CN110507826B - 一种基于巨噬细胞的活细胞载药系统、其制备方法和应用 - Google Patents

一种基于巨噬细胞的活细胞载药系统、其制备方法和应用 Download PDF

Info

Publication number
CN110507826B
CN110507826B CN201810491392.4A CN201810491392A CN110507826B CN 110507826 B CN110507826 B CN 110507826B CN 201810491392 A CN201810491392 A CN 201810491392A CN 110507826 B CN110507826 B CN 110507826B
Authority
CN
China
Prior art keywords
macrophage
anchored
delivery system
drug delivery
macrophages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810491392.4A
Other languages
English (en)
Other versions
CN110507826A (zh
Inventor
李亚平
张志文
曹海强
王洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Materia Medica of CAS
Original Assignee
Shanghai Institute of Materia Medica of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Materia Medica of CAS filed Critical Shanghai Institute of Materia Medica of CAS
Priority to CN201810491392.4A priority Critical patent/CN110507826B/zh
Publication of CN110507826A publication Critical patent/CN110507826A/zh
Application granted granted Critical
Publication of CN110507826B publication Critical patent/CN110507826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/05Adjuvants
    • C12N2501/052Lipopolysaccharides [LPS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)

Abstract

本发明公开了一种基于巨噬细胞的活细胞载药系统、其制备方法和应用。所述基于巨噬细胞的活细胞载药系统,包含巨噬细胞、锚定的化疗药物和锚定的促细胞裂解基团。其制备方法包括以下步骤:取小鼠骨髓细胞,体外进行培养,在培养基中加入重组小鼠巨噬细胞集落刺激因子和小鼠乳腺癌4T1细胞培养上清液或脂多糖LPS,继续培养,诱导巨噬细胞极化,得到调节性M1或M2型巨噬细胞;将巨噬细胞培养基中锚定的化疗药物和锚定的促细胞裂解基团,共同孵育,制得基于巨噬细胞的活细胞载药系统。上述制备的基于巨噬细胞的活细胞载药系统能够主动靶向至乳腺癌肺转移病灶部位,有效抑制乳腺癌的肺转移。

Description

一种基于巨噬细胞的活细胞载药系统、其制备方法和应用
技术领域
本发明属于制药领域,具体涉及一种基于巨噬细胞的活细胞载药系统、其制备方法和应用。
背景技术
乳腺癌转移是导致乳腺癌患者死亡的主要原因。在乳腺癌发病早期可以采用手术切除的方法治疗,但手术切除,病灶难以彻底清除,并且预后效果差,容易复发和转移。化疗药物可以抑制乳腺癌细胞增殖和扩散,但由于化疗药物选择性差,通常具有严重的毒副作用,并且给予化学药物治疗后,容易导致乳腺癌肿瘤细胞产生耐药,从而导致临床治疗的失败。放射疗法可以杀死肿瘤细胞,但是瘤旁的正常细胞也会受到不同程度的破坏,并且还会产生骨髓抑制、消化道反应、免疫功能降低、器官粘膜损害等一系列的毒副反应。据统计,临床上乳腺癌转移的患者中约60-70%的患者发生了肺部转移。因此,抑制乳腺癌的肺转移是乳腺癌治疗过程中极富挑战性的问题。
纳米给药系统能够通过EPR效应被动靶向肿瘤部位,在乳腺癌治疗中具有广阔的应用前景。但是由于肿瘤转移灶直径小、分散性高,简单的被动靶向难以保证良好的治疗效果,因此,开发高效的纳米载药系统仍是一个挑战性问题。
骨髓生成的单核细胞进入血液循环系统,到达全身不同的组织中,分化成为不同功能的巨噬细胞。巨噬细胞在肿瘤微环境中表现为M2型巨噬细胞,在乳腺癌原位瘤的生长和转移过程中,肿瘤相关巨噬细胞发挥了重要的作用。肿瘤相关巨噬细胞不仅影响了肿瘤的产生,促进原位肿瘤的快速增殖,而且直接提高了肿瘤细胞的侵袭能力和转移能力,并协助血管生成,促进转移细胞在远端组织的种植,形成新的转移病灶,促进肿瘤的转移单核细胞来源于骨髓的造血干细胞,单核/巨噬细胞的肿瘤趋向性主要受CC趋化因子2(CCL2)调控。CCL2的表达与肿瘤的生长和转移、肿瘤相关巨噬细胞的浸润呈正相关。肿瘤及其基质分泌趋化因子CCL2,与表达其受体CCR2的单核/巨噬细胞作用,引起单核/巨噬细胞的趋化特性。
发明内容
本发明的目的是提供一种基于巨噬细胞的活细胞载药系统及其制备方法,由该方法制得的重组装的基于巨噬细胞的活细胞载药系统,具有显著的legumain酶响应性,主动靶向乳腺癌肺转移病灶部位,对乳腺癌肺转移的治疗具有很好的应用前景。
本发明的另一个目的是提供一种上述基于巨噬细胞的活细胞载药系统的应用。
根据一个方面,本发明提供了一种基于巨噬细胞的活细胞载药系统,其包含巨噬细胞、锚定的化疗药物和锚定的促细胞裂解基团,其中,所述锚定的化疗药物和所述锚定的促细胞裂解基团均包含磷脂部分,所述锚定的化疗药物的磷脂部分和所述锚定的促细胞裂解基团的磷脂部分分别锚定到巨噬细胞膜上。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述锚定的化疗药物选自含脂肪酸链的磷脂或其衍生物连接的化疗药物、胆固醇或其衍生物连接的化疗药物。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述巨噬细胞为M1型或M2型巨噬细胞,优选M1型或M2型小鼠骨髓来源巨噬细胞。
本发明的基于巨噬细胞的活细胞载药系统中,进一步优选地,所述的锚定的化疗药物选自二肉豆蔻酰基磷脂酰乙醇胺(DMPE)或其衍生物连接的化疗药物;其中,被连接的化疗药物选自美登素及其衍生物、海兔毒素及其衍生物(如海兔毒素衍生物一甲基澳瑞他汀E等)、倍癌霉素和卡奇霉素等;更优选为美登素衍生物DM4。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述的连接是指在含脂肪酸链的磷脂或其衍生物与化疗药物之间,或者在胆固醇或其衍生物与化疗药物之间通过选自如下的连接基团所连接:二硫键、腙键、酶可降解多肽、马来酰亚胺-巯基、硫醚等;进一步优选地,连接基团为二硫键或酶可降解多肽。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述锚定的化疗药物可为二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4或酶可降解多肽连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述的酶可降解多肽选自组织蛋白酶B底物多肽GFLG、组织蛋白酶S底物多肽GGRK、基质金属蛋白酶GPLGLK、Legumain酶底物多肽AANK和AANCRGDR。
本发明的基于巨噬细胞的活细胞载药系统中,进一步优选地,所述锚定的化疗药物可为二肉豆蔻酰基磷脂酰乙醇胺(DMPE)-聚乙二醇-AANK-美登素-4或二肉豆蔻酰基磷脂酰乙醇胺(DMPE)-聚乙二醇-AANCRGDR-美登素-4。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述锚定的促细胞裂解基团选自含脂肪酸链的磷脂或其衍生物连接的基团、胆固醇或及其衍生物连接的基团;其中,被连接的基团选自蜂毒多肽前肽、溶血磷脂等。
本发明的基于巨噬细胞的活细胞载药系统中,进一步优选地,所述锚定的促细胞裂解基团为二肉豆蔻酰基磷脂酰乙醇胺(DMPE)或其衍生物连接的基团;其中,被连接的基团选自蜂毒多肽前肽、溶血磷脂等,优选为蜂毒多肽前肽,进一步优选为Legumain酶敏感的蜂毒多肽前肽、基质金属蛋白酶敏感的蜂毒多肽前肽、胶原酶等酶敏感的蜂毒多肽前肽。
本发明的基于巨噬细胞的活细胞载药系统中,优选地,所述连接是在指含脂肪酸链的磷脂或其衍生物与被连接基团之间,或者在胆固醇或及其衍生物与被连接基团之间通过选自如下的连接基团所连接:二硫键、腙键、酶可降解多肽、马来酰亚胺-巯基、硫醚等;连接基团优选为马来酰亚胺-巯基。
本发明的基于巨噬细胞的活细胞载药系统中,进一步优选地,所述锚定的促细胞裂解基团可为Legumain酶敏感的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽或基质金属蛋白酶敏感的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽。
根据另一个方面,本发明提供了所述基于巨噬细胞的活细胞载药系统的制备方法,其包括如下步骤:培养巨噬细胞,待巨噬细胞成熟后,更换新鲜培养基,并向培养基中加入待锚定的化疗药物和待锚定的促细胞裂解基团,共同孵育,制得基于巨噬细胞的活细胞载药系统。
具体地,所述基于巨噬细胞的活细胞载药系统的制备方法包括以下步骤:
(1)合成待锚定的化疗药物和待锚定的促细胞裂解基团;
(2)从小鼠骨髓中提取骨髓细胞,进行培养,培养时在培养基中加入重组小鼠巨噬细胞集落刺激因子和脂多糖LPS,或者加入重组小鼠巨噬细胞集落刺激因子和小鼠乳腺癌4T1细胞培养上清液,培养5-8天,分别诱导巨噬细胞极化为M1或M2型巨噬细胞;
(3)巨噬细胞成熟后,更换新鲜培养基,并向培养基中加入待锚定的化疗药物和待锚定的促细胞裂解基团,共同孵育,制得基于巨噬细胞的活细胞载药系统。
本发明的制备方法中,优选地,步骤(2)所述小鼠乳腺癌4T1细胞培养上清液可以是通过本领域技术人员熟知的培养小鼠乳腺癌4T1细胞得到的上清液。更优选地,步骤(2)所述小鼠乳腺癌4T1细胞培养上清液可以是通过将小鼠乳腺癌4T1细胞接种于培养板中,加入含10%胎牛血清的RPMI1640培养基,在5%CO2、37℃细胞培养箱培养24h后收集得到的上清液。例如,所述小鼠乳腺癌4T1细胞培养上清液可以是通过将小鼠乳腺癌4T1细胞5×107个接种于10mm培养板中,加入10mL含10%胎牛血清的RPMI1640培养基,在5%CO2、37℃细胞培养箱培养24h后收集得到的上清液。
本发明的制备方法中,优选地,步骤(2)所述培养基可为含胎牛血清的RPMI1640培养基,更优选含10%胎牛血清的RPMI1640培养基。
本发明的制备方法中,优选地,步骤(2)所述重组小鼠巨噬细胞集落刺激因子可以是M-CSF,用量可以是20ng/mL。
本发明的制备方法中,优选地,步骤(2)中加入的小鼠乳腺癌4T1细胞培养上清液在培养基中体积占比可为10-50%。
本发明的制备方法中,进一步优选地,步骤(2)中加入的小鼠乳腺癌4T1细胞培养上清液在培养基中体积占比可为20%。
本发明的制备方法中,优选地,步骤(2)中加入的脂多糖LPS在培养基中浓度可为10-50ng/mL。
本发明的制备方法中,进一步优选地,步骤(2)中加入的脂多糖LPS在培养基中浓度可为20ng/mL。
本发明中,所述的“锚定到巨噬细胞膜上”是指通过物理作用将“锚定的化疗药物”或“锚定的促细胞裂解基团”的脂质端插入到细胞膜上,而不是通过化学连接到细胞膜上。因此,本发明中,术语“锚定的化疗药物”与术语“待锚定的化疗药物”相同,以及术语“锚定的促细胞裂解基团”与术语“待锚定的促细胞裂解基团”相同。
根据另一个方面,本发明提供了一种上述基于巨噬细胞的活细胞载药系统的应用;具体包括所述基于巨噬细胞的活细胞载药系统在治疗乳腺癌转移中的应用;所述基于巨噬细胞的活细胞载药系统在制备治疗乳腺癌转移的药物中的应用。
在其中一个实施例中,所述的乳腺癌转移为乳腺癌的肺转移。
本发明采用乳腺癌细胞培养上清液体外诱导巨噬细胞,可以定向诱导分化为M2型巨噬细胞,并保持巨噬细胞的稳定性。
本发明采用脂多糖LPS体外诱导巨噬细胞,可以定向诱导分化为M1型巨噬细胞,并保持巨噬细胞的稳定性。
本发明采用二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化的美登素-4和酶敏感的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化的蜂毒多肽前肽,可以方便的锚定到巨噬细胞膜,并有效保持巨噬细胞的活性。
本发明所制备的基于巨噬细胞的活细胞载药系统,主动靶向至乳腺癌肺转移病灶部位,并在转移灶部位活化,引发巨噬细胞的死亡以及抗肿瘤药物响应性快速释放。
本发明所制备的基于巨噬细胞的活细胞载药系统,对于乳腺癌肺转移有很好的治疗效果。
附图说明
图1为巨噬细胞载药系统示意图。
图2为二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4的合成路线示意图。其中:(A)3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯-美登素-4的合成路线图;(B)二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4的合成路线图;(C)二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4的1H核磁谱图。
图3为3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯-美登素-4的低分辨质谱图。
图4为二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽的合成路线图。其中:(A)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽的合成路线图;(B)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽的1H核磁谱图。
图5为二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANK-美登素-4的合成路线图。其中:(A)AANK-DM4的合成路线图;(B)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANK-美登素-4的合成路线图;
图6为二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANCRGDR-美登素-4的合成路线图。其中:(A)AANCRGDR-s-s-吡啶的合成路线;(B)AANCRGDR-DM4的合成路线;(C)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANCRGDR-美登素-4的合成路线。
图7为M2型巨噬细胞表型的鉴定。
图8为激光共聚焦显微镜观察基于M2型巨噬细胞的活细胞载药系统在乳腺癌肺转移部位分布。
图9为基于M2型巨噬细胞的活细胞载药系统药效学研究。
图10为M1型巨噬细胞表型的鉴定。
图11为激光共聚焦显微镜观察基于M1型巨噬细胞的活细胞载药系统在乳腺癌肺转移部位分布。
具体实施方式
下列实施例旨在进一步举例描述本发明,而不是以任何方式限制本发明。
制备实施例1
本实施例通过体外诱导重组装巨噬细胞得到基于M2型巨噬细胞的活细胞载药系统。具体地,基于M2型巨噬细胞的活细胞载药系统的制备方法包括以下步骤:
(1)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4和二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽的合成
1)二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4的合成
二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4分两步进行合成:①3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯-美登素-4的合成路线见图2(A)。具体步骤如下:称取美登素-4(19.5mg,0.025mmol,购自苏州博瑞生物有限公司)溶解于1mL甲醇溶液中,称取3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯(SPDP,15.6mg,0.05mmol,购自Sigma公司)溶解于1mL无水甲醇中,将3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯溶液在搅拌状态下缓慢滴加至美登素-4溶液中,搅拌均匀,室温下反应过夜。将产物使用制备薄层板进一步提纯,展开剂为乙酸乙酯:二氯甲烷:甲醇(V:V:V=9:2:1),收集目标产物条带,用展开剂将产物冲洗在烧瓶中,旋蒸除去展开剂,真空干燥,得白色产物3-(2-吡啶二巯基)丙酸N-羟基琥珀酰亚胺酯-美登素-4(DM4-SPDP)。
称取少量DM4-SPDP,适量甲醇溶解后,通过低分辨质谱鉴定分子量,结果见图2(B)。
②二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-美登素-4的合成路线见图2(C)。称取DM4-SPDP(19.6mg,0.02mmol),二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-氨基(DMPE-PEG-NH2,50mg,0.0088mmol,购自美国Nanocs公司),二者溶解于2mL无水甲醇中,加入适量三乙胺,搅拌状态下,室温反应过夜。将反应液使用3500Da的透析袋,二甲基亚砜溶液透析,透析结束后,更换为去离子水透析除去二甲基亚砜。透析后产物冻干,将冻干后样品-20℃冰箱保存,备用。
称取5mg二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-美登素-4,溶解于500μL氘代二甲基亚砜,核磁共振谱仪鉴定其结构,结果见图2(C)。
2)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽的合成
二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽的合成路线图见图4(A)。具体步骤如下:称取二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-马来酰亚胺(DMPE-PEG-Mal,50mg,0.0088mmol,购自美国Nanocs公司),蜂毒多肽前肽(50mg,0.0135mmol,购自吉尔生化有限公司),二者溶解于5mL无水甲醇中,加入三乙胺(10mg,0.1mmol,购自Sigma公司),搅拌状态下,室温反应过夜。随后将反应液放入分子量为7000Da的透析袋透析24h,冷冻干燥,得白色固体即为二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽,-20℃保存待用。
称取5mg二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽,溶解于500μL氘代氯仿,核磁共振谱仪鉴定其结构,结果见图4(B)。
(2)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANK-美登素-4的合成
二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANK-美登素-4的合成分两步进行合成,合成路线见图5。具体步骤如下:称取美登素-4(19.5mg,0.025mmol,购自苏州博瑞生物有限公司)溶解于1mL二甲基亚砜溶液中,称取多肽AANK(9.2mg,0.0167mmol,购自吉尔生化有限公司)溶解于1mL二甲基亚砜中,将AANK溶液在搅拌状态下缓慢滴加至美登素-4溶液中,搅拌均匀,滴加三乙胺(10mg,0.1mmol,购自Sigma公司),室温下反应24h。将产物制备液相纯化分离,旋蒸除去有机溶剂,真空干燥,得白色产物AANK-DM4。
称取AANK-DM4(26.6mg,0.02mmol),二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-马来酰亚胺(DMPE-PEG-Mal,25mg,0.0044mmol,购自美国Nanocs公司),二者溶解于2mL二甲基亚砜中,加入三乙胺(10mg,0.1mmol,购自Sigma公司),搅拌状态下,室温反应过夜。将反应液使用3500Da的透析袋,二甲基亚砜溶液透析,透析结束后,更换为去离子水透析除去二甲基亚砜。透析后产物冻干,将冻干后样品-20℃冰箱保存,备用。
(3)二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANCRGDR-美登素-4的合成
二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANCRGDR-美登素-4的合成分三步进行合成,合成路线见图6。具体步骤如下:称取2,2'-二硫二吡啶(55mg,0.025mmol,购自Sigma公司)溶解于1mL甲醇溶液中,称取多肽AANCRGDR(37.5mg,0.025mmol,购自吉尔生化有限公司)溶解于1mL甲醇中,将AANCRGDR溶液在搅拌状态下缓慢滴加至美登素-4溶液中,搅拌均匀,室温下反应24h。将产物制备液相纯化分离,旋蒸除去有机溶剂,真空干燥,得白色产物AANCRGDR-s-s-吡啶。
称取AANCRGDR-s-s-Pyridine吡啶(32.2mg,0.02mmol),美登素-4(10.4mg,0.0133mmol,购自苏州博瑞生物有限公司),二者溶解于2mL甲醇中,搅拌状态下,室温反应24h。将产物制备液相纯化分离,旋蒸除去有机溶剂,真空干燥,得白色产物AANCRGDR-DM4。
称取AANCRGDR-DM4(20.0mg,0.0088mmol),DMPE-PEG-NHS(12.5mg,0.0022mmol,购自美国Nanocs公司),二者溶解于2mL二甲基亚砜中,加入三乙胺(10mg,0.1mmol,购自Sigma公司),搅拌状态下,室温反应24h。将反应液使用3500Da的透析袋,二甲基亚砜溶液透析,透析结束后,更换为去离子水透析除去二甲基亚砜。透析后产物冻干,将冻干后样品-20℃冰箱保存,备用。
(4)小鼠骨髓来源巨噬细胞的分离与纯化
1)取小鼠骨髓细胞(Balb/c-nu裸鼠(购自中国科学院上海实验动物中心)),用含10%胎牛血清(Gibco)的RPMI 1640(Gibco)培养基培养。同时加入重组小鼠巨噬细胞集落刺激因子(M-CSF,购自Sigma公司,终浓度为20ng/mL)和4T1细胞培养上清液(小鼠乳腺癌4T1细胞培养24h后培养上清液,该上清液加入的体积占比为20%)于培养基中,置于低粘附板(购自Corning公司),37℃、5%CO2培养5天,得贴壁细胞。
2)更换M2型巨噬细胞培养基,并在培养基中加入二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺(DMPE)-聚乙二醇化美登素-4(在培养基中终浓度1mg/mL)和二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽(在培养基中终浓度0.4mg/mL),37℃孵育2h,得到基于M2型巨噬细胞的活细胞载药系统。
(5)M2巨噬细胞表型鉴定
将步骤(4)得到的基于M2型巨噬细胞的活细胞载药系统用荧光标记的抗体标记,荧光标记的抗体分别为PE anti-mouse/human CD11b(PE抗小鼠/人CD11b)、FITC anti-mouseF4/80(FITC抗小鼠F4/80)、PE anti-mouse/human CD206(PE抗小鼠/人CD206)(上述荧光标记的抗体均购自Biolegend公司,USA),同时取步骤(4)得到的基于M2型巨噬细胞的活细胞载药系统,不加上述抗体孵育,作为对照组。样本采用FACS Calibur流式细胞仪(购自BD Biosciences公司,USA)进行分析,结果见图7。
以下试验实施例1-2中所用基于M2型巨噬细胞的活细胞载药系统为本制备实施例1所制备得到。
试验实施例1
将生长状态良好的GFP-4T1细胞(购自美国PerkinElmer公司)培养到对数生长期,用胰酶消化完全,使用细胞计数器计数。用PBS缓冲液洗涤细胞2次,用PBS缓冲液重悬细胞,并调节细胞数量,制备成细胞密度为2×106个/mL的细胞悬液。取4-6周龄的Balb/c-nu裸鼠(18-20g,购自中国科学院上海实验动物中心),通过尾静脉接种4T1细胞,接种量为2×105个细胞/只。接种GFP-4T1细胞的裸鼠(即荷GFP-4T1肺转移肿瘤模型鼠)继续培养10天后备用。
取M2型巨噬细胞的活细胞载药系统,向培养基中加入近红外染料DiR(购自大连美仑生物科技有限公司),使DiR在培养基中终浓度为100μg/mL,在37℃,5%CO2培养箱中培养2h。标记结束后,使用PBS缓冲液洗去游离DiR染料,即得红外染料DiR标记的基于M2型巨噬细胞的活细胞载药系。
取接种好的荷GFP-4T1肺转移肿瘤模型鼠,尾静脉注射近红外染料DiR标记的基于M2型巨噬细胞的活细胞载药系统,6h后,CO2窒息处死小鼠,解剖将肺冰冻切片后,DAPI标记细胞核,置于激光共聚焦扫描显微镜下观察、拍照,结果见图8(从左至右依次为DAPI标记的细胞核、GFP-4T1细胞、M2型巨噬细胞载药系统及左1至左3的叠加图)。
试验实施例2
将生长状态良好的4T1细胞(购自中国科学院上海细胞库)培养到对数生长期,用胰酶消化完全,使用细胞计数器计数。用PBS缓冲液洗涤细胞2次,用PBS缓冲液重悬细胞,并调节细胞数量,制备成细胞密度为2×106个/mL的细胞悬液。取4-6周龄的Balb/c-nu裸鼠(18-20g),通过尾静脉接种4T1细胞,接种量为2×105个细胞/只。
将接种好肿瘤的尾静脉肺转移鼠随机分成7组,每组6只,分别为生理盐水组、巨噬细胞组、蜂毒多肽前肽组、DM4组、单载DM4巨噬细胞组、单载蜂毒多肽前肽巨噬细胞组和M2型巨噬细胞载药系统组。分别在种瘤后12h与种瘤后8d,通过尾静脉注射给药;具体地,巨噬细胞组给药巨噬细胞10μg/只,蜂毒多肽前肽组给药蜂毒多肽前肽给15.5μg/只,DM4组给药DM410μg/只,单载DM4巨噬细胞组给药单载DM4的巨噬细胞(通过高效液相法确定5×106个巨噬细胞中DM4载药量为10μg),单载蜂毒多肽前肽巨噬细胞组给药单载蜂毒多肽前肽巨噬细胞15.5μg/只,M2型巨噬细胞载药系统组给药基于M2型巨噬细胞的活细胞载药系统10μg/只,生理盐水组给药生理盐水0.2mL/只。
接种4T1细胞14天后,CO2窒息处死各组小鼠,取出肺组织,在PBS缓冲液中洗去游离血迹,统计各给药组中肉眼可见肺转移灶数量,结果见图9。
制备实施例2
本实施例通过体外诱导巨噬细胞得到基于M1型巨噬细胞的活细胞载药系统。具体地,基于M1型巨噬细胞的活细胞载药系统的制备方法包括以下步骤:(1)小鼠骨髓来源巨噬细胞的分离与纯化
1)取小鼠骨髓细胞(Balb/c-nu裸鼠(购自中国科学院上海实验动物中心)),用含10%胎牛血清(Gibco)的RPMI 1640(Gibco)培养基培养。加入重组小鼠巨噬细胞集落刺激因子(M-CSF,购自Sigma公司,终浓度为20ng/mL)和LPS(20ng/mL)于培养基中,置于低粘附板(购自Corning公司),37℃、5%CO2培养5天,得贴壁细胞。
2)更换M1型巨噬细胞培养基,并在培养基中加入二肉豆蔻酰基磷脂酰乙醇胺(DMPE)-聚乙二醇化美登素-4(在培养基中终浓度1mg/mL)和二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽(在培养基中终浓度0.4mg/mL),37℃孵育2h,得到基于M1型巨噬细胞的活细胞载药系统。
(2)M1型巨噬细胞表型鉴定
将步骤(1)得到的基于M1型巨噬细胞的活细胞载药系统用荧光标记的抗体标记PEanti-mouse/human CD11b(PE抗小鼠/人CD11b)、FITC anti-mouseF4/80(FITC抗小鼠F4/80)、PE anti-mouse/human CD86(PE抗小鼠/人CD206)(上述荧光标记的抗体均购自Biolegend公司,USA),同时取步骤(1)得到的基于M1型巨噬细胞的活细胞载药系统,不加上述抗体孵育,作为对照组。样本采用FACS Calibur流式细胞仪(购自BD Biosciences公司,USA)进行分析,结果见图10。
以下试验实施例3中所用基于M1型巨噬细胞的活细胞载药系统为本制备实施例2所制备得到。
试验实施例3
按照试验实施例1的方法建造荷GFP-4T1肺转移肿瘤模型鼠。
取基于M1型巨噬细胞的活细胞载药系统,向培养基中加入近红外染料DiR(购自大连美仑生物科技有限公司),使DiR在培养基中终浓度为100μg/mL,在37℃,5%CO2培养箱中培养2h。标记结束后,使用PBS缓冲液洗去游离DiR染料,即得红外染料DiR标记的基于M1型巨噬细胞的活细胞载药系。
取接种好的荷GFP-4T1肺转移肿瘤模型鼠,尾静脉注射近红外染料DiR标记的M1型巨噬细胞,6h后,CO2窒息处死小鼠,解剖将肺冰冻切片后,DAPI标记细胞核,置于激光共聚焦扫描显微镜下观察、拍照,结果见图11(从左至右依次为DAPI标记的细胞核、GFP-4T1细胞、M1型巨噬细胞载药系统及左1至左3的叠加图)。

Claims (15)

1.一种基于巨噬细胞的活细胞载药系统,其特征在于:包含巨噬细胞、锚定的化疗药物和锚定的促细胞裂解基团,其中,所述锚定的化疗药物和所述锚定的促细胞裂解基团均包含磷脂部分,所述锚定的化疗药物的磷脂部分和所述锚定的促细胞裂解基团的磷脂部分分别锚定到巨噬细胞膜上,
其中,所述的锚定的化疗药物选自二肉豆蔻酰基磷脂酰乙醇胺连接的化疗药物,
所述锚定的促细胞裂解基团为二肉豆蔻酰基磷脂酰乙醇胺连接的Legumain酶敏感的蜂毒多肽前肽。
2.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:所述巨噬细胞为M1型或M2型巨噬细胞。
3.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:所述巨噬细胞为M1型或M2型小鼠骨髓来源巨噬细胞。
4.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:被连接的化疗药物选自美登素及其衍生物DM4、海兔毒素、倍癌霉素和卡奇霉素。
5.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:对于所述二肉豆蔻酰基磷脂酰乙醇胺连接的化疗药物,所述的连接是在指含脂肪酸链的磷脂与化疗药物之间通过选自如下的连接基团所连接:二硫键、腙键、酶可降解多肽、马来酰亚胺-巯基、硫醚。
6.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:所述锚定的化疗药物为二硫键连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4或酶可降解多肽连接的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化美登素-4。
7.根据权利要求6所述的基于巨噬细胞的活细胞载药系统,其特征在于:所述的酶可降解多肽选自组织蛋白酶B底物多肽GFLG、组织蛋白酶S底物多肽GGRK、基质金属蛋白酶GPLGLK、Legumain酶底物多肽AANK和AANCRGDR。
8.根据权利要求7所述的基于巨噬细胞的活细胞载药系统,其特征在于:所述锚定的化疗药物为二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANK-美登素-4或二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇-AANCRGDR-美登素-4。
9.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:对于所述二肉豆蔻酰基磷脂酰乙醇胺连接的Legumain酶敏感的蜂毒多肽前肽,所述连接是指在含脂肪酸链的磷脂与被连接基团之间通过选自如下的连接基团所连接:二硫键、腙键、酶可降解多肽、马来酰亚胺-巯基、硫醚。
10.根据权利要求1所述的基于巨噬细胞的活细胞载药系统,其特征在于:所述锚定的促细胞裂解基团为Legumain酶敏感的二肉豆蔻酰基磷脂酰乙醇胺-聚乙二醇化蜂毒多肽前肽。
11.权利要求1-10中任一项所述基于巨噬细胞的活细胞载药系统的制备方法,其包括如下步骤:培养巨噬细胞,待巨噬细胞成熟后,更换新鲜培养基,并向培养基中加入待锚定的化疗药物和待锚定的促细胞裂解基团,共同孵育,制得基于巨噬细胞的活细胞载药系统。
12.根据权利要求11所述的制备方法,其特征在于,包括以下步骤:
(1)合成待锚定的化疗药物和待锚定的促细胞裂解基团;
(2)从小鼠骨髓中提取骨髓细胞,进行培养,培养时在培养基中加入重组小鼠巨噬细胞集落刺激因子和脂多糖LPS,或者加入重组小鼠巨噬细胞集落刺激因子和小鼠乳腺癌4T1细胞培养上清液,培养5-8天,分别诱导巨噬细胞极化为M1或M2型巨噬细胞;
(3)巨噬细胞成熟后,更换新鲜培养基,并向培养基中加入待锚定的化疗药物和待锚定的促细胞裂解基团,共同孵育,制得基于巨噬细胞的活细胞载药系统。
13.根据权利要求12所述的制备方法,其特征在于,
步骤(2)所述培养基为含胎牛血清的RPMI 1640培养基;
步骤(2)所述重组小鼠巨噬细胞集落刺激因子为M-CSF;
步骤(2)中加入的小鼠乳腺癌4T1细胞培养上清液在培养基中体积占比为10-50%;
步骤(2)中加入的脂多糖LPS在培养基中浓度为10-50ng/mL。
14.权利要求1-10中任一项所述基于巨噬细胞的活细胞载药系统在制备治疗乳腺癌转移的药物中的应用。
15.根据权利要求14所述的应用,其中,所述的乳腺癌转移为乳腺癌的肺转移。
CN201810491392.4A 2018-05-21 2018-05-21 一种基于巨噬细胞的活细胞载药系统、其制备方法和应用 Active CN110507826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810491392.4A CN110507826B (zh) 2018-05-21 2018-05-21 一种基于巨噬细胞的活细胞载药系统、其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810491392.4A CN110507826B (zh) 2018-05-21 2018-05-21 一种基于巨噬细胞的活细胞载药系统、其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110507826A CN110507826A (zh) 2019-11-29
CN110507826B true CN110507826B (zh) 2021-10-01

Family

ID=68621882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810491392.4A Active CN110507826B (zh) 2018-05-21 2018-05-21 一种基于巨噬细胞的活细胞载药系统、其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110507826B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112029725B (zh) * 2020-09-21 2022-02-15 山东大学 一种利用压电效应促进巨噬细胞向m1型极化的方法及应用
CN112807289B (zh) * 2021-02-09 2022-12-06 中国医学科学院生物医学工程研究所 基于纳米颗粒的活细胞表面改造方法及其使用的纳米颗粒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124632A1 (en) * 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Amphiphilic compound assisted nanoparticles for targeted delivery
KR20110002443A (ko) * 2009-07-01 2011-01-07 주식회사이언메딕스 포유류의 유핵세포에서 유래된 마이크로베시클 및 이의 용도
CN106421810A (zh) * 2016-09-26 2017-02-22 武汉大学 一种肿瘤靶向细胞药物载体及其应用
CN106924748A (zh) * 2017-03-23 2017-07-07 南京鼓楼医院 高穿透性肿瘤靶向脂质插件的构建及其促进细胞及细胞膜制剂向肿瘤聚集的作用
CN107961229A (zh) * 2017-11-22 2018-04-27 西南大学 靶向动脉粥样硬化病灶的细胞膜仿生递药系统的制备方法及其产品和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257466A1 (en) * 2005-04-06 2006-11-16 Kim Perry M Administration of macrophage targeted formulations of compounds which modulate cholesterol-metabolizing enzymes for treatment of atherosclerosis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124632A1 (en) * 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Amphiphilic compound assisted nanoparticles for targeted delivery
KR20110002443A (ko) * 2009-07-01 2011-01-07 주식회사이언메딕스 포유류의 유핵세포에서 유래된 마이크로베시클 및 이의 용도
CN106421810A (zh) * 2016-09-26 2017-02-22 武汉大学 一种肿瘤靶向细胞药物载体及其应用
CN106924748A (zh) * 2017-03-23 2017-07-07 南京鼓楼医院 高穿透性肿瘤靶向脂质插件的构建及其促进细胞及细胞膜制剂向肿瘤聚集的作用
CN107961229A (zh) * 2017-11-22 2018-04-27 西南大学 靶向动脉粥样硬化病灶的细胞膜仿生递药系统的制备方法及其产品和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Bioengineered Macrophages Can Responsively Transform into Nanovesicles To Target Lung Metastasis";Haiqiang Cao et al.;《NANO LETTERS》;20180720;第18卷;第4762-4770页 *
"Inflammatory Monocytes Loading Protease-Sensitive Nanoparticles Enable Lung Metastasis Targeting and Intelligent Drug Release for Anti-Metastasis Therapy";Xinyu He et al.;《NANO LETTERS》;20170731;第17卷;第5546-5554页 *
"Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer";Haiqiang Cao et al.;《ACS Nano》;20160725;第10卷;第7738-7748页 *

Also Published As

Publication number Publication date
CN110507826A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
Vandergriff et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide
KR101416290B1 (ko) 생물 직교성 무동 클릭 화학을 통한 나노입자의 생체내 표적화 방법
JP6880073B2 (ja) マルチアーム重合標的抗がんコンジュゲート
JP2002512640A (ja) 持続性治療薬の局所送達
CN110507826B (zh) 一种基于巨噬细胞的活细胞载药系统、其制备方法和应用
KR102279429B1 (ko) 멀티 암 표적 항암 콘쥬게이트
WO2021179843A1 (zh) 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用
JP2022544481A (ja) ポリペプチドまたはその誘導体の応用
CN108178783B (zh) 肿瘤血管及m1型巨噬细胞靶向肽及其用途
RU2451509C1 (ru) Противоопухолевый препарат
CN108727583B (zh) 多臂靶向抗癌偶联物
CN110760478A (zh) 一种抗肿瘤巨噬细胞生物反应器系统及其制备方法
CN111087465B (zh) 一种针对密蛋白6的抗体偶联药物及应用
CN1861193A (zh) 肾靶向前体药物、制剂及其制备方法与应用
CN102471371B (zh) 用于肿瘤血管系统的归巢肽
CN114788875B (zh) 一种激活Hippo通路的超分子纳米药物及其制备方法与应用
CN111001006A (zh) 葫芦素b和氧化响应抗肿瘤前药共载仿生纳米粒
WO2019096095A1 (zh) 整合素受体靶向的抗癌偶联物
CN115350282A (zh) 靶向肝癌的载药外泌体、快速制备方法及其应用
CN109776787B (zh) 多臂靶向偶联物
WO2018137658A1 (zh) CP-iRGD多肽、iDPP纳米粒、载药复合物及其制备方法和应用
CN111494641B (zh) 肿瘤微环境响应性的表面电荷可反转纳米药物递送载体
CN117205152B (zh) 一种药物载体,其制备方法及其在疾病治疗中的应用
CN109762042B (zh) 一种治疗癌症的药物、其合成方法和应用
WO2015186785A1 (ja) 生体内のアシル化機能と置き換えられる人工触媒システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant