CN110526289A - 一种蓝色锐钛矿相TiO2纳米晶体及其制备方法 - Google Patents

一种蓝色锐钛矿相TiO2纳米晶体及其制备方法 Download PDF

Info

Publication number
CN110526289A
CN110526289A CN201910640494.2A CN201910640494A CN110526289A CN 110526289 A CN110526289 A CN 110526289A CN 201910640494 A CN201910640494 A CN 201910640494A CN 110526289 A CN110526289 A CN 110526289A
Authority
CN
China
Prior art keywords
blue
tio
nanocrystalline
nanocrystal
anatase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910640494.2A
Other languages
English (en)
Other versions
CN110526289B (zh
Inventor
吴进明
刑欢
叶伟
戴立勇
马金保
章洪涛
王旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Green Shield Polytron Technologies Inc
Original Assignee
Nanjing Green Shield Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Green Shield Polytron Technologies Inc filed Critical Nanjing Green Shield Polytron Technologies Inc
Priority to CN201910640494.2A priority Critical patent/CN110526289B/zh
Publication of CN110526289A publication Critical patent/CN110526289A/zh
Application granted granted Critical
Publication of CN110526289B publication Critical patent/CN110526289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种蓝色自掺杂锐钛矿相TiO2纳米晶的制备方法。以钛粉、氢氟酸和双氧水组成反应体系,180℃下水热釜中反应10小时,离心水洗并干燥后即可获得蓝色自掺杂TiO2纳米晶体。后续NaOH溶液中超声浸泡去除表面氟离子后,蓝色TiO2纳米晶体在紫外光照射下表现出优异的光催化降解水中有机污染物特性。本发明代替了氢化处理制备蓝色TiO2的传统工艺,过程简单且安全可控。

Description

一种蓝色锐钛矿相TiO2纳米晶体及其制备方法
技术领域
本发明方法涉及一种蓝色锐钛矿相TiO2纳米晶体制备技术,属于环境材料技术领域。
背景技术
随着环境污染和能源危机的不断加剧,光催化技术具有巨大的发展潜力,是一种有效的解决方案。二氧化钛具有化学稳定性好、成本低、无毒等优点,在光催化领域得到了广泛的应用。在常见的TiO2晶相(锐钛矿、金红石、板钛矿和TiO2(B))中,锐钛矿相拥有着最佳的光催化活性。
纳米级TiO2具有更大的比表面积,因而具有更高的光催化活性。除了减小催化剂的尺寸,改变催化剂的颜色,使其能够在可见光区和近红外区吸收光,也是一种有效的方法。此外,适当控制导致颜色变化的自掺杂Ti(III)离子和氧缺陷浓度,还可以引入电子陷阱,增大 TiO2光生载流子的空间分离,进而提升紫外光照下的光催化活性。常见的改变TiO2催化剂颜色的方法为氢化,即将TiO2在含氢气气氛中高温热处理。但是,氢气易燃易爆,具有一定的危险性,且高温过程耗费能源。因此,开发一种不需高温且不需氢气处理的制备蓝色TiO2光催化剂的技术路线有重要意义。
发明内容
本发明公开了一种蓝色锐钛矿相TiO2纳米晶体的制备方法,其技术方案如下:
一种蓝色锐钛矿相TiO2纳米晶体的制备方法,它包括以下步骤:
步骤1、配制质量百分比为3-5%的过氧化氢和0.2-0.3%的氢氟酸混合水溶液;
步骤2、称取50-150mg钛粉,添加到30毫升上述混合溶液中,置于容积为50mL的内衬PVC的不锈钢水热釜中,180-185℃下保温10-20小时,得到沉淀物;
步骤3、将步骤2的沉淀物离心、水洗并干燥,即制备得到蓝色锐钛矿相TiO2纳米晶。
上述的蓝色锐钛矿相TiO2纳米晶体的制法制得的蓝色锐钛矿相 TiO2纳米晶。
上述的蓝色锐钛矿相TiO2纳米晶为菱形或方形,其尺寸为50-80 nm。
上述的蓝色锐钛矿相TiO2纳米晶作为光催化剂在环境污染物光降解中的应用。
本发明公开的蓝色锐钛矿相TiO2纳米晶体制备方法不需加入模板,一步法水热合成。在氢氟酸和双氧水混合溶液中,通过改变钛粉的用量,即可调控锐钛矿相TiO2纳米晶的自掺杂浓度。反应一步完成,步骤简便,操作安全,是一种节能环保的合成蓝色锐钛矿相TiO2纳米晶的方法。合成的蓝色锐钛矿相TiO2纳米晶在紫外光区和可见光区均有增强的吸收,光催化活性优异。
附图说明
图1为实施例1制备所得TiO2纳米晶的场发射扫描电子显微镜照片;
图2为实施例1制备所得TiO2纳米晶的X射线衍射图谱;
图3为实施例2制备所得TiO2纳米晶的场发射扫描电子显微镜照片;
图4为实施例3制备所得TiO2纳米晶的场发射扫描电子显微镜照片;
图5为实施例4制备所得TiO2纳米晶的场发射扫描电子显微镜照片;
图6为实施例5制备所得TiO2纳米晶的场发射扫描电子显微镜照片;
图7为实施例1制备所得TiO2纳米晶紫外灯下降解苯酚的曲线。
具体实施方式
实施例1
称取100mg钛粉,量取3mL 30%的过氧化氢水溶液,0.1mL 氢氟酸均匀分散于27mL去离子水中,形成溶液,将100mg钛粉加入其中;
将所述溶液转入50mL不锈钢水热釜中,180℃下反应10小时,得到沉淀物;
所制得沉淀物6000r/min离心水洗三次,60℃干燥,即制备得到锐钛矿相蓝色TiO2纳米晶体。
按照实施例1制备得到TiO2纳米晶体的场发射扫描电子显微镜照片如图1所示。从图中可以看出,在180℃水热反应10小时后,按照实施例1所制备的TiO2纳米晶呈现出包括菱形、方形、球形和不规则晶体的形态,平均粒径为50-80纳米。
按照实施例1制备得到TiO2纳米晶的X射线衍射如图2所示,根据JCPDS卡片21-1272,所有样品均显示出良好的结晶度,且仅包含锐钛矿相,没有任何其他杂相。
实施例2
称取50mg钛粉,量取3mL 30%的过氧化氢水溶液,0.1mL氢氟酸均匀分散于27mL去离子水中,形成溶液,将50mg钛粉加入其中;
将所述溶液转入50mL不锈钢水热釜中,180℃下反应10小时,得到沉淀物;
所制得沉淀物6000r/min离心水洗三次,60℃干燥,即可制备得到锐钛矿相白色TiO2纳米晶体。
按照实施例2制备得到TiO2纳米晶体的场发射扫描电子显微镜照片如图3所示。
实施例3
称取150mg钛粉,量取3mL 30%的过氧化氢水溶液,0.1mL 氢氟酸均匀分散于27mL去离子水中,形成溶液,将150mg钛粉加入其中;
将所述溶液转入50mL不锈钢水热釜中,180℃下反应10小时,得到沉淀物;
所制得沉淀物6000r/min离心水洗三次,60℃干燥,即可制备得到锐钛矿相蓝色TiO2纳米晶体。
按照实施例3制备得到TiO2纳米晶体的场发射扫描电子显微镜照片如图4所示。
实施例4
称取100mg钛粉,量取3mL 30%的过氧化氢水溶液,0.1mL 氢氟酸均匀分散于27mL去离子水中,形成溶液,将100mg钛粉加入其中;
将所述溶液转入50mL不锈钢水热釜中,180℃下反应5小时,得到沉淀物;
所制得沉淀物6000r/min离心水洗三次,60℃干燥,即可制备得到锐钛矿相蓝色TiO2纳米晶体。
按照实施例4制备得到TiO2纳米晶的场发射扫描电子显微镜照片如图5所示。反应5h后,蓝色TiO2纳米晶体的形态不均匀,大小不一,说明晶体生长未完全完成。
实施例5
称取100mg钛粉,量取3mL 30%的过氧化氢水溶液,0.1mL 氢氟酸均匀分散于27mL去离子水中,形成溶液,将100mg钛粉加入其中;
将所述溶液转入50mL不锈钢水热釜中,180℃下反应20小时,得到沉淀物;
所制得沉淀物6000r/min离心水洗三次,60℃干燥,即可制备得到锐钛矿相蓝色TiO2纳米晶体。
按照实施例5制备得到TiO2纳米晶的场发射扫描电子显微镜照片如图6所示。反应20小时后的样品,TiO2纳米晶体生长均匀,与 10h制备所得样品相比形态保持不变,表明10小时后生长过程已经结束。
光催化降解苯酚性能测试
测试条件:采用紫外灯,光强为7.3mW/cm2,降解物为50mL初始浓度10ppm的苯酚水溶液,催化剂用量为25mg。为了消除纳米晶表面吸附氟离子的影响,光催化测试前,采用浓度为10摩尔/升到NaOH溶液超声浸泡蓝色TiO2纳米晶以去除氟离子,而后干燥备用。
测试结果:图7为按照实施例1制备得到TiO2蓝色纳米晶的光催化效果图。可以看出,紫外灯光照下,所制备纳米晶对苯酚具有优异的降解性能,4h可以降解超过90%的苯酚。

Claims (4)

1.一种蓝色锐钛矿相TiO2纳米晶体的制备方法,其特征是它包括以下步骤:
步骤1、配制质量百分比为3-5%的过氧化氢和0.2-0.3%的氢氟酸混合水溶液;
步骤2、称取50-150mg钛粉,添加到30毫升上述混合溶液中,置于容积为50mL的内衬PVC的不锈钢水热釜中,180-185℃下保温10-20小时,得到沉淀物;
步骤3、将步骤2的沉淀物离心、水洗并干燥,即制备得到蓝色锐钛矿相TiO2纳米晶。
2.根据权利要求1所述的蓝色锐钛矿相TiO2纳米晶体的制法制得的蓝色锐钛矿相TiO2纳米晶。
3.根据权利要求2所述的蓝色锐钛矿相TiO2纳米晶,其特征是:所述的蓝色锐钛矿相TiO2纳米晶为菱形或方形,其尺寸为50-80nm。
4.根据权利要求2所述的蓝色锐钛矿相TiO2纳米晶作为光催化剂在环境污染物光降解中的应用。
CN201910640494.2A 2019-07-16 2019-07-16 一种蓝色锐钛矿相TiO2纳米晶体及其制备方法 Active CN110526289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910640494.2A CN110526289B (zh) 2019-07-16 2019-07-16 一种蓝色锐钛矿相TiO2纳米晶体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910640494.2A CN110526289B (zh) 2019-07-16 2019-07-16 一种蓝色锐钛矿相TiO2纳米晶体及其制备方法

Publications (2)

Publication Number Publication Date
CN110526289A true CN110526289A (zh) 2019-12-03
CN110526289B CN110526289B (zh) 2021-10-08

Family

ID=68660366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910640494.2A Active CN110526289B (zh) 2019-07-16 2019-07-16 一种蓝色锐钛矿相TiO2纳米晶体及其制备方法

Country Status (1)

Country Link
CN (1) CN110526289B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896237A (zh) * 2021-10-15 2022-01-07 广东工业大学 一种蓝色二氧化钛的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559979A (zh) * 2009-05-22 2009-10-21 东华大学 一种超细锐钛矿相二氧化钛纳米棒的制备方法
CN103243387A (zh) * 2012-02-01 2013-08-14 国家纳米科学中心 一种具有高活性(110)面的锐钛矿TiO2单晶的制备方法
CN103962117A (zh) * 2014-05-05 2014-08-06 中国科学院长春光学精密机械与物理研究所 颜色可调具有高效光催化活性的二氧化钛的制备方法
CN104722289A (zh) * 2015-03-19 2015-06-24 中国科学院电工研究所 一种制备二氧化钛纳米结构超细粉体的方法
CN106582595A (zh) * 2016-12-28 2017-04-26 上海应用技术大学 一种蓝色TiO2催化剂的制备方法
CN108298579A (zh) * 2018-03-20 2018-07-20 江苏师范大学 一种空心八面体锐钛矿二氧化钛的制备方法
CN109126758A (zh) * 2018-09-18 2019-01-04 南通大学 蓝色二氧化钛的制备方法及其用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559979A (zh) * 2009-05-22 2009-10-21 东华大学 一种超细锐钛矿相二氧化钛纳米棒的制备方法
CN103243387A (zh) * 2012-02-01 2013-08-14 国家纳米科学中心 一种具有高活性(110)面的锐钛矿TiO2单晶的制备方法
CN103962117A (zh) * 2014-05-05 2014-08-06 中国科学院长春光学精密机械与物理研究所 颜色可调具有高效光催化活性的二氧化钛的制备方法
CN104722289A (zh) * 2015-03-19 2015-06-24 中国科学院电工研究所 一种制备二氧化钛纳米结构超细粉体的方法
CN106582595A (zh) * 2016-12-28 2017-04-26 上海应用技术大学 一种蓝色TiO2催化剂的制备方法
CN108298579A (zh) * 2018-03-20 2018-07-20 江苏师范大学 一种空心八面体锐钛矿二氧化钛的制备方法
CN109126758A (zh) * 2018-09-18 2019-01-04 南通大学 蓝色二氧化钛的制备方法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOTONG WANG,ET AL: "Preparation of Ti3+ self‐doped TiO2 nanoparticles and their visible light photocatalytic activity", 《CHINESE JOURNAL OF CATALYSIS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896237A (zh) * 2021-10-15 2022-01-07 广东工业大学 一种蓝色二氧化钛的制备方法
CN113896237B (zh) * 2021-10-15 2023-08-08 广东工业大学 一种蓝色二氧化钛的制备方法

Also Published As

Publication number Publication date
CN110526289B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN103657619B (zh) 一种尺寸可控的二氧化钛纳米片光催化材料的制备方法
Hassaan et al. Photocatalytic degradation of reactive black 5 using Photo-Fenton and ZnO nanoparticles under UV irradiation
CN107456983B (zh) 一种Ag/AgCl/TiO2复合光催化材料及其制备方法和应用
Augugliaro et al. Performance of heterogeneous photocatalytic systems: influence of operational variables on photoactivity of aqueous suspension of TiO2
Dong et al. Visible‐light photocatalytic degradation of methyl orange over spherical activated carbon‐supported and Er3+: YAlO3‐doped TiO2 in a fluidized bed
Murcia et al. Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries
Vijayabalan et al. Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4
CN107311227B (zh) 一种混合晶型的二氧化钛纳米片的制备方法及产物
Enayati Ahangar et al. Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@ SiO2/TiO2) for reusing of textile wastewater
CN110526289A (zh) 一种蓝色锐钛矿相TiO2纳米晶体及其制备方法
Dao et al. Highly photocatalytic activity of pH-controlled ZnO nanoflakes
Mansouri et al. INVESTIGATION OF UV/TiO^ sub 2^-ZnO-Co PHOTOCATALITIC DEGRADATION OF AZO DYE (REACTIVE RED 120) BY RESPONSE SURFACE METHODOLOGY
Maleki et al. Evaluation of sonocatalytic and photocatalytic processes efficiency for degradation of humic compounds using synthesized transition-metal-doped ZnO nanoparticles in aqueous solution
CN109277094A (zh) 一种可见光响应光催化剂的改性方法及其在人工海水体系中的应用
CN102847536B (zh) 一种复合光催化材料及其制备方法和应用
Yin et al. Improving photocatalytic activity by combining upconversion nanocrystals and Mo-doping: a case study on β-NaLuF 4: Gd, Yb, Tm@ SiO 2@ TiO 2: Mo
Ali Photocatalytic degradation and COD removal for indigo carmine dye using aqueous suspension of zinc oxide
CN113522337A (zh) 一种光催化降解don的钛基纳米材料制备方法及其应用方法
Muhammad PHOTOCATALYTIC DEAGRADATION OF RHODAMINE B DYE USING Mn DOPED ZnO NANOPARTICLES
Wang et al. The influence of Yb, B, and Ga-doped Er 3+: Y 3 Al 5 O 12 on solar light photocatalytic activity of TiO 2 in degradation of organic dyes
CN107043127B (zh) 一种通过硝酸中和处理调控碱性水热法所得TiO2纳米颗粒形貌的方法
Wahyuni Remarkable enhancement of the TiO2 photocatalyst activity under visible light by doping sulfur for dye photodecolorization
Umar et al. Biomass Mediated Green Synthesis of ZnO/TiO2 Nanocomposite and Enhanced Photocatalytic Activity for the Decolorization of Rhodamine B under Visible Light
CN1762581A (zh) 锐钛矿型纳米二氧化钛光催化剂的制备方法
Sun et al. Enhancing the Photocatalytic Performance of BaSn-based Composites by Doping Rare Metals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant