 2019-03-22 全磊光电股份有限公司 Dfb激光器外延结构及其制备方法
CN209088265U (zh) * 2019-01-15 2019-07-09 全磊光电股份有限公司 Dfb激光器外延结构
CN110535030A (zh) * 2019-09-17 2019-12-03 全磊光电股份有限公司 一种高速dfb激光器及其制造方法
CN210468378U (zh) * 2019-09-18 2020-05-05 全磊光电股份有限公司 一种高速工温dfb激光器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325558B2 (ja) * 2005-01-05 2009-09-02 住友電気工業株式会社 半導体レーザ、および半導体レーザを作製する方法
US9991677B2 (en) * 2014-05-13 2018-06-05 California Institute Of Technology Index-coupled distributed-feedback semiconductor quantum cascade lasers fabricated without epitaxial regrowth

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703974A (en) * 1995-07-13 1997-12-30 Nec Corporation Semiconductor photonic integrated circuit and fabrication process therefor
JPH1027935A (ja) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd 半導体発光装置およびその製造方法
JP2007294565A (ja) * 2006-04-24 2007-11-08 Mitsubishi Electric Corp 半導体レーザ
CN101227061A (zh) * 2007-12-28 2008-07-23 武汉光迅科技股份有限公司 可调谐半导体激光器的制作方法及可调谐半导体激光器
CN107069426A (zh) * 2017-06-30 2017-08-18 苏州全磊光电有限公司 一种dfb激光器外延片及其制造方法
CN207069287U (zh) * 2017-06-30 2018-03-02 苏州全磊光电有限公司 一种dfb激光器外延片
CN109510063A (zh) * 2019-01-15 2019-03-22 全磊光电股份有限公司 Dfb激光器外延结构及其制备方法
CN209088265U (zh) * 2019-01-15 2019-07-09 全磊光电股份有限公司 Dfb激光器外延结构
CN110535030A (zh) * 2019-09-17 2019-12-03 全磊光电股份有限公司 一种高速dfb激光器及其制造方法
CN210468378U (zh) * 2019-09-18 2020-05-05 全磊光电股份有限公司 一种高速工温dfb激光器

Also Published As

Publication number Publication date
CN110535032A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN110535030B (zh) 一种高速dfb激光器及其制造方法
CN110535031B (zh) 一种高速dfb激光器外延结构及其制造方法
CN110474232B (zh) 一种高性能dfb激光器外延结构及其制造方法
CN102368591B (zh) 一种条形掩埋分布反馈半导体激光器的制作方法
JP5280614B2 (ja) 単一のステップmocvdによって製造される導波格子を組み込んだ埋め込みヘテロ構造デバイス
US20080037607A1 (en) Semiconductor laser diode with a ridge structure buried by a current blocking layer made of un-doped semiconductor grown at a low temperature and a method for producing the same
CN110535032B (zh) 一种高速工温dfb激光器及其制造方法
JP2001274521A (ja) 窒化物半導体発光素子
JP5027647B2 (ja) 単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス
CN210379766U (zh) 一种高速dfb激光器外延结构
CN111541149B (zh) 一种10g抗反射激光器及其制备工艺
CN110098562B (zh) 一种高速掩埋dfb半导体激光器及其制备方法
CN110247301B (zh) 一种宽温度范围的dfb激光器及其制备方法
CN112531460B (zh) 一种高温工作的dfb激光器及外延结构生长方法
CN210468378U (zh) 一种高速工温dfb激光器
CN211670427U (zh) 光通信用掩埋结构高线性dfb激光器芯片
JP3432909B2 (ja) 半導体レーザ
JPH0897507A (ja) 半導体レーザ
CN210468377U (zh) 一种高速dfb激光器
CN113300214B (zh) 一种高速铝铟镓砷分布反馈式激光器外延结构生长方法
CN209766857U (zh) 一种宽温度范围的dfb激光器
CN109672088A (zh) 一种半导体激光芯片制造方法
CN210838445U (zh) 一种高性能dfb激光器外延结构
JP3889896B2 (ja) 半導体発光装置
JP4560885B2 (ja) 化合物半導体装置およびその製造方法ならびに半導体発光装置およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Shan Zhifa

Inventor after: Zhang Yong

Inventor after: Chen Yanghua

Inventor before: Shan Zhifa

Inventor before: Zhang Yong

Inventor before: Jiang Wei

Inventor before: Chen Yanghua

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant