WO2021179843A1 - 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 - Google Patents
基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 Download PDFInfo
- Publication number
- WO2021179843A1 WO2021179843A1 PCT/CN2021/074571 CN2021074571W WO2021179843A1 WO 2021179843 A1 WO2021179843 A1 WO 2021179843A1 CN 2021074571 W CN2021074571 W CN 2021074571W WO 2021179843 A1 WO2021179843 A1 WO 2021179843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cross
- cpg
- biodegradable polymer
- apoe
- segment
- Prior art date
Links
- 229920002988 biodegradable polymer Polymers 0.000 title claims abstract description 42
- 239000004621 biodegradable polymer Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 32
- 239000002671 adjuvant Substances 0.000 title claims abstract description 31
- 230000000259 anti-tumor effect Effects 0.000 title claims abstract description 28
- 239000003814 drug Substances 0.000 claims abstract description 107
- 229940079593 drug Drugs 0.000 claims abstract description 103
- 229920000642 polymer Polymers 0.000 claims abstract description 61
- 239000012528 membrane Substances 0.000 claims abstract description 30
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 21
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 15
- 230000028993 immune response Effects 0.000 claims abstract description 15
- 238000001338 self-assembly Methods 0.000 claims abstract description 8
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 6
- 239000004417 polycarbonate Substances 0.000 claims abstract description 6
- 229920000728 polyester Polymers 0.000 claims abstract description 6
- 230000008685 targeting Effects 0.000 claims description 64
- 102000013918 Apolipoproteins E Human genes 0.000 claims description 54
- 108010025628 Apolipoproteins E Proteins 0.000 claims description 54
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 claims description 44
- 229920001223 polyethylene glycol Polymers 0.000 claims description 31
- 239000002202 Polyethylene glycol Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 27
- 229920002873 Polyethylenimine Polymers 0.000 claims description 23
- 229940063675 spermine Drugs 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 14
- 230000003213 activating effect Effects 0.000 claims description 11
- 239000000178 monomer Substances 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- 230000002441 reversible effect Effects 0.000 claims description 10
- 229920001184 polypeptide Polymers 0.000 claims description 9
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 9
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 9
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 239000002246 antineoplastic agent Substances 0.000 claims description 7
- 229940041181 antineoplastic drug Drugs 0.000 claims description 7
- -1 cyclic ester Chemical class 0.000 claims description 7
- 125000005647 linker group Chemical group 0.000 claims description 5
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 claims description 4
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 3
- 125000005587 carbonate group Chemical group 0.000 claims description 3
- 238000011068 loading method Methods 0.000 abstract description 39
- 206010028980 Neoplasm Diseases 0.000 abstract description 29
- 238000004132 cross linking Methods 0.000 abstract description 7
- 201000011510 cancer Diseases 0.000 abstract description 4
- IMLSAISZLJGWPP-UHFFFAOYSA-N 1,3-dithiolane Chemical compound C1CSCS1 IMLSAISZLJGWPP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003963 antioxidant agent Substances 0.000 abstract description 3
- 230000003078 antioxidant effect Effects 0.000 abstract description 3
- 235000006708 antioxidants Nutrition 0.000 abstract description 3
- 235000019136 lipoic acid Nutrition 0.000 abstract description 3
- 229960002663 thioctic acid Drugs 0.000 abstract description 3
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 abstract 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 abstract 1
- 229920006237 degradable polymer Polymers 0.000 abstract 1
- 230000009881 electrostatic interaction Effects 0.000 abstract 1
- 229940046168 CpG oligodeoxynucleotide Drugs 0.000 description 145
- 241000699670 Mus sp. Species 0.000 description 47
- 210000004027 cell Anatomy 0.000 description 31
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 26
- 238000011065 in-situ storage Methods 0.000 description 26
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 24
- 210000003462 vein Anatomy 0.000 description 24
- 238000005538 encapsulation Methods 0.000 description 22
- 230000004083 survival effect Effects 0.000 description 22
- 238000010172 mouse model Methods 0.000 description 21
- 230000001225 therapeutic effect Effects 0.000 description 19
- 239000002245 particle Substances 0.000 description 18
- 206010018338 Glioma Diseases 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 16
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 15
- 239000007995 HEPES buffer Substances 0.000 description 15
- 230000008499 blood brain barrier function Effects 0.000 description 15
- 210000001218 blood-brain barrier Anatomy 0.000 description 15
- 208000032612 Glial tumor Diseases 0.000 description 14
- 241001529936 Murinae Species 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000011081 inoculation Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 201000007983 brain glioma Diseases 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000002255 vaccination Methods 0.000 description 8
- 230000004580 weight loss Effects 0.000 description 8
- 229920006037 cross link polymer Polymers 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 238000007917 intracranial administration Methods 0.000 description 7
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 7
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 6
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 102000001398 Granzyme Human genes 0.000 description 6
- 108060005986 Granzyme Proteins 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 210000002865 immune cell Anatomy 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 210000001165 lymph node Anatomy 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 210000003928 nasal cavity Anatomy 0.000 description 5
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 5
- 238000001959 radiotherapy Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 4
- 102100022297 Integrin alpha-X Human genes 0.000 description 4
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000009169 immunotherapy Methods 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- VQWNELVFHZRFIB-UHFFFAOYSA-N odn 1826 Chemical compound O=C1NC(=O)C(C)=CN1C(O1)CC(O)C1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C3=NC=NC(N)=C3N=C2)OC1COP(O)(=O)OC1CC(N2C3=C(C(NC(N)=N3)=O)N=C2)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(N=C(N)C=C2)=O)OC1COP(O)(=O)OC1CC(N2C(NC(=O)C(C)=C2)=O)OC1COP(O)(=O)OC(C(O1)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(O)=O)CC1N1C=C(C)C(=O)NC1=O VQWNELVFHZRFIB-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000007142 ring opening reaction Methods 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 206010048962 Brain oedema Diseases 0.000 description 3
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 208000006752 brain edema Diseases 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 208000005017 glioblastoma Diseases 0.000 description 3
- 230000007688 immunotoxicity Effects 0.000 description 3
- 231100000386 immunotoxicity Toxicity 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 230000002601 intratumoral effect Effects 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- UIRLPEMNFBJPIT-UHFFFAOYSA-N odn 2395 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(O)=O)C(OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)C1 UIRLPEMNFBJPIT-UHFFFAOYSA-N 0.000 description 3
- KDWFDOFTPHDNJL-TUBOTVQJSA-N odn-2006 Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=S)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=S)O[C@H]2[C@H]([C@@H](O[C@@H]2COP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(S)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(N=C(N)C=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C(N=C(N)C=C2)=O)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C3=C(C(NC(N)=N3)=O)N=C2)O)N2C(N=C(N)C=C2)=O)O)[C@@H](O)C1 KDWFDOFTPHDNJL-TUBOTVQJSA-N 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- VSTXCZGEEVFJES-UHFFFAOYSA-N 1-cycloundecyl-1,5-diazacycloundec-5-ene Chemical compound C1CCCCCC(CCCC1)N1CCCCCC=NCCC1 VSTXCZGEEVFJES-UHFFFAOYSA-N 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 2
- 101001051093 Homo sapiens Low-density lipoprotein receptor Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100022338 Integrin alpha-M Human genes 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- VSWDORGPIHIGNW-UHFFFAOYSA-N Pyrrolidine dithiocarbamic acid Chemical compound SC(=S)N1CCCC1 VSWDORGPIHIGNW-UHFFFAOYSA-N 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000013553 cell monolayer Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- ASMQGLCHMVWBQR-UHFFFAOYSA-M diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1 ASMQGLCHMVWBQR-UHFFFAOYSA-M 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 101100438060 Arabidopsis thaliana TZF6 gene Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 238000006957 Michael reaction Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000001348 anti-glioma Effects 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229920000359 diblock copolymer Polymers 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 229960001008 heparin sodium Drugs 0.000 description 1
- 208000029824 high grade glioma Diseases 0.000 description 1
- 239000012651 immune agonist Substances 0.000 description 1
- 229940044680 immune agonist Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 201000011614 malignant glioma Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1273—Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/64—Polyesters containing both carboxylic ester groups and carbonate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/688—Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
- C08G63/6882—Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
- C08G64/0225—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
- C08G64/025—Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/18—Block or graft polymers
- C08G64/183—Block or graft polymers containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/305—General preparatory processes using carbonates and alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/334—Polymers modified by chemical after-treatment with organic compounds containing sulfur
- C08G65/3344—Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55561—CpG containing adjuvants; Oligonucleotide containing adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6093—Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/80—Vaccine for a specifically defined cancer
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2230/00—Compositions for preparing biodegradable polymers
Definitions
- the invention belongs to drug carrier technology, and specifically relates to a preparation method and application of an anti-tumor nano-medicine based on cross-linked biodegradable polymer vesicles.
- Glioblastoma is a malignant brain cancer with high recurrence, high metastasis rate and poor prognosis.
- standard clinical treatment usually includes surgical resection combined with chemotherapy and/or radiotherapy, but the therapeutic effect is not always satisfactory.
- tumor immunotherapy has attracted widespread attention; however, due to the existence of the blood-brain barrier (BBB), the immune adjuvant CpG cannot directly enter GBM.
- BBB blood-brain barrier
- the rapid degradation of CpG in the body and the immunotoxicity caused by high doses also limit its immunotherapy mainly through intratumoral/intracranial administration.
- intracranial administration is usually accompanied by cerebral edema, inflammation and related toxic side effects caused by the rapid spread of immune agonists into the blood.
- the existing vesicle technology has low loading efficiency for CpG; at the same time, there are problems such as unstable circulation in the vesicles, low tumor cell uptake, and low intracellular drug concentration, which leads to the low efficacy of nanomedicine and toxic side effects. These have greatly restricted the application of vesicles as carriers for such drugs.
- the purpose of the invention is to disclose a preparation method and application of an anti-tumor nano vaccine or nano adjuvant based on cross-linked biodegradable polymer vesicles.
- the drug is obtained; the drug is an oligonucleotide capable of activating an immune response; the reversibly cross-linked biodegradable polymer vesicle with an asymmetric membrane structure is obtained by self-assembly of the polymer, or the drug has an asymmetric membrane structure
- the reversibly cross-linked biodegradable polymer vesicles are obtained by self-assembly of a polymer and a targeting polymer; the polymer includes a hydrophilic segment, a hydrophobic segment and a positively charged molecule; the targeting polymer includes Targeting molecules, hydrophilic segments and hydrophobic segments; the hydrophobic segments are polycarbonate segments and/or
- the invention also discloses the application of the reversibly cross-linked biodegradable polymer vesicle with an asymmetric membrane structure as an oligonucleotide carrier capable of activating the immune response or the application in the preparation of an oligonucleotide carrier capable of activating the immune response
- the reversibly cross-linked biodegradable polymer vesicles with an asymmetric membrane structure are obtained after self-assembly of polymers or the reversible cross-linked biodegradable polymer vesicles with an asymmetric membrane structure are composed of a polymer and a target It is obtained after self-assembly into a polymer; the polymer includes a hydrophilic segment, a hydrophobic segment, and a positively charged molecule; the targeting polymer includes a targeting molecule, a hydrophilic segment, and a hydrophobic segment; the hydrophobic
- the segments are polycarbonate segments and/or polyester segments.
- the hydrophilic segment is polyethylene glycol; the hydrophobic segment contains disulfide five-membered ring carbonate units; the positively charged molecules include spermine and polyethyleneimine; the molecular weight of the hydrophobic segment is the hydrophilic segment 1.5 to 5 times the molecular weight, the molecular weight of the positively charged molecule is 2% to 40% of the molecular weight of the hydrophilic segment, preferably, the molecular weight of the hydrophobic segment is 2 to 4 times the molecular weight of the hydrophilic segment; positively charged molecules The molecular weight of the hydrophilic segment is 2.7% to 24%.
- the hydrophilic segment is polyethylene glycol ( M n 5000-7500 Da); the positively charged molecules are spermine (spermine, M n 202) and polyethyleneimine (PEI, M w 1200).
- the chemical structural formula of the polymer is as follows: .
- the chemical structural formula of the targeting polymer is as follows: .
- R 1 is a hydrophilic segment end group
- R 2 is a positively charged molecule
- R is a targeting molecule
- R 1 is a targeting molecule linking group
- R 2 is an ester unit or a carbonate unit, that is, a cyclic ester unit Body or unit after ring opening of cyclic carbonate monomer.
- the molecular weight of PEG is 5000-7500 Da; the total molecular weight of R 2 segment is 2.5-4 times the molecular weight of PEG; the total molecular weight of PDTC is 10%-30% of the total molecular weight of R 2 segment; the molecular weight of PEI is the molecular weight of PEG The molecular weight of spermine is 2.7%-4% of the molecular weight of PEG.
- the disulfide five-membered ring unit is obtained by ring opening of a cyclic carbonate monomer (DTC) containing a disulfide five-membered ring functional group.
- DTC cyclic carbonate monomer
- the chemical structural formula of the polymer of the present invention is as follows: .
- the chemical structural formula of the targeting polymer is as follows: .
- the molecular weight of PEG is 5000-7500 Da; the total molecular weight of PTMC is 2.5-4 times the molecular weight of PEG; the total molecular weight of PDTC is 10%-30% of the total molecular weight of PTMC; the molecular weight of PEI is 7%- 24%; the molecular weight of spermine is 2.7%-4% of the molecular weight of PEG.
- the oligonucleotide that can activate the immune response is a CpG drug, such as CpG ODN 1826, CpG ODN2395, CpG ODN 2006, etc., the specific sequence is the prior art.
- the use of small molecular spermine with good biocompatibility and low molecular weight branched PEI (PEI1.2k) as a carrier has low toxicity, and combines the PEG segment and the hydrophobic segment to form a good drug Encapsulation effect, even when the drug content is as high as 15 wt. %, the vesicle can still completely encapsulate the drug; at the same time, the polymer of the present invention avoids the instability and positive charge caused by the existing PEI combined with the drug through physical winding.
- the drug is bound by electrostatic force, and then separated from the outside by the cross-linked vesicle membrane to avoid loss and toxic side effects caused by cell adhesion during the transportation process, and by modifying specific targets Molecules can efficiently migrate to the lesion.
- the biodegradable polymer vesicles with an asymmetric membrane structure, reduction-sensitive reversible cross-linking, and intracellular cross-linking are designed in the present invention.
- the outer surface of the vesicle membrane is made of non-adhesive polyethylene glycol ( PEG) and preferably surface-modified targeting molecule ApoE polypeptide
- the inner surface of the vesicle membrane is made of small molecular spermine with good biocompatibility or low molecular weight branched PEI (PEI1.2k) composition, used to efficiently load the oligonucleotide CpG that can activate the immune response;
- the cross-linked vesicle membrane can protect the drug from being degraded and leaking, and it can circulate in the body for a long time.
- the nano size of the vesicle And the tumor-specific targeting molecules on the surface allow the vesicles to deliver drugs into tumor cells through the vein or nasal vein.
- the R 2 segment of the mid-block and DTC are randomly arranged; the molecular weight of spermine and PEI is less than the molecular weight of PEG, and after self-assembly and cross-linking, a cross-linked structure with an asymmetric membrane structure is obtained.
- the inner shell of the vesicle membrane is positively charged spermine or PEI for compound drug CpG; the vesicle membrane is reversibly cross-linked, biodegradable and biocompatible P(R 2 -DTC), the side chain of dithiolane is similar to the human body's natural antioxidant lipoic acid, which can provide reduction-sensitive reversible crosslinks and support the long circulation of biological drugs in the blood.
- the invention also discloses a preparation method of the above-mentioned anti-tumor nano adjuvant based on cross-linked biodegradable polymer vesicles.
- the targeting molecule is ApoE polypeptide (sequence: LRKLRKRLLLRKLRKRLLC); through MeO-PEG-P(R 2 -DTC)-SP or PEG-P(R 2 -DTC)-PEI1.2k and coupled with tumor active Targeting molecule diblock polymers such as ApoE-PEG-P (R 2 -DTC) are mixed, co-self-assembled, loaded with drugs, and cross-linked to obtain an anti-tumor drug with an asymmetric membrane structure that actively targets tumors.
- ApoE polypeptide sequence: LRKLRKRLLLRKLRKRLLC
- tumor active Targeting molecule diblock polymers such as ApoE-PEG-P (R 2 -DTC) are mixed, co-self-assembled, loaded with drugs, and cross-linked to obtain an anti-tumor drug
- the present invention discloses the application of the above-mentioned anti-tumor nano vaccine based on cross-linked biodegradable polymer vesicles in the preparation of anti-tumor drugs, preferably in the preparation of anti-glioma drugs.
- the method of administration is one of the key factors in the treatment of tumors. This is common knowledge, especially for brain tumors, which are different from other tissues.
- the existing technology of CpG for the treatment of gliomas is mostly intracranial. It is determined by the inherent properties of CpG, because CpG is very water-soluble. As a small molecule immune adjuvant, it needs to enter the antigen-presenting cell APC to function. Therefore, intratumoral administration is required to be close to the APC that has been infiltrated in the tumor.
- the existing technology still cannot solve the problem of small CpG molecules and rapid spread of intratumoral administration to the blood, causing system immunotoxicity; and for brain tumors in situ, tumors
- the damage caused by intracranial administration is great, usually accompanied by cerebral edema and easy to be infected; the present invention creatively provides an anti-tumor nano adjuvant based on cross-linked biodegradable polymer vesicles, which solves the problem of CpG water solubility. It is very sexual and negatively charged, and it is difficult to enter APC.
- the drug of the present invention can be effectively administered by intravenous injection, such as tail vein injection, which overcomes the existing technology that only uses intracranial drug delivery. Prejudice not only achieves excellent therapeutic effects, but also solves the shortcomings of existing drug delivery methods.
- the cross-linked polymer vesicles with an asymmetric membrane structure in the anti-tumor nano adjuvant based on cross-linked biodegradable polymer vesicles disclosed in the present invention are used for In vivo delivery, the inner shell of the vesicle membrane is spermine SP or PEI for compounding nucleic acid drugs CpG; the vesicle membrane is reversibly cross-linked, biodegradable and biocompatible PTMC, and the side chain dithiolane Similar to the human body's natural antioxidant lipoic acid, it can provide reduction-sensitive reversible cross-linking and support the long-term circulation of nanomedicine in the blood; the outer shell is based on PEG and can have targeting molecules, which can bind to cancer cells with high specificity.
- the anti-tumor drug disclosed in the present invention loads a nucleic acid drug CpG with a cross-linked polymer vesicle with an asymmetric membrane structure, and its in vivo treatment of in situ murine glioma LCPN model mice shows that
- the vesicle-loaded drug has a variety of unique advantages, including easy manipulation of preparation, outstanding biocompatibility, superior targeting of cancer cells, significant ability to inhibit weight loss and prolong survival; therefore, the present invention
- the vesicle system is expected to become a nanosystem platform that integrates the advantages of convenience, targeting, and multi-function, for efficient and active targeted delivery of nucleic acid and other drugs to tumors, including in situ brain tumors.
- the anti-tumor drug disclosed in the present invention has a biodegradable polymer vesicle with asymmetric membrane structure, reduction-sensitive reversible cross-linking, and intracellular de-cross-linking.
- the outer surface of the vesicle membrane is non-adhesive. It is composed of polyethylene glycol (PEG) and surface-modified with ApoE polypeptide that can specifically target LDLRs.
- the inner surface of the vesicle membrane is made of small molecular spermine with good biocompatibility or low molecular weight branched PEI (PEI1.
- the cross-linked vesicle membrane can protect the drug from being degraded and leaking, and can circulate in the body for a long time.
- the vesicle s nano size and surface Tumor-specific targeting molecules allow vesicles to deliver drugs into tumor cells through veins or nasal veins.
- the anti-tumor drug disclosed in the present invention has a stable structure and good circulation in the body.
- the vesicle can completely encapsulate up to 15 wt.% of the drug, and the surface is modified with ApoE polypeptide that can specifically target LDLRs and passes through the vein or nasal cavity.
- Intravenous administration can have significant enrichment and therapeutic effects at the site of glioma in situ. It is a good nucleic acid drug controlled release carrier and can be used as a single-use nano-vaccine or nano-immune adjuvant for tumors. Highly effective immunotherapy.
- Figure 1 is the NMR image of PEG5k-P (TMC14.9k-DTC2.0k) in Example 1.
- Figure 2 is the NMR map of Mal-PEG7.5k-P (TMC15.2k-DTC2.0k) in Example 2.
- Example 3 is a III PEG5k-P (TMC14.9k-DTC2.0k) embodiment - b - NMR spermine FIG.
- Figure 4 is the NMR map of PEG5k-P (TMC14.9k-DTC2.0k) -b -PEI1.2k in Example 4.
- Figure 5 is the NMR map of ApoE-PEG7.5k-P (TMC15.2k-DTC2.0k) in Example 5.
- Figure 6 is a particle size distribution diagram of the targeted drug-loaded vesicle ApoE-PS-CpG in Example 6.
- Figure 7 is a flow cytometric diagram of LCPN cells with different targeting density vesicles ApoE-PS in Example 8.
- Fig. 8 is a diagram showing the therapeutic effect of different CpG preparations and different dosages on the LCPN model mice of in situ murine glioma by tail vein administration in Example 9.
- Fig. 9 is a diagram showing the therapeutic effect of ApoE-PS-Sp-CpG combined with radiotherapy on LCPN model mice of in situ murine glioma by tail vein administration in the tenth embodiment.
- Fig. 10 is a diagram showing the therapeutic effect of ApoE-PS-Sp-CpG combined with ⁇ CTLA-4 on the LCPN model mice of in situ murine glioma by tail vein administration in Example 11.
- Figure 11 is a comparison of the therapeutic effects of ApoE-PS-PEI1.2k-CpG and ApoE-PS-Sp-CpG with the in situ mouse-derived brain glioma LCPN model mice through tail vein administration in Example 12 picture.
- Fig. 12 is a graph showing the therapeutic effects of different CpG preparations on LCPN model mice of mouse-derived brain glioma in situ by nasal intravenous administration.
- Figure 13 is a graph showing the therapeutic effect of ApoE-PS-PEI1.2k-CpG combined with radiotherapy on LCPN model mice of in situ murine glioma by nasal intravenous administration.
- Figure 14 shows the analysis of immune cells in tumors and spleen of mice bearing LCPN in situ.
- Figure 15 is a diagram showing the effect of different CpG preparations in simulating BBB penetration in vitro.
- Figure 16 shows the effect of different empty vectors and CpG preparations in activating BMDC in vitro.
- Figure 17 shows the in vivo pharmacokinetics and biodistribution of main organs of different CpG preparations.
- Figure 18 is a diagram showing the effect of different CpG preparations on activating tumors and immune cells in lymph nodes in vivo.
- the chemical structural formula of the targeting polymer is as follows: .
- R 1 is a hydrophilic segment end group; R 2 is a positively charged molecule; R is a targeting molecule; R 1 is a targeting molecule linking group.
- R 2 is a cyclic ester monomer or a unit after the ring opening of a cyclic carbonate monomer.
- the cyclic ester monomer includes caprolactone ( ⁇ -CL), lactide (LA) or glycolide (GA), cyclic carbonic acid
- the ester monomer includes trimethylene cyclic carbonate (TMC); preferably, when R 2 is TMC, the chemical structural formula of the polymer is as follows: .
- R 2 is a positively charged molecule
- R 1 is a hydrophilic segment end group, such as: .
- the targeting polymer is obtained by the conventional reaction between the targeting molecule and the polymer B through the R 11 group, and the R 11 group corresponds to the R 1 group after the reaction.
- the chemical structural formula of the polymer B is as follows: .
- R 11 is a targeting molecule linking group, which can be: .
- the present invention uses methoxy-terminated PEG and Mal groups as the linking groups (R 1 and R 11, respectively ): .
- R 2 is selected from one of the following groups: .
- the polymer and targeting polymer of the present invention are prepared by passing the terminal hydroxyl group of MeO-PEG-P(TMC-DTC)-OH through the hydroxyl activator N,N'-carbonyldiimidazole (CDI) Activate and react with spermine or PEI to prepare MeO-PEG-P(TMC-DTC)-Sp or MeO-PEG-P(TMC-DTC)-PEI; PEG in Mal-PEG-P(TMC-DTC) The Mal-end of the ApoE is coupled to a tumor-specific targeting molecule (ApoE polypeptide) through a Michael addition reaction to obtain the targeted ApoE-PEG-P (TMC-DTC).
- CDI hydroxyl activator N,N'-carbonyldiimidazole
- the preparation method of the anti-tumor nano adjuvant based on cross-linked biodegradable polymer vesicles of the present invention is to take MeO-PEG-P(TMC-DTC)-Sp and drugs as raw materials, and replace with solvent.
- Preparation of anti-tumor nano-adjuvants based on cross-linked biodegradable polymer vesicles or using MeO-PEG-P(TMC-DTC)-PEI and drugs as raw materials to prepare cross-linked biodegradable polymer based on solvent replacement method
- Anti-tumor nano-drugs based on vesicles or using MeO-PEG-P(TMC-DTC)-Sp, ApoE-PEG-P(TMC-DTC) and drugs as raw materials, through the solvent replacement method to prepare cross-linked biodegradable Polymeric vesicle anti-tumor nano-drugs; or use MeO-PEG-P(TMC-DTC)-PEI, ApoE-PEG-P(TMC-DTC) and drugs as raw materials, and prepare cross-linked bioavailability based on the solvent replacement method.
- Anti-tumor nano-drugs that degrade polymer vesicles or using MeO-PEG-P(
- the above preparation method specifically includes the following steps: reacting MeO-PEG-P(TMC-DTC)-OH and hydroxyl activator in a dry solvent, and then precipitation, suction filtration, and vacuum drying to obtain hydroxyl-terminated MeO-PEG- P(TMC-DTC)-CDI; add its solution dropwise to spermine or PEI solution for reaction, then precipitation, suction filtration and vacuum drying to obtain MeO-PEG-P(TMC-DTC)-Sp or MeO-PEG-P (TMC-DTC)-PEI.
- the target ApoE-PEG-P (TMC-DTC) is obtained by reacting Mal-PEG-P (TMC-DTC) with ApoE polypeptide dissolved in an organic solvent.
- the raw material solution is added to a non-ionic buffer solution, placed at room temperature, and then dialyzed and cross-linked to obtain an anti-tumor nano-medicine based on cross-linked biodegradable polymer vesicles.
- the raw materials involved in the embodiments of the present invention are all existing products, such as PEG, Mal-PEG, TMC, DTC, DPP, oligonucleotide CpG that can activate immune response, etc., all of which are existing substances;
- LCPN cells are from Soochow University FUNSOM Compared with the mouse model of xenotransplanted human glioma, the mouse orthotopic model obtained by the research institute is a mouse-derived malignant glioma cell, which can better reflect the effect of the drug, especially the immune effect.
- MeO-PEG5k-P (TMC14.9k-DTC2.0k) is prepared by ring-opening polymerization, the specific operation is as follows, In a nitrogen glove box, weigh MeO-P
- TMC 2,4,6-trimethoxybenzaldehyde pentaerythritol carbonate monomer
- TMBPEC 2,4,6-trimethoxybenzaldehyde pentaerythritol carbonate monomer
- M n 7.5 kg/mol, 0.75 g, 100 ⁇ mol
- TMC 1.5 g, 14.7 mmol
- DTC 0.2 g , 1.0 mmol
- DPP diphenyl phosphate
- DCM dichloromethane
- Example 3 Synthesis of PEG5k-P(TMC14.9k-DTC2.0k)-Sp block copolymer: The synthesis of PEG5k-P(TMC14.9k-DTC2.0k)-Sp is divided into two steps, all in anhydrous Under oxygen conditions, the first step is to activate the terminal hydroxyl group of PEG5k-P (TMC14.9k-DTC2.0k) with N,N'-carbonyldiimidazole (CDI), and then react with the primary amine of spermine.
- CDI N,N'-carbonyldiimidazole
- PEG5k-P(CL15.9k-DTC2.0k)-Sp, PEG5k-P(TMBPEC10.3k-DTC2.0k)-Sp, PEG5k-P(LA13.1k-DTC1.9k) can be prepared )-Sp, PEG5k-P(GA10.1k-DTC1.8k)-Sp; nuclear magnetic integration shows that the grafting rate of spermine is above 90%.
- Example 4 Synthesis of PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k block copolymer: The synthesis of PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k is divided into two steps, both Under anhydrous and oxygen-free conditions, the first step is to activate the terminal hydroxyl group of PEG5k-P (TMC14.9k-DTC2.0k) with N,N'-carbonyldiimidazole (CDI), and then react with the primary amine of PEI1.2k be made of.
- CDI N,N'-carbonyldiimidazole
- PEG5k-P (TMC14.9k-DTC2.0k) (2.2 g, hydroxyl 0.1 mmol) and CDI (48.6 mg, 0.3 mmol) were dissolved in 11 mL of dry DCM and reacted at 30°C for 4 hours, and then Precipitate twice in glacial ether, filter, and dry in vacuo to obtain PEG5k-P(TMC14.9k-DTC2.0k)-CDI. Then weigh 1.6 g of the product from the previous step (0.07 mmol) and dissolve it in 8 mL DCM. Under ice-water bath stirring, add dropwise to 17 mL of PEI1.2k (840 mg, 0.7 mmol) through a constant pressure dropping funnel.
- PEI1.2k 840 mg, 0.7 mmol
- PEG5k-P(CL15.9k-DTC2.0k)-PEI1.2, PEG5k-P(TMBPEC10.3k-DTC2.0k)-PEI1.2, PEG5k-P(LA13.1k) can be prepared -DTC1.9k)-PEI1.2, PEG5k-P(GA10.1k-DTC1.8k)-PEI1.2k; nuclear magnetic integration shows that the grafting rate of PEI is above 90%.
- Example 5 Synthesis of targeted diblock copolymer ApoE-PEG7.5k-P (TMC15.2k-DTC2.0k): The synthesis of ApoE-PEG7.5k-P (TMC15.2k-DTC2.0k) will be free The sulfhydryl polypeptide ApoE-SH and Mal-PEG7.5k-P (TMC15.2k-DTC2.0k) are bonded by Michael reaction. Briefly, Mal-PEG7.5k-P(TMC15.2k-DTC2.0k) (247 mg, 0.01 mmol) and ApoE-SH (30 mg, 0.012 mmol) were successively dissolved in 2.5 mL DMF and reacted at 37°C for 8 hours.
- TMC15.2k-DTC2.0k The synthesis of ApoE-PEG7.5k-P (TMC15.2k-DTC2.0k) will be free The sulfhydryl polypeptide ApoE-SH and Mal-PEG7.5k-P (TMC15.2k-
- FIG. 5 is the NMR spectrum of ApoE-PEG7.5k-P (TMC15.2k-DTC2.0k), in which in addition to PEG and P (DTC-TMC) peaks, there are also characteristic peaks of ApoE at d 0.8-1.8, 4.2-8.2.
- a standard curve established with a BCA protein analysis kit at 492 nm with a known concentration of ApoE sample can be used to determine the ApoE connection efficiency. The analysis showed that the grafting rate of targeted polymer ApoE was 95%.
- ApoE-PEG7.5k-P CL15.6k-DTC1.9k
- ApoE-PEG7.5k-P LA11.8k-DTC1.7k
- ApoE-PEG7.5k-P can be prepared (GA9.8k-DTC1.6k)
- ApoE-PEG7.5k-P TMBPEC10.0k-DTC1.9k
- the grafting rate of ApoE is 90%-95%.
- Example 6 Preparation of targeted drug-loaded vesicles based on PEG5k-P (TMC14.9k-DTC2.0k)-Sp: The solvent exchange method was used to prepare ApoE-PS-Sp-CpG with different ApoE targeting densities loaded with CpG.
- the specific steps are: add a certain amount of CpG to 950 ⁇ L of HEPES buffer (5 mM, pH 6.8) (CpG ODN 1826, theoretical drug loading 10 wt.%), and then 50 ⁇ L ApoE-PEG-P(TMC-DTC) and MeO-PEG-P(TMC-DTC)-SP DMSO solution (the molar ratio of the two is 1 :4, the total polymer concentration is 40 mg/mL) was injected into HEPES, stirred for 10 min, and then the obtained vesicles were dialyzed in HEPES for 2 h (MWCO 350 kDa), in HEPES and PB buffer (10 mM, pH 7.4) The mixture (v/v, 1/1) was dialyzed for 1 h, and then dialyzed in PB for 2 h, to obtain targeted drug-loaded vesicles, denoted as ApoE-PS-Sp-CpG, which is 20% ApoE targeting Group.
- Nanodrop was used to determine the drug loading and encapsulation efficiency of CpG. The results showed that when the theoretical drug loading is 10 wt.%, the encapsulation rate is 100%, that is, the theoretical drug loading and the actual drug loading are consistent.
- Figure 6 shows The particle size distribution diagram of the vesicles obtained above, the particle size is about 50 nm, and the particle size distribution is narrow.
- TMC caprolactone
- LA lactide
- GA glycolide
- TMBPEC 2,4,6-trimethoxybenzaldehyde pentaerythritol carbonate monomer
- the above theoretical drug loading was changed to 5 wt.%, and the rest remained unchanged, to obtain ApoE targeted drug-loaded cross-linked vesicles.
- the encapsulation efficiency was 100%. , That is, the theoretical drug loading and actual drug loading are the same, and the obtained vesicles have a particle size of about 50 nm and a narrow particle size distribution.
- the encapsulation efficiency of each targeted group is 100%, 100%, and 100%. , 95%, 90%, 84%.
- the particle size of all vesicles is between 50 nm and 80 nm, and the particle size distribution is narrow.
- the CpG-loaded PS-Sp-CpG was prepared by solvent exchange method. The specific steps are as follows: add a certain amount of CpG (theoretical drug loadings are 5 wt.% and 10 wt.%) into 950 ⁇ L of HEPES buffer (5 mM, pH 6.8), and then add 50 ⁇ L of MeO-PEG-P( TMC-DTC)-SP DMSO solution (polymer concentration of 40 mg/mL) was injected into HEPES buffer solution, stirred for 10 min, and then the obtained dispersion was dialyzed in HEPES buffer for 2 h (MWCO 350 kDa).
- Example 7 Preparation of targeted drug-loaded vesicles based on PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k: Preparation of CpG-loaded ApoE-PS-PEI-CpG with different ApoE targeting densities by the solvent exchange method .
- the specific steps are: add a certain amount of CpG (theoretical drug loading is 10wt.%) into 950 ⁇ L of HEPES buffer (5 mM, pH 6.8), and then add 50 ⁇ L of ApoE-PEG-P (TMC-DTC) and MeO -PEG-P(TMC-DTC)-PEI1.2k DMSO solution (the molar ratio of the two is 1:9, the total polymer concentration is 40 mg/mL) is injected into HEPES, stirred for about 10 minutes, the resulting vesicles are in Dialysis in HEPES for 2 h (MWCO 350 kDa), dialysis in a mixed buffer (v/v 1/1) of HEPES and PB (10 mM, pH 7.4) for 1 h, and dialysis in PB buffer for 2 h to obtain the target
- the drug-loaded vesicles are denoted as ApoE-PS-PEI-CpG, which is the 10% ApoE targeting group
- Nanodrop was used to measure the drug loading and encapsulation efficiency of CpG. The results showed that when the theoretical drug loading was 10 wt.%, the encapsulation efficiency of the obtained vesicles was 100%.
- the vesicles obtained above had a particle size of about 50 nm. The diameter distribution is narrow.
- TMC caprolactone
- LA lactide
- GA glycolide
- TMBPEC 2,4,6-trimethoxybenzaldehyde pentaerythritol carbonate monomer
- the CpG-loaded PS-PEI-CpG was prepared by solvent exchange method. The specific steps are: add a certain amount of CpG (theoretical drug loadings are 5 wt.% and 10 wt.%) into 950 ⁇ L HEPES buffer (5 mM, pH 6.8), and then add 50 ⁇ L MEO-PEG-P( The DMSO solution of TMC-DTC)-PEI (polymer concentration is 40 mg/mL) was injected into HEPES, stirred for 10 min, and then the obtained dispersion was dialyzed in HEPES for 2 h (MWCO 350 kDa), in HEPES and PB ( 10 mM, pH 7.4) mixed buffer (v/v 1/1) After dialysis for 1 h in PB buffer solution for 2 h, the targeted drug-loaded vesicles were obtained, denoted as PS-PEI-CpG (drug-loading 10 wt.%); Nanodrop was used to determine the drug-loading of
- Example 6 According to the preparation method of Example 6, the drug CpG was replaced with Cy5-labeled granzyme B (GrB) to obtain GrB-loaded vesicles with different ApoE targeting densities, which were used in Example 8.
- GrB Cy5-labeled granzyme B
- Example 8 The endocytosis experiment of targeted drug-loaded vesicles and simulated penetration of the blood-brain barrier (BBB):
- the endocytosis experiment of targeted drug-loaded vesicles used Cy5-labeled granzyme B (GrB) on the surface
- GrB Cy5-labeled granzyme B
- FACS flow cytometry
- bEnd.3 was used to construct an in vitro BBB model to investigate the ability of ApoE vesicles to penetrate the BBB.
- bEnd.3 was cultured in DMEM medium (containing 100 U/mL penicillin, 100 U/mL streptomycin and 10% (v/v) fetal bovine serum) under 5% CO 2 and 37 °C.
- the method to establish an in vitro BBB model is as follows: add a cell culture chamber (average pore diameter of 1.0 ⁇ m, bottom surface area of 0.33 cm 2 ) on a 24-well plate, add 800 ⁇ L and 300 ⁇ L of DMEM medium to the 24-well plate and chamber, and finally inoculation small 10 5 cells / well.
- a microscope and a transmembrane resistance meter were used to detect the integrity of the bEnd.3 cell monolayer; the cell monolayer was examined by microscopy without voids, and the BBB in vitro model with a transmembrane resistance higher than 200 ⁇ cm 2 was used to investigate the penetration of ApoE-PS In vitro BBB capability.
- the steps of the cross-BBB study are as follows: add Cy5 labeled ApoE-PS samples with different ApoE densities into the cell (polymer concentration is 0.1 mg/mL). After 24 hours of incubation, they were digested with trypsin (0.25% (w/v), containing 0.03% (w/v) EDTA) and washed twice with PBS.
- Example 9 Study on the therapeutic effect of different CpG preparations and different dosages on LCPN model mice of in situ murine glioma by tail vein administration: establishment of LCPN model mice of in situ murine glioma: C57BL/6J mice weighing about 18-20 g and 6-8 weeks old were selected, and 5 ⁇ L containing 5 ⁇ 10 4 LCPN cells (+1.0 mm anterior , 2.5 mm lateral, and 3.0 mm deep), keep for 5 min. Four days after inoculation, they were randomly divided into 6 groups (6 mice in each group): PBS, free CpG (1 mg/kg), PS-Sp-CpG (1 mg/kg), ApoE-PS-Sp- CpG (0.5, 1, 2 mg/kg).
- each agent was injected into mice through the tail vein, and blood was taken from the orbit at 5, 7, and 9 days after vaccination to monitor the levels of TNF- ⁇ , IFN- ⁇ and IL-6 in mouse plasma.
- Concentration changes From 4 to 28 days, the mice were weighed every two days. It can be seen from Figure 8 that A, B, and C are the changes in the plasma concentrations of TNF- ⁇ , IFN- ⁇ , and IL-6 in each group of mice, respectively. It can be seen from the figure that each CpG treatment group can significantly improve mice The concentration of 3 cytokines in plasma, and the ApoE targeting group has the most obvious effect.
- D is the weight change of mice in each group, and E is the survival curve.
- the ApoE targeted therapy group can delay the trend of weight loss in mice, and the therapeutic effect is best when the dose is 1 mg/kg, compared with the PBS group, free CpG group, and PS-CpG group , Can significantly prolong the survival time of mice (39 days versus 24, 27, 29 days, ** p ).
- Example 10 To study the therapeutic effect of ApoE-PS-Sp-CpG combined with radiotherapy (X-ray) on LCPN model mice of in situ murine glioma by tail vein administration: as in Example 9, the establishment of in situ murine origin Brain glioma LCPN model mice were randomly divided into 4 groups (6 mice in each group) 4 days after inoculation: PBS, X-Ray (3Gy/time), ApoE-PS-Sp-CpG (1 mg/kg), ApoE-PS-Sp-CpG (1 mg/kg) + X-Ray (3Gy/time), 4, 6, and 8 days after vaccination, inject ApoE-PS-Sp-CpG through the tail vein until small In the mouse, X-Ray was irradiated 6 hours later.
- X-Ray radiotherapy
- A is the weight change of the mouse
- B is the survival curve.
- X-Ray and ApoE-PS-Sp-CpG alone or in the combined group can delay the weight loss and prolong the survival time of mice, but the combined group has the most obvious effect: the least weight loss and the longest survival time ( 25, 35, 39, 48 days).
- Example 11 Study on the therapeutic effect of ApoE-PS-Sp-CpG combined with ⁇ CTLA-4 antibody on in situ murine glioma LCPN model mice by tail vein administration: as in Example 9, the establishment of in situ murine origin Brain glioma LCPN model mice, 4 days after inoculation, were randomly divided into 3 groups (6 mice in each group): PBS, ApoE-PS-Sp-CpG (1 mg/kg), ApoE-PS- Sp-CpG (1 mg/kg)+ ⁇ CTLA-4 (10 mg/kg), the two groups of ApoE-PS-Sp-CpG were injected into mice through the tail vein 4, 6, and 8 days after vaccination.
- mice The third group of mice was given ⁇ CTLA-4 intraperitoneally on 9,11,13. From 4 to 28 days, the mice were weighed every two days. It can be seen from Figure 10 that A is the weight change of each group of mice, and B is the survival curve. Compared with the PBS group, ApoE-PS-Sp-CpG (1 mg/kg) can significantly delay the trend of weight loss and prolong the weight loss of mice. The survival period of mice, but combined with ⁇ CTLA-4 did not further enhance the therapeutic effect (survival periods were 25 days, 39 days, 40 days, *** p ).
- Example 12 Comparison of the therapeutic effects of ApoE-PS-Sp-CpG and ApoE-PS-PEI1.2k-CpG on in situ mouse-derived brain glioma LCPN model mice through tail vein administration: as in Example 9
- A is the weight change of each group of mice
- B is the survival curve.
- ApoE-PS-Sp-CpG and ApoE-PS-PEI1.2k-CpG can significantly delay the weight of mice Declining trend and prolonging survival (*** p )
- the therapeutic effect of the ApoE-PS-PEI1.2k-CpG group is slightly better than that of ApoE-PS-Sp-CpG (26, 39.5, 43.5 days), indicating that the polymer capsule
- the positively charged substance in the inner shell of the bubble has an influence on the therapeutic effect.
- Example 13 The therapeutic effect of different CpG preparations on LCPN model mice of mouse-derived brain glioma in situ was studied by nasal cavity intravenous administration: as in Example 9, the mouse-derived LCPN model mice of mouse-derived brain glioma in situ were established. Four days after inoculation, they were randomly divided into 5 groups (7 mice in each group): PBS, free CpG (0.5 mg/kg), PS-PEI1.2k-CpG (0.5 mg/kg), ApoE-PS-PEI1 .2k-CpG (0.5 mg/kg), ApoE-PS-Sp-CpG (0.5 mg/kg). The drug was injected into the mice through the nasal cavity 4, 9, and 14 days after the inoculation.
- mice were weighed every two days.
- A is the weight change of each group of mice
- B is the survival curve
- ApoE targeting group can delay the trend of weight loss in mice
- the survival period of ApoE-PS-PEI1.2k-CpG is significantly longer than that of PS-PEI1 .2k-CpG group (40 days, 33 days), and there is no significant difference between ApoE-PS-Sp-CpG (40 days vs 39 days).
- ApoE-PS-PEI1.2k-CpG can significantly prolong the survival period of mice (26, 31, 33 and 40 days).
- Example 14 The therapeutic effect of ApoE-PS-PEI1.2k-CpG combined with radiotherapy on LCPN model mice of in situ murine brain glioma was studied by intravenous administration of the nasal cavity: as in Example 9, the in situ murine brain was established Glioma LCPN model mice were randomly divided into 4 groups (7 mice in each group): PBS, X-Ray (3Gy/time), ApoE-PS-PEI1.2k-CpG (0.5 mg /kg), ApoE-PS-PEI1.2k-CpG (0.5 mg/kg)+ X-Ray (3Gy/time), X-Ray is irradiated 4, 9, 14 days after vaccination, and ApoE- 6 hours after exposure PS-PEI1.2k-CpG was injected into mice through the nasal cavity.
- A is the weight change of the mouse and B is the survival curve.
- X-Ray and ApoE-PS-Sp-CpG alone or in combination can delay the trend of weight loss and prolong the survival time of mice, but the combined group has the most obvious effect (26, 35, 40, 45 days).
- A is the percentage of CTL (CD8+ T cells) and Th (CD4+ T cells) in the tumor
- B is the macrophage (CD11b+ F4/80+) and M2 phenotype (CD11b+F4/80) in the tumor.
- +CD206+) C is the percentage of activated CD86+ or/and CD80+ APC in the tumor
- D is the percentage of effector memory T cells (CD8+CD44+CD62L-) in the spleen.
- ApoE-PS-CpG can trigger the innate and adaptive immune response in the tumor microenvironment by activating CTL, significantly recruit tumor antigen presenting cells APC, reduce M2 phenotype macrophages and stimulate macrophages, and can Produce a certain immune memory effect.
- the MTT method uses human breast cancer cancer cells (MCF-7).
- MCF-7 human breast cancer cancer cells
- the cells are seeded in a 96-well plate at 5 ⁇ 10 3 cells/mL, 80 ⁇ L per well, and cultured after 24 hours until the cells adhere to about 70%.
- the cross-linked polymer vesicles were prepared according to Examples 6 and 7, without adding drugs. Then, vesicles with different concentrations (0.1-0.5 mg/mL) were added to each well of the experimental group, and a blank cell control hole and a medium blank hole (repeated 4 holes) were set up. After culturing for 24 hours, add 10 ⁇ L of MTT (5.0 mg/mL) to each well.
- the test objects were ApoE-PS-Sp-CpG in Example 6, and ApoE-PS-PEI-CpG in Example 7, to study the toxicity of drug-loaded vesicles to MCF-7 cells.
- the CpG concentration was 0.05 mg/mL, with CpG is the control.
- the cell culture is the same as above. After 4 hours of co-cultivation, the sample is aspirated and replaced with fresh medium and incubated for 68 hours. Then the MTT addition, treatment and absorbance measurement are the same as those in the example.
- the animal selection was the same as that in Example 12.
- the animals were injected subcutaneously with 1 ⁇ 10 7 MCF-7 cells. About 3.5 weeks later, the experiment started when the tumor size was 100 mm 3. Rat): PBS, ApoE-PS-Sp-CpG (1 mg/kg), ApoE-PS-PEI1.2k-CpG (1 mg/kg), the drug was injected through the tail vein 4, 6, and 8 days after vaccination In mice. From 0 to 28 days, weigh the weight of the mice every two days. The median survival periods of the PBS group, ApoE-PS-PEI1.2k-CpG group, and ApoE-PS-Sp-CpG group were 29, 30.5, and 31, respectively. Day (the subcutaneous tumor grows to 1000 mm 3 to determine death).
- ApoE-PS-Sp-CpG in the sixth embodiment as ApoE-PS-CpG.
- Example 16 ApoE-PS-CpG in vitro simulated BBB penetration experiment: Taking Cy3-labeled CpG (CpG-Cy3) vesicle ApoE-PS-CpG as an example, an in vitro BBB model was established according to the method of Example 8.
- Example 17 ApoE-PS-CpG in vitro activation of BMDC experiment according to conventional methods, the immune cells in the bone marrow of C5BL/6J mice were extracted and GM-CSF (20 ng/mL) was used in vitro to induce differentiation into immature BMDC, The empty vector (PS, ApoE-PS, polymer concentration: 4 ⁇ g/mL) and different CpG preparations (CpG, PS-CpG, ApoE-PS-CpG, CpG concentration: 0.4 ⁇ g/mL, polymer concentration: 4 ⁇ g/mL) the activation of immature BMDC.
- GM-CSF 20 ng/mL
- Example 18 In vivo pharmacokinetics and biodistribution experiments of main organs of different CpG preparations: C57BL/6J mice weighing about 18-20 g and 6-8 weeks old were used for the experiment. Use fluorescently labeled CpG-Cy3 and non-fluorescently labeled CpG (m/m 1/3) for in vivo pharmacokinetics and biodistribution experiments. The total dose of CpG is 1 mg/kg. The pharmacokinetic experiment was carried out in healthy mice. After the mice were injected with different CpG preparations in the tail vein, about 70 ⁇ L of whole blood was taken from the orbit at a set time point and immediately added to the EP tube pre-treated with heparin sodium.
- Example 19 Flow cytometry experiment of different CpG preparations to activate tumors and immune cells in lymph nodes in vivo: C57BL/6J mice weighing about 18 to 20 g and 6 to 8 weeks old were used in the experiment. Inject 5 ⁇ L of 5 ⁇ 10 4 LCPN cells (+1.0 mm anterior, 2.5 mm lateral, and 3.0 mm deep) into the right halogen with a Hamilton syringe, and keep for 5 min. Four days after the inoculation, the experiment was carried out in random groups, divided into 4 groups with 3 mice in each group.
- the 3 groups are: PBS, free CpG (1 mg/kg), PS-Spermine-CpG (1 mg/kg), ApoE-PS-Spermine-CpG (1 mg/kg) 4, 6, 8 days after vaccination It was injected into mice through the tail vein, and the brain tumors and cervical lymph nodes of the mice were dissected on the second day (D9) after all the drugs were administered.
- DC cells were stained with CD11c, CD80, and CD86, and T cells were stained with CD4 and CD8.
- A, B, C, and D in Figure 18 are the mature DC (CD11c + CD80 + CD86 + ) and CTL (CD8 + ) in each group of mouse tumors, and the proportion of mature DC and CTL in the cervical lymph nodes. The results showed that the proportions of mature DC and CTL in brain tumors and lymph nodes in the ApoE targeting group were higher than those in other groups.
- CpG as a TLR activator can induce cellular anti-tumor immune responses.
- the results of its application are not optimistic, mainly because CpG causes inflammation and brain edema.
- CpG as a small molecule immune adjuvant, needs to enter the antigen-presenting cell APC to play a role, the prior art uses intracranial administration methods, which inevitably have many defects.
- the loading adjuvant CpG based on cross-linked biodegradable polymer vesicles disclosed for the first time in the present invention achieves an encapsulation rate of 100%, and can be injected through the tail vein or nasal vein as a single-use nano-vaccine or nano-immune adjuvant. It is used for high-efficiency immunotherapy of tumors, especially to solve the technical prejudice of the prior art that CpG requires intracranial administration. Experiments have confirmed that the administration of the nano adjuvant of the present invention avoids immunotoxicity, and the survival time of mice is greatly improved.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Preparation (AREA)
Abstract
一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用,由具有不对称膜结构的可逆交联生物可降解聚合物囊泡装载药物得到;药物为能激活免疫反应的寡核苷酸;可降解聚合物囊泡由聚合物自组装后交联得到;聚合物的分子链包括依次连接的亲水链段、疏水链段以及带正电荷的分子;疏水链段为聚碳酸酯链段和/或聚酯链段,通过静电相互作用复合和装载药物;膜为可逆交联的生物可降解且生物相容性好的聚碳酸酯和/或聚酯链段,侧链的二硫戊环类似人体天然抗氧化剂硫辛酸,外壳为以PEG为背景、可靶向癌细胞。
Description
本发明属于药物载体技术,具体涉及一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物的制备方法及其应用。
胶质母细胞瘤(GBM)是一种恶性脑癌,具有高复发性、高转移率和预后差等特点。目前,标准的临床治疗通常包括手术切除与化疗和/或放疗结合,但治疗效果并不总是令人满意。近年来,肿瘤免疫治疗已经引起了广泛的关注;然而由于血脑屏障(BBB)的存在,免疫佐剂CpG不能直接进入GBM。同时,CpG在体内的快速降解和高剂量带来的免疫毒性也限制了其主要通过瘤内/颅内给药方式来进行免疫治疗。然而,颅内给药通常伴有脑水肿、炎症和免疫激动剂快速扩散到血液造成的相关毒副作用。并且现有囊泡技术对CpG的装载效率较低;同时还存在囊泡体内循环不稳定、肿瘤细胞摄取低、细胞内药物浓度低等问题,导致纳米药物的药效不高,还存在毒副作用,这些都极大地限制了囊泡作为这类药物的载体的应用。
发明的目的是公开一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米疫苗或纳米佐剂的制备方法及其应用。
为达到上述发明目的,本发明采用如下技术方案:一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂,由具有不对称膜结构的可逆交联生物可降解聚合物囊泡装载药物得到;所述药物为能激活免疫反应的寡核苷酸;所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物自组装后得到或者所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物与靶向聚合物自组装后得到;所述聚合物包括亲水链段、疏水链段以及带正电荷分子;所述靶向聚合物包括靶向分子、亲水链段以及疏水链段;所述疏水链段为聚碳酸酯链段和/或聚酯链段。
本发明还公开了具有不对称膜结构的可逆交联生物可降解聚合物囊泡作为能激活免疫反应的寡核苷酸载体的应用或者在制备能激活免疫反应的寡核苷酸载体中的应用;所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物自组装后得到或者所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物与靶向聚合物自组装后得到;所述聚合物包括亲水链段、疏水链段以及带正电荷分子;所述靶向聚合物包括靶向分子、亲水链段以及疏水链段;所述疏水链段为聚碳酸酯链段和/或聚酯链段。
本发明中,亲水链段为聚乙二醇;疏水链段含有双硫五元环碳酸酯单元;带正电荷分子包括精胺、聚乙烯亚胺;疏水链段的分子量为亲水链段分子量的1.5~5倍,带正电荷分子的分子量为亲水链段分子量的2%~40%,优选的,疏水链段的分子量为亲水链段分子量的2~4倍;带正电荷分子的分子量为亲水链段分子量的2.7%~24%。比如亲水链段为聚乙二醇(
M
n
5000-7500 Da);带正电荷分子为精胺(精胺,
M
n
202)、聚乙烯亚胺(PEI,
M
w 1200)。
其中,R
1为亲水链段端基;R
2为带正电荷分子;R为靶向分子;R
1为靶向分子连接基团;R
2为酯单元或者碳酸酯单元,即环酯单体或者环碳酸酯单体开环后的单元。
优选的,PEG的分子量为5000-7500 Da;R
2链段总分子量为PEG分子量的2.5-4倍;PDTC总分子量为R
2链段总分子量的10%~30%;PEI的分子量为PEG分子量的7%-24%;精胺的分子量为PEG分子量的2.7%-4%。
进一步的,所述双硫五元环单元由含双硫五元环功能基团的环状碳酸酯单体(DTC)开环得到。
作为优选实施例,PEG的分子量为5000-7500 Da;PTMC总分子量为PEG分子量的2.5-4倍;PDTC总分子量为PTMC总分子量的10%~30%;PEI的分子量为PEG分子量的7%-24%;精胺的分子量为PEG分子量的2.7%-4%。
本发明中,能激活免疫反应的寡核苷酸为CpG药物,比如CpG
ODN 1826、CpG ODN2395、CpG ODN 2006等,具体的序列为现有技术。
本发明的聚合物中,使用生物相容性好的小分子精胺和低分子量的支化PEI (PEI1.2k)作为载体时毒性小,结合PEG链段与疏水链段,可以形成良好的药物包载效果,即使当药物含量高达15
wt.%,该囊泡仍可以完全包裹药物;同时本发明的聚合物避免了现有PEI通过物理缠绕的方式结合药物带来的不稳定、带正电易与细胞结合而迁移力差的缺陷,通过静电作用力结合药物,再被交联的囊泡膜和外界分隔,避免在输送过程被细胞黏附而造成损失和毒副作用,并且通过修饰特异性靶向分子能够高效迁移至病灶处。
本发明设计的具有不对称膜结构、还原敏感可逆交联、细胞内可解交联的生物可降解聚合物囊泡,其囊泡膜的外表面由具有不粘附性的聚乙二醇(PEG)组成并且优选表面修饰了靶向分子ApoE多肽,囊泡膜的内表面由生物相容性好的小分子精胺或低分子量的支化PEI
(PEI1.2k)组成,用于高效装载能激活免疫反应的寡核苷酸CpG;交联的囊泡膜可保护药物不被降解、不泄漏,并可在体内长循环,囊泡的纳米尺寸以及表面的肿瘤特异性靶向分子使得囊泡可通过静脉或鼻腔静脉定向输送药物进入肿瘤细胞。
本发明聚合物或者靶向聚合物中,中间嵌段的R
2链段与DTC呈无规排列;精胺和PEI分子量小于PEG分子量,在自组装、交联后得到具有不对称膜结构的交联的聚合物囊泡,囊泡膜的内壳为带正电荷的精胺或PEI用于复合药物CpG;囊泡膜为可逆交联的生物可降解且生物相容性好的P(R
2-DTC),侧链的二硫戊环类似人体天然的抗氧化剂硫辛酸,可提供还原敏感的可逆交联,可支持生物药物在血液中的长循环。
本发明还公开了上述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂的制备方法,包括以下步骤:以聚合物、能激活免疫反应的寡核苷酸为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂;或者以聚合物、靶向聚合物、能激活免疫反应的寡核苷酸为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂。
本发明中,靶向分子为ApoE多肽(序列:LRKLRKRLLLRKLRKRLLC);通过MeO-PEG-P(R
2-DTC)-SP或者PEG-P(R
2-DTC)-PEI1.2k和偶联了肿瘤主动靶向分子的二嵌段聚合物如ApoE-PEG-P(R
2-DTC)混合,共自组装、装载药物、交联后得到肿瘤主动靶向、具有不对称膜结构的抗肿瘤药物。
本发明公开了上述基于交联生物可降解聚合物囊泡的抗肿瘤纳米疫苗在制备抗肿瘤药物中的应用,优选在制备抗脑胶质瘤药物中的应用。
给药方式是治疗肿瘤的关键因素之一,这是常识,尤其针对脑部肿瘤,与其他组织部位不同;现有技术CpG用于脑胶质瘤的治疗大多数都是颅内给药,这是由CpG固有性质决定的,因为CpG水溶性很强,作为小分子的免疫佐剂,需要进入抗原呈递细胞APC才能起到作用,因此需要瘤内给药才能离肿瘤里面已经浸润的APC很近,从而可以进入APC;尽管采用如此给药方式,现有技术依然无法解决CpG分子小、瘤内给药也会快扩散到血液,带来系统免疫毒性的问题;而且对于脑原位肿瘤,瘤内即颅内给药带来的损伤很大,通常伴有脑水肿、很容易感染;本发明创造性地给出基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂,解决了CpG水溶性很强、带负电,很难进入APC的问题,尤其是本发明的药物可以采用静脉注射的方式有效给药,比如尾静脉注射,克服了现有技术认为只能采用颅内给药的技术偏见,既取得优异的治疗效果,有解决了现有给药方式存在的缺陷。
与现有技术相比,本发明具有如下优点:1. 本发明公开的基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂中具有不对称膜结构的交联聚合物囊泡用于体内传递,囊泡膜的内壳为精胺SP或PEI用于复合核酸类药物CpG;囊泡膜为可逆交联的生物可降解且生物相容性好的PTMC,侧链的二硫戊环类似于人体天然抗氧化剂硫辛酸,可提供还原敏感的可逆交联,可支持纳米药物在血液中长循环;外壳以PEG为背景同时可具有靶向分子,对癌细胞可高特异性结合。
2. 本发明公开的抗肿瘤药物通过对具有不对称膜结构的交联聚合物囊泡来装载核酸类药物CpG,其体内治疗原位鼠源脑胶质瘤LCPN模型小鼠的效果研究,表明该囊泡装载药物拥有多种独特优点,包括制备的简易操控性、杰出的生物相容性、对癌细胞的优越靶向性、显著的抑制体重下降和延长生存期的能力;因此,本发明的囊泡体系有望成为集便捷、靶向、多功能等优点于一身的纳米系统平台,用于高效、主动靶向输送核酸等药物至肿瘤包括原位脑肿瘤。
3. 本发明公开的抗肿瘤药物中具有不对称膜结构、还原敏感可逆交联、细胞内可解交联的生物可降解聚合物囊泡,其囊泡膜的外表面由具有不粘附性的聚乙二醇(PEG)组成并且表面修饰了可以特异性靶向LDLRs的ApoE多肽,囊泡膜的内表面由生物相容性好的小分子精胺或低分子量的支化PEI (PEI1.2k)组成,用于高效装载能激活免疫反应的寡核苷酸CpG;交联的囊泡膜可保护药物不被降解、不泄漏,并可在体内长循环,囊泡的纳米尺寸以及表面的肿瘤特异性靶向分子使得囊泡可通过静脉或鼻腔静脉定向输送药物进入肿瘤细胞。
4. 本发明公开的抗肿瘤药物具有稳定的结构,在体内循环良好,该囊泡能完全包裹高达15 wt.%的药物,表面修饰了可以特异性靶向LDLRs的ApoE多肽后通过静脉或鼻腔静脉给药可以在原位脑胶质瘤部位有较显著的富集和治疗效果,是一种良好的核酸药物控释载体,可作为单独使用的纳米疫苗或是纳米免疫佐剂,用于肿瘤的高效免疫治疗。
图1为实施例一中PEG5k-P(TMC14.9k-DTC2.0k)的核磁图。
图2为实施例二中Mal-PEG7.5k-P(TMC15.2k-DTC2.0k)的核磁图。
图3 为实施例三中PEG5k-P(TMC14.9k-DTC2.0k)
-
b-精胺的核磁图。
图4 为实施例四中PEG5k-P(TMC14.9k-DTC2.0k)-
b-PEI1.2k的核磁图。
图5为实施例五中ApoE-PEG7.5k-P(TMC15.2k-DTC2.0k)的核磁图。
图6为实施例六中靶向载药囊泡ApoE-PS-CpG的粒径分布图。
图7为实施例八中不同靶向密度囊泡ApoE-PS对LCPN细胞的流式内吞图。
图8 为实施例九中通过尾静脉给药方式研究不同CpG制剂、不同给药剂量对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果图。
图9为实施例十中通过尾静脉给药方式研究ApoE-PS-Sp-CpG联合放疗对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果图。
图10为实施例十一中通过尾静脉给药方式研究ApoE-PS-Sp-CpG联合αCTLA-4对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果图。
图11 为实施例十二中通过尾静脉给药方式比较ApoE-PS-PEI1.2k-CpG和ApoE-PS-Sp-CpG和对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果图。
图12为通过鼻腔静脉给药方式研究不同CpG制剂对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果图。
图13为通过鼻腔静脉给药方式研究ApoE-PS-PEI1.2k-CpG联合放疗对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果图。
图14为荷原位LCPN的小鼠的肿瘤和脾脏中免疫细胞的分析。
图15为不同CpG制剂体外模拟BBB穿透的效果图。
图16为不同空载体及CpG制剂体外活化BMDC的效果图。
图17为不同CpG制剂体内药代动力学及主要脏器的生物分布图。
图18为不同CpG制剂体内活化肿瘤和淋巴结内免疫细胞的效果图。
R
1为亲水链段端基;R
2为带正电荷分子;R为靶向分子;R
1为靶向分子连接基团。
R
2为环酯单体或者环碳酸酯单体开环后的单元,比如环酯单体包括己内酯(ε-CL)、丙交酯(LA)或乙交酯(GA),环碳酸酯单体包括三亚甲基环碳酸酯(TMC);优选的,R
2为TMC时,所述聚合物的化学结构式如下:
。
靶向聚合物由靶向分子和聚合物B通过R
11基团常规反应得到,R
11基团对应于反应后的R
1基团。
作为优选的实施例,本发明聚合物、靶向聚合物的制备为,将MeO-PEG-P(TMC-DTC)-OH的端羟基通过羟基活化剂N,N'-羰基二咪唑(CDI)活化,再与精胺或PEI反应制得MeO-PEG-P(TMC-DTC)-Sp或者MeO- PEG-P(TMC-DTC)-PEI;在Mal-PEG-P(TMC-DTC)的PEG的Mal端通过迈克尔加成反应偶联肿瘤特异性靶向分子(ApoE多肽),得到靶向ApoE-PEG-P(TMC-DTC)。
作为优选的实施例,本发明基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂的制备方法为,以MeO-PEG-P(TMC-DTC)-Sp与药物为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂;或者以MeO-PEG-P(TMC-DTC)-PEI与药物为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物;或者以MeO-PEG-P(TMC-DTC)-Sp、ApoE-PEG-P(TMC-DTC)与药物为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物;或者以MeO-PEG-P(TMC-DTC)-PEI、ApoE-PEG-P(TMC-DTC)与药物为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物。
上述制备方法,具体包括以下步骤:将MeO-PEG-P(TMC-DTC)-OH、羟基活化剂在干燥的溶剂中反应,然后沉淀、抽滤、真空干燥得到端羟基活化的MeO-PEG-P(TMC-DTC)-CDI;将其溶液滴加到精胺或PEI溶液中反应,然后沉淀、抽滤、真空干燥得到MeO-PEG-P(TMC-DTC)-Sp或者MeO-PEG-P(TMC-DTC)-PEI。
将Mal-PEG-P(TMC-DTC)和溶于有机溶剂的ApoE多肽反应得到靶向ApoE-PEG-P(TMC-DTC)。
将原料溶液加入非离子型缓冲溶液中,室温放置后透析、交联,得到基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物。
本发明实施例涉及的原料都为现有产品,比如PEG、Mal-PEG、TMC、DTC、DPP、能激活免疫反应的寡核苷酸CpG等,都为现有物质;LCPN 细胞来自苏州大学FUNSOM研究院,为鼠源恶性脑胶质瘤细胞,得到的小鼠原位模型与异种移植的人脑胶质瘤小鼠模型相比,更能体现药物的效果,尤其是免疫效果。
实施例一 MeO-PEG5k-P(TMC14.9k-DTC2.0k)嵌段共聚物的合成:MeO-PEG5k-P(TMC14.9k-DTC2.0k)通过开环聚合制备得到,具体操作如下,在氮气手套箱内,依次称取MeO-PEG-OH (
M
n
=5.0
kg/mol, 0.50 g, 100 μmol), TMC (1.5
g, 14.7 mmol) , DTC (0.2 g, 1.0 mmol) 和磷酸二苯酯
(DPP, 0.25 g, 1000 μmol)并溶解在二氯甲烷(DCM,7.9 mL)中。密闭反应器密封好放置40 °C油浴中磁力搅拌下反应3天。之后在冰乙醚中沉淀2次、抽滤、常温真空干燥后得到产物。产率约90%。
1H NMR
(400 MHz, CDCl
3):PEG: d 3.38,
3.65; TMC: d 4.24, 2.05; DTC: d 4.32, 3.02。附图1为MeO-PEG5k-P(TMC14.9k-DTC2.0k)的核磁图谱,通过积分可知,最后得到的聚合物分子量为PEG5k-P(TMC14.9k-DTC2.0k):
。
将上述TMC更换为丙交酯,催化剂更换为1,8-二氮杂二环十一碳-7-烯DBU(50 μmol),DCM 28 mL,其余物质摩尔量不变;反应温度为30度、时间为3小时,其余条件不变,得到PEG5k-P(LA13.1k-DTC1.9k):
。
将上述TMC更换为乙交酯,催化剂更换为为1,8-二氮杂二环十一碳-7-烯DBU(50 μmol),DCM 28 mL,其余物质摩尔量不变;反应温度为30度、时间为3小时,其余条件不变,得到PEG5k-P(GA10.1k-DTC1.8k)。
实施例二 Mal-PEG7.5k-P(TMC15.2k-DTC2.0k)嵌段共聚物的合成:Mal-PEG7.5k-P(TMC15.2k-DTC2.0k)嵌段共聚物通过开环聚合制备得到,具体操作如下,在氮气手套箱内,依次称取Mal-PEG-OH (
M
n
=7.5
kg/mol, 0.75 g, 100 μmol), TMC (1.5
g, 14.7 mmol) , DTC (0.2 g, 1.0 mmol) 和磷酸二苯酯
(DPP, 0.25 g, 1000 μmol)并溶解在二氯甲烷(DCM,7.9 mL)中。密闭反应器密封好放置40 °C油浴中磁力搅拌下反应3天。之后在冰乙醚中沉淀2次、抽滤、常温真空干燥后得到产物。产率约90%。
1H NMR
(400 MHz, CDCl
3):PEG: d 3.38,
3.65; TMC: d 4.24, 2.05; DTC: d 4.32, 3.02; Mal: d 6.8。Mal-PEG7.5k-P(TMC15.2k-DTC2.0k) 的核磁图谱见附图2,通过积分可知,最后得到的聚合物分子量为Mal-PEG7.5k-P(TMC15.2k-DTC2.0k)。
实施例三 PEG5k-P(TMC14.9k-DTC2.0k)-Sp嵌段共聚物的合成:PEG5k-P(TMC14.9k-DTC2.0k)-Sp的合成分为两步、都在无水无氧条件下反应,首先是将PEG5k-P(TMC14.9k-DTC2.0k)的末端羟基用N,N'-羰基二咪唑(CDI)活化,再与精胺的伯胺反应制得。具体的,先将PEG5k-P(TMC14.9k-DTC2.0k) (2.2 g, 羟基0.1 mmol)和CDI(48.6 mg, 0.3
mmol)溶于11 mL干燥的DCM中在30℃下反应4小时,然后在冰乙醚中沉淀2次、过滤、真空干燥得到PEG5k-P(TMC14.9k-DTC2.0k)-CDI。然后称取1.6 g上步产物 (0.07 mmol) 溶于8 mL DCM,冰水浴搅拌条件下,通过恒压滴液漏斗逐滴滴加到7 mL溶有精胺 (141.4 mg, 0.7 mmol)的DMSO中,滴加时间约2h,之后转入30℃下继续反应4小时,接着在冰乙醇中沉淀2次、抽滤并室温真空干燥得到产物PEG5k-P(TMC14.9k-DTC2.0k)-Sp。产率约90%。
1H NMR
(400 MHz, CDCl
3):PEG: d 3.38,
3.65; TMC: d 4.24, 2.05; DTC: d 4.32, 3.02;精胺: d
2.6-2.8;
1H NMR表征显示除了PEG及P(DTC-TMC)峰外,还有精胺的特征峰在d 2.6-2.8,附图3为PEG5k-P(TMC14.9k-DTC2.0k)-Sp的核磁图谱,通过积分可知,精胺的接枝率在90%以上。
更换TMC,根据上述方法,可制备PEG5k-P(CL15.9k-DTC2.0k)-Sp、PEG5k-P(TMBPEC10.3k-DTC2.0k)-Sp、PEG5k-P(LA13.1k-DTC1.9k)-Sp、PEG5k-P(GA10.1k-DTC1.8k)-Sp;核磁积分可知,精胺的接枝率在90%以上。
实施例四 PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k嵌段共聚物的合成:PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k的合成分为两步、都在无水无氧条件下反应,首先是将PEG5k-P(TMC14.9k-DTC2.0k)的末端羟基用N,N'-羰基二咪唑(CDI)活化,再与PEI1.2k的伯胺反应制得。具体的,PEG5k-P(TMC14.9k-DTC2.0k)
(2.2 g, 羟基0.1 mmol)和CDI(48.6
mg, 0.3 mmol)溶于11 mL干燥的DCM中在30℃下反应4小时,然后在冰乙醚中沉淀2次、过滤、真空干燥得到PEG5k-P(TMC14.9k-DTC2.0k)-CDI。然后称取1.6 g上步产物 (0.07 mmol) 溶于8 mL DCM,冰水浴搅拌条件下,通过恒压滴液漏斗逐滴滴加到17 mL溶有PEI1.2k (840 mg, 0.7 mmol)的DCM中,滴加时间约2h,之后转入30℃下继续反应4小时,接着在冰乙醇/冰乙醚(v/v,1/3)中沉淀3次、抽滤并室温真空干燥得到产物产物。产率约70%。
1H NMR
(400 MHz, CDCl
3):PEG: d 3.38,
3.65; TMC: d 4.24, 2.05; DTC: d 4.32, 3.02;
PEI1.2k: d 2.5-2.8;
1H NMR表征显示除了PEG及P(DTC-TMC)峰外,还有PEI1.2k的特征峰在d 2.5-2.8,附图4为PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k的核磁图谱,通过积分可知,PEI1.2k的接枝率在90%以上。
更换TMC,根据上述方法,可制备PEG5k-P(CL15.9k-DTC2.0k)-PEI1.2、PEG5k-P(TMBPEC10.3k-DTC2.0k)-PEI1.2、PEG5k-P(LA13.1k-DTC1.9k)- PEI1.2、PEG5k-P(GA10.1k-DTC1.8k)-PEI1.2k;核磁积分可知,PEI的接枝率在90%以上。
实施例五 合成靶向二嵌段共聚物ApoE-PEG7.5k-P(TMC15.2k-DTC2.0k):ApoE-PEG7.5k-P(TMC15.2k-DTC2.0k)的合成是将具有自由巯基的多肽ApoE-SH与Mal-PEG7.5k-P(TMC15.2k-DTC2.0k)通过迈克尔反应而键合。简要的说,氮气保护下Mal-PEG7.5k-P(TMC15.2k-DTC2.0k) (247 mg,
0.01 mmol) 与ApoE-SH (30 mg, 0.012 mmol) 相继溶解在2.5 mL DMF中,在37℃下反应8小时。然后在室温下,将反应物用DMSO透析(MWCO 7000 Da)6 h(换 3 次透析液),再用DCM透析6 h(换 3 次透析介质),接着在冰乙醇中沉淀2次、抽滤并室温真空干燥得到产物,产率85%。附图5为ApoE-PEG7.5k-P(TMC15.2k-DTC2.0k)的核磁图谱,其中出现除了PEG及P(DTC-TMC)峰外,还有ApoE的特征峰在d 0.8-1.8、4.2-8.2。用 BCA蛋白分析试剂盒在 492 nm 处、用已知浓度ApoE样品建立的标准曲线,可测定其ApoE连接效率。经分析可得靶向聚合物的ApoE的接枝率为95%。
更换TMC,根据上述方法,可制备ApoE-PEG7.5k-P(CL15.6k-DTC1.9k)、ApoE-PEG7.5k-P(LA11.8k-DTC1.7k)、ApoE-PEG7.5k-P(GA9.8k-DTC1.6k)、 ApoE-PEG7.5k-P(TMBPEC10.0k-DTC1.9k);ApoE的接枝率为90%~95%。
通过核磁测试对以上产物进行验证,发现所得产物为设计产物,以上聚合物以及靶向聚合物用于以下实施例制备载药囊泡。
实施例六 基于PEG5k-P(TMC14.9k-DTC2.0k)-Sp靶向载药囊泡的制备:采用溶剂交换法制备载CpG的不同ApoE靶向密度的ApoE-PS-Sp-CpG。具体步骤为:在 950 μL的HEPES缓冲液(5 mM, pH 6.8)中加入一定量的CpG
(CpG ODN 1826,理论载药量10 wt.%),再将50μL ApoE-PEG-P(TMC-DTC)和MeO-PEG-P(TMC-DTC)-SP的DMSO 溶液(二者摩尔比1:4,总聚合物浓度为40 mg/mL)注入 HEPES 中,搅拌10 min,然后将得到的囊泡在HEPES中透析2 h(MWCO 350 kDa),在HEPES和PB缓冲液(10 mM, pH 7.4)的混合液(v/v,1/1)中透析1 h,在PB中透析2 h,得到靶向载药囊泡,记为ApoE-PS-Sp-CpG,为20%ApoE靶向组。用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量为10 wt.%时,包封率为100%,即理论载药量、实际载药量一致,附图6为上述得到的囊泡粒径分布图, 粒径约50 nm,粒径分布窄。
更换TMC为己内酯(ε-CL)、丙交酯(LA)、乙交酯(GA)或2,4,6-三甲氧基苯甲缩醛季戊四醇碳酸酯单体 (TMBPEC),根据上述方法得到的载CpG的靶向载药交联囊泡的包封率分别为96%、83%、92%、85%。
将CpG ODN 1826更换为CpG
ODN2395或者CpG ODN 2006,其余不变,根据上述方法得到的ApoE靶向载药交联囊泡包封率都为100%。
将上述理论载药量更改为5 wt.%,其余不变,得到ApoE靶向载药交联囊泡,用Nanodrop测定CpG在理论载药量为5 wt.%时,包封率为100%,即理论载药量、实际载药量一致,得到的囊泡粒径约50 nm,粒径分布窄。
更改ApoE-PEG-P(TMC-DTC)和MeO-PEG-P(TMC-DTC)-SP的摩尔比,其余不变,得到不同ApoE靶向密度的载药交联囊泡(5%ApoE靶向组、10%ApoE靶向组、15%ApoE靶向组、25%ApoE靶向组、30%ApoE靶向组、35%ApoE靶向组),用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量为5
wt.%,靶向载药囊泡的包封率都接近为100%,在理论载药量为10 wt.%时,各靶向组的包封率依次为100%、100%、100%、95%、90%、84%。所有囊泡粒径在50 nm~80nm,粒径分布窄。
采用溶剂交换法制备载CpG的PS-Sp-CpG。具体步骤为:在 950 μL的HEPES缓冲液(5 mM, pH 6.8)中加入一定量的CpG (理论载药量分别5 wt.%、10 wt.%),再将50μL MeO-PEG-P(TMC-DTC)-SP的DMSO 溶液(聚合物浓度为40 mg/mL)注入 HEPES 缓冲溶液,搅拌10 min,然后将得到的分散液在HEPES缓冲液中透析2 h(MWCO 350 kDa),在HEPES和PB(10 mM, pH 7.4)的混合缓冲液(v/v
1/1)中透析1 h,在PB缓冲液中透析2 h,得到靶向载药囊泡,记为PS-Sp-CpG(载药量10 wt.%);用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量为5 wt.%、10 wt.%时,包封率都为100%,即理论载药量、实际载药量一致,上述得到的囊泡粒径为50nm~55 nm,粒径分布窄。
实施例七 基于PEG5k-P(TMC14.9k-DTC2.0k)-PEI1.2k靶向载药囊泡的制备:采用溶剂交换法制备载CpG的不同ApoE靶向密度的ApoE-PS-PEI -CpG。具体步骤为:在 950 μL的HEPES缓冲液(5 mM, pH 6.8)中加入一定量的CpG (理论载药量为10wt.%),再将50μL ApoE-PEG-P(TMC-DTC)和MeO-PEG-P(TMC-DTC)-PEI1.2k的DMSO 溶液(二者摩尔比为1﹕9,总聚合物浓度为40 mg/mL)注入 HEPES 中,搅拌10 min左右,得到的囊泡在HEPES中透析2 h(MWCO 350 kDa),在HEPES和PB(10 mM, pH 7.4)的混合缓冲液(v/v 1/1)中透析1 h,在PB缓冲液中透析2 h,得到靶向载药囊泡,记为ApoE-PS-PEI-CpG,为10%ApoE靶向组。用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量10 wt.%时,所得囊泡的包封率都为100%,上述得到的囊泡粒径50 nm左右,粒径分布窄。
更换TMC为己内酯(ε-CL)、丙交酯(LA)、乙交酯(GA)或2,4,6-三甲氧基苯甲缩醛季戊四醇碳酸酯单体 (TMBPEC),根据上述方法得到的ApoE靶向载药交联囊泡包封率分别为98%、85%、93%、86%。
将CpG ODN 1826更换为CpG
ODN2395或者CpG ODN 2006,其余不变,根据上述方法得到的ApoE靶向载药交联囊泡包封率都为100%。
将上述理论载药量更改为5 wt.%或者15
wt.%,其余不变,得到ApoE靶向载药交联囊泡,用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量为5
wt.% 或者15 wt.%时,包封率为100%,即理论载药量、实际载药量一致,得到的囊泡粒径50 nm~65 nm左右,粒径分布窄。
更改MeO-PEG-P(TMC-DTC)-PEI、ApoE-PEG-P(TMC-DTC)的摩尔比,其余不变,得到不同ApoE靶向密度的载药交联囊泡(5%ApoE靶向组、15%ApoE靶向组、20%ApoE靶向组、25%ApoE靶向组、30%ApoE靶向组、35%ApoE靶向组),用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量为5
wt.%、10 wt.%以及15wt.%时,ApoE靶向密度为5%、15%和20%的靶向载药囊泡的包封率都为100%,即理论载药量、实际载药量一致;ApoE靶向密度为25%、30%和35%的靶向载药囊泡的包封率依次下降,为75%-90%。所有囊泡粒径在50 nm~85nm,粒径分布较窄。
采用溶剂交换法制备载CpG的PS-PEI-CpG。具体步骤为:在 950 μL的HEPES缓冲液(5 mM, pH 6.8)中加入一定量的CpG (理论载药量分别5 wt.%、10 wt.%),再将50μL MEO-PEG-P(TMC-DTC)-PEI的DMSO 溶液(聚合物浓度为40 mg/mL)注入 HEPES中,搅拌10 min,然后将得到的分散液在HEPES中透析2 h(MWCO 350 kDa),在HEPES和PB(10 mM, pH 7.4)的混合缓冲液(v/v
1/1)中透析1 h,在PB缓冲液中透析2 h,得到靶向载药囊泡,记为PS-PEI-CpG(载药量10 wt.%);用Nanodrop测定CpG的载药量和包封率,结果显示,理论载药量为5
wt.%、10 wt.% 以及15wt.%时,包封率都为100%,即理论载药量、实际载药量一致,上述得到的囊泡粒径为50 nm~60 nm,粒径分布窄。
根据实施例六的制备方法,将药物CpG更换为Cy5标记的颗粒酶B (GrB),得到载GrB的不同ApoE靶向密度的囊泡,用于实施例八。
根据实施例六制备ApoE-PS-Sp-CpG的方法,将CpG更换为GrB,其余不变,得到ApoE-PS-Sp-GrB,发现理论载药量为5%时,不同接枝密度的ApoE-PS-Sp-GrB包封率最高为85%,粒径为50 nm~68 nm,粒径分布窄。
实施例八 靶向载药囊泡的细胞内吞实验和模拟穿透血脑屏障(BBB):靶向载药囊泡的细胞内吞实验以载Cy5标记的颗粒酶B
(GrB)、表面有不同ApoE密度的囊泡ApoE-PS为例、采用流式细胞仪(FACS)跟踪测定。将900 µL的LCPN细胞的1640培养基(含10%牛血清、100 IU/mL青霉素及100 IU/mL链霉素)悬浮液铺于6孔培养板(每孔1.5×10
5个细 胞)中,37 ℃、5%二氧化碳条件下培养24 h。将100 µL的不同ApoE靶向密度的载Cy5-GrB囊泡的PBS溶液加入孔中(Cy5终浓度为2 nM), 继续孵育4 h后,移去培养基,用胰酶(0.25% (w/v), 含 0.03% (w/v) EDTA)消化并用PBS洗2次。最后用FACS(BD FACS)测试。结果参见附图7A,靶向囊泡ApoE-PS比无靶PS可以更多地被内吞进入LCPN细胞,10%、20%、30% ApoE靶向组的Cy5荧光值分别的无靶的4.6、 5.8、 5.4倍。
此外,用bEnd.3构建体外BBB模型,以此来考察ApoE囊泡穿透BBB 的能力。bEnd.3用DMEM 培养基(内含100 U/mL青霉素、100 U/mL链霉素和10% (v/v) 胎牛血清)在含5% CO
2、37 ℃条件下培养。建立体外BBB模型的方法如下,在24孔板上加上细胞培养小室(平均孔径为1.0 μm,底表面积为0.33 cm
2),24孔板和小室内分别加入DMEM 培养基800 μL和300μL,最后在小室内接种10
5个细胞/孔。用显微镜和跨膜电阻仪来检测bEnd.3细胞单层的完整性;细胞单层镜检无空隙,跨膜电阻高于200 Ω·cm
2的BBB体外模型被用来考察ApoE-PS穿透体外BBB能力。跨BBB研究的步骤如下:将Cy5标记的带不同ApoE密度的ApoE-PS样品加到小室中(聚合物浓度为0.1 mg/mL)。孵育24 h后,用胰酶(0.25% (w/v), 含
0.03% (w/v) EDTA)消化并用PBS洗2次。用荧光光谱仪测定每个样品的Cy5荧光。结果表明靶向囊泡ApoE-PS比无靶PS可更多穿过BBB模型。附图7B显示,20% ApoE靶向组的Cy5荧光值是无靶组的11.6倍。
实施例九 通过尾静脉给药方式研究不同CpG制剂、不同给药剂量对原位鼠源脑胶质瘤LCPN模型小鼠的治疗效果:原位鼠源脑胶质瘤LCPN模型小鼠的建立:选用体重为18~20
g左右,6~8周龄的C57BL/6J小鼠,通过脑立体定位仪用26号汉密尔顿注射器在右颅注射5 μL含5×10
4 个LCPN 细胞(+1.0 mm anterior, 2.5 mm lateral, and 3.0 mm deep),保留5 min。接种4天后,随机分组,共分为6组(每组6只小鼠):PBS、自由CpG (1 mg/kg)、PS-Sp-CpG (1 mg/kg)、ApoE-PS-Sp-CpG
(0.5、1、2
mg/kg)。在接种后4、6、8天各药剂通过尾静脉注射到小鼠体内,在接种后5、7、9天眼眶取血来监测小鼠血浆中TNF-α、IFN-γ 和 IL-6的浓度变化。在4~28天,每两天称量小鼠的体重。由图8可知,其中A、B、C分别为各组小鼠血浆中TNF-α、IFN-γ、IL-6的浓度变化,从图上可以看出,各CpG治疗组能够显著提高小鼠血浆中3种细胞因子的浓度,且ApoE靶向组的效果最明显。D为各组小鼠的体重变化,E为生存曲线。从图上可以看出,ApoE靶向治疗组可以延缓小鼠体重下降的趋势,且给药剂量为1
mg/kg时治疗效果最好,与PBS组、自由CpG组、PS-CpG组相比,能显著延长小鼠的生存期(39天对24、27、29天,**
p)。
实施例十 通过尾静脉给药方式研究ApoE-PS-Sp-CpG联合放疗(X射线)对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果:如实施例九建立原位鼠源脑胶质瘤LCPN模型小鼠,接种4天后随机分组,分为4组(每组6只小鼠):PBS、X-Ray (3Gy/次)、ApoE-PS-Sp-CpG
(1 mg/kg)、ApoE-PS-Sp-CpG (1 mg/kg)+ X-Ray (3Gy/次),接种后4、6、8天尾静脉注射ApoE-PS-Sp-CpG到小鼠体内,6小时后照射X-Ray。在4~28天,每两天称重。由图9可知,A为小鼠体重变化,B为生存曲线。与PBS组相比,X-Ray和ApoE-PS-Sp-CpG单独组或联合组均可延缓小鼠体重下降、延长生存期,但联合组效果最明显:体重下降最小、生存期最长(25、35、39、48天)。
实施例十一 通过尾静脉给药方式研究ApoE-PS-Sp-CpG联合αCTLA-4抗体对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果:如实施例九建立原位鼠源脑胶质瘤LCPN模型小鼠,接种4天后,随机分组,共分为3组(每组6只小鼠):PBS、ApoE-PS-Sp-CpG
(1 mg/kg)、ApoE-PS-Sp-CpG (1 mg/kg)+αCTLA-4 (10 mg/kg),在接种后4、6、8天后两组ApoE-PS-Sp-CpG通过尾静脉注射到小鼠体内,在接种后9、11、13腹腔给第三组小鼠αCTLA-4。在4~28天,每两天称量小鼠的体重。由图10可知,A为各组小鼠的体重变化,B为生存曲线,与PBS组相比,ApoE-PS-Sp-CpG (1 mg/kg)可明显延缓小鼠体重下降的趋势、延长小鼠的生存期,但联合αCTLA-4并没有进一步增强治疗效果(生存期分别为25天、39天、40天,***
p )。
实施例十二 通过尾静脉给药方式比较ApoE-PS-Sp-CpG和ApoE-PS-PEI1.2k-CpG对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果:如实施例九建立原位鼠源脑胶质瘤LCPN模型小鼠,接种4天后,随机分组,共分为3组(每组6只小鼠):PBS、ApoE-PS-Sp-CpG
(1 mg/kg)、ApoE-PS-PEI1.2k-CpG (1 mg/kg),在接种后4、6、8天药剂通过尾静脉注射到小鼠体内。在4~28天,每两天称量小鼠的体重。由图11可知,A为各组小鼠的体重变化,B为生存曲线,与PBS组相比,ApoE-PS-Sp-CpG和ApoE-PS-PEI1.2k-CpG均可显著延缓小鼠体重下降的趋势、延长生存期(***
p),ApoE-PS-PEI1.2k-CpG组的治疗效果比ApoE-PS-Sp-CpG稍好些(26、39.5、43.5天),说明聚合物囊泡内壳的正电荷物质对治疗效果有影响。
实施例十三 通过鼻腔静脉给药方式研究不同CpG制剂对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果:如实施例九建立原位鼠源脑胶质瘤LCPN模型小鼠,接种4天后随机分组,共分为5组(每组7只小鼠):PBS、自由CpG (0.5 mg/kg)、PS-PEI1.2k-CpG (0.5 mg/kg)、ApoE-PS-PEI1.2k-CpG
(0.5 mg/kg)、ApoE-PS-Sp-CpG (0.5 mg/kg)。在接种后4、9、14天药剂通过鼻腔静脉注射到小鼠体内。在4~28天,每两天称量小鼠的体重。由图12可知,A为各组小鼠的体重变化,B为生存曲线,ApoE靶向组可以延缓小鼠体重下降的趋势,ApoE-PS-PEI1.2k-CpG的生存期显著长于PS-PEI1.2k-CpG组(40天、33天)、而和ApoE-PS-Sp-CpG的没有显著性差异(40天vs 39天)。与PBS组、CpG组、PS-PEI1.2k-CpG组相比,ApoE-PS-PEI1.2k-CpG能明显延长小鼠的生存期(26、31、33和40天)。
实施例十四 通过鼻腔静脉给药方式研究ApoE-PS-PEI1.2k-CpG联合放疗对原位鼠源脑胶质瘤LCPN模型小鼠中的治疗效果:如实施例九建立原位鼠源脑胶质瘤LCPN模型小鼠,接种4天后随机分组,分为4组(每组7只小鼠):PBS、X-Ray (3Gy/次)、ApoE-PS-PEI1.2k-CpG (0.5 mg/kg)、ApoE-PS-PEI1.2k-CpG (0.5 mg/kg)+ X-Ray (3Gy/次),在接种后4、9、14天先照射X-Ray,照后6小时ApoE-PS-PEI1.2k-CpG通过鼻腔静脉注射到小鼠体内。在4~28天,每两天称重。由图13可知,A为小鼠体重变化,B为生存曲线,与PBS组相比,X-Ray和ApoE-PS-Sp-CpG
(0.5 mg/kg)单独使用或联合使用均可延缓小鼠体重下降的趋势、延长小鼠生存期,但联合组效果最明显 (26、35、40、45天)。
实施例十五 荷原位LCPN的小鼠的肿瘤和脾脏中免疫细胞的分析:采用常规方法对荷原位LCPN的小鼠的肿瘤和脾脏中免疫细胞的分析(n = 3、实施例九),结果见图14,A为肿瘤中CTL(CD8+ T细胞)和Th(CD4+ T细胞)的百分比,B为肿瘤中巨噬细胞(CD11b+ F4/80+)和M2表型(CD11b+F4/80+CD206+)的百分比,C为肿瘤中活化的CD86+或/和CD80+ APC的百分比,D为脾脏中效应记忆T细胞(CD8+CD44+CD62L-)的百分比。这些数据表明,ApoE-PS-CpG可通过激活CTL触发肿瘤微环境内的先天性和适应性免疫反应,显著募集肿瘤抗原呈递细胞APC,减少M2表型巨噬细胞并刺激巨噬细胞,并能产生一定的免疫记忆效应。
MTT法使用人乳腺癌癌细胞(MCF-7),以5×10
3个/mL将细胞种于96孔板,每孔80 μL,24小时后培养至细胞贴壁70%左右。交联聚合物囊泡的制备按实施例六、七制备,不加入药物。然后,实验组各孔中分别加入含有不同浓度(0.1-0.5
mg/mL)的囊泡,另设细胞空白对照孔和培养基空白孔(复4孔)。培养24小时后,每孔加入MTT(5.0 mg/mL)10 μL,继续培养4小时后每孔加入150 μL DMSO溶解生成的结晶子,用酶标仪于492 nm处测吸光度值,以培养基空白孔调零,计算细胞存活率。结果显示,当各种交联聚合物囊泡(靶向、非靶向、不同疏水链段)的浓度从0.1增到0.5 mg/mL时,MCF-7的存活率仍高于88%,说明本发明交联聚合物囊泡具有良好的生物相容性。
测试对象为实施例六的ApoE-PS-Sp-CpG,实施例七的ApoE-PS-PEI-CpG,研究载药囊泡对MCF-7细胞的毒性,CpG浓度为0.05 mg/mL,以自由CpG为对照。细胞的培养同上,共同培养4小时后,吸出样品换上新鲜培养基继续孵育68 h后,而后的MTT加入、处理和测定吸光度同实施例上,由结果可知,靶向交联聚合物囊泡ApoE-PS-Sp-CpG、ApoE-PS-PEI-CpG、自由CpG处理的MCF-7细胞的存活率分别约为的85%、91%和97%。
还做了上述载药聚合物囊泡对LCPN细胞的毒性实验,同上述实验操作相同,由结果可知,靶向交联聚合物囊泡ApoE-PS-Sp-CpG、ApoE-PS-PEI-CpG、自由CpG处理的LCPN细胞的存活率分别约为90%、82% 和98%。
动物选择同实施例十二,在皮下注射1×10
7个MCF-7细胞,大约3.5周后,肿瘤大小为100 mm
3时开始实验,随机分组,共分为3组(每组6只小鼠):PBS、ApoE-PS-Sp-CpG (1 mg/kg)、ApoE-PS-PEI1.2k-CpG
(1 mg/kg),在接种后4、6、8天药剂通过尾静脉注射到小鼠体内。在0~28天,每两天称量小鼠的体重,PBS组、ApoE-PS-PEI1.2k-CpG组、ApoE-PS-Sp-CpG组的中位生存期分别为29、30.5、31天(皮下肿瘤长到1000 mm
3判定死亡)。
以下实施例以实施例六的ApoE-PS-Sp-CpG作为ApoE-PS-CpG。对应的:去除靶向ApoE,为PS-CpG;可根据实验需要常规在CpG上标记Cy3。
实施例十六 ApoE-PS-CpG的体外模拟BBB穿透实验:以载Cy3标记的CpG (CpG-Cy3)的囊泡ApoE-PS-CpG为例,根据实施例八的方法建立体外BBB模型,附图15A是构建的体外BBB模型的示意图。跨BBB研究的步骤如下:分别将CpG-Cy3、PS-CpG-Cy3和ApoE-PS-CpG-Cy3的样品加到小室中(以CpG-Cy3计,1 μg/孔)(n=3)。在6、12和24 h,分别收集下层全部培养基,并补充新鲜的800 μL DMEM培养基。用荧光光谱仪测定每个样品的Cy3荧光。穿透效率定义为累计穿透BBB的CpG-Cy3的量/初始加入的CpG-Cy3的量。附图15B显示相比于free CpG和无靶向组,ApoE靶向组有更高的穿透效率。
实施例十七 ApoE-PS-CpG体外活化BMDC实验:根据常规方法,提取C5BL/6J小鼠骨髓内的免疫细胞并在体外用GM-CSF(20 ng/mL)诱导分化成未成熟的BMDC,研究了空载体(PS, ApoE-PS,聚合物浓度:4 μg/mL)以及不同CpG制剂(CpG, PS-CpG, ApoE-PS-CpG, CpG浓度: 0.4 μg/mL, 聚合物浓度: 4 μg/mL)对未成熟BMDC的活化情况。结果表明,ApoE-PS和CpG制剂均可以提高DC细胞的比例(CD11c
+) (图16A),说明几种样品可以促进单核细胞转化为DC细胞,但只有ApoE-PS-CpG可以明显促进DC细胞的成熟(CD80
+CD86
+/CD11c
+ >
50%)(图16B)。此外,测试不同组细胞的培养基中的细胞因子发现,ApoE-PS-CpG组相较于其他组可以明显提高细胞分泌的TNF-α (图16C)和IL-6的表达水平 (图16D)。
实施例十八 不同CpG制剂体内药代动力学及主要脏器的生物分布实验:实验选用体重为18~20
g左右,6~8周龄的C57BL/6J小鼠。用有荧光标记的CpG-Cy3和无荧光标记的CpG(m/m 1/3)来进行体内药代动力学及生物分布实验,CpG的总剂量是1 mg/kg。药代动力学实验用健康小鼠来开展,在小鼠尾静脉注射了不同的CpG制剂后,在设定时间点从眼眶取70 μL左右全血,立即加入肝素钠预先处理过的EP管内,离心取20 μL血浆,用600 μL DMSO (含20 mM DTT)破坏,并用荧光光谱仪检测。结果发现,相较于free CpG,聚合物囊泡装载的CpG纳米佐剂可以明显延长CpG的半衰期(7.5, 6.7 vs 2.2
h)和AUC (75.2, 69.6 vs 24.6 nM·h) (图17A)。生物分布实验用原位LCPN模型小鼠来开展,共分为3组,每组3只小鼠。通过脑立体定位仪用26号汉密尔顿注射器在右卤注射5 μL 5×10
4 LCPN 细胞(+1.0
mm anterior, 2.5 mm lateral, and 3.0 mm deep),保留5 min。接种9天后,开始随机分组进行实验,共分为3组,每组3只小鼠。通过在尾静脉给药12 h后,解剖小鼠各脏器通过荧光光谱仪对CpG-Cy3进行定量,结果发现,相对于free和无靶组,ApoE靶向组小鼠在脑肿瘤和颈部淋巴结部位有很高的CpG-Cy3富集(图17B)。
实施例十九 不同CpG制剂体内活化肿瘤和淋巴结内免疫细胞的流式分析实验:实验选用体重为18~20
g左右,6~8周龄的C57BL/6J小鼠,通过脑立体定位仪用26号汉密尔顿注射器在右卤注射5 μL 5×10
4
LCPN 细胞(+1.0 mm anterior, 2.5 mm lateral, and
3.0 mm deep),保留5 min。接种4天后,开始随机分组进行实验,共分为4组,每组3只小鼠。3组分别为:PBS、free CpG (1 mg/kg)、PS-Spermine-CpG
(1 mg/kg)、ApoE-PS-Spermine-CpG (1 mg/kg)在接种后4、6、8天通过尾静脉注射到小鼠体内,并在全部给完药后第二天(D9)解剖小鼠的脑肿瘤和颈部淋巴结,用CD11c、CD80、CD86染DC细胞,用CD4、CD8染T细胞。图18中的A、B、C、D分别为各组小鼠肿瘤中成熟DC (CD11c
+CD80
+CD86
+)和CTL (CD8
+),及颈部淋巴结中成熟DC和CTL的比例。结果发现, ApoE靶向组小鼠的脑肿瘤和淋巴结中的成熟DC和CTL的比例均比其他组高。
理论上,CpG作为TLR激活剂可诱导细胞抗肿瘤免疫反应,但是现有技术对胶质瘤以及黑色素瘤病人早期的临床跟踪回访发现,其应用结果不乐观,主要是CpG引起炎症反应以及大脑水肿;为了符合CpG作为小分子的免疫佐剂需要进入抗原呈递细胞APC才能起到作用的要求,现有技术都采用颅内给药的方法,这不可避免的存在诸多缺陷。本发明首次公开的基于交联生物可降解聚合物囊泡的装载佐剂CpG取得100%的包封率,可通过尾静脉或者鼻腔静脉注射,作为单独使用的纳米疫苗或是纳米免疫佐剂而用于肿瘤的高效免疫治疗,尤其是解决了现有技术认为CpG需要颅内给药的技术偏见,实验证实,本发明纳米佐剂给药避免了免疫毒性,小鼠生存期大幅提升。
Claims (10)
- 一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂,其特征在于,所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂由具有不对称膜结构的可逆交联生物可降解聚合物囊泡装载药物得到;所述药物为能激活免疫反应的寡核苷酸;所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物自组装后得到或者所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物与靶向聚合物自组装后得到;所述聚合物包括亲水链段、疏水链段以及带正电荷分子;所述靶向聚合物包括靶向分子、亲水链段和疏水链段;所述疏水链段为聚碳酸酯链段和/或聚酯链段。
- 根据权利要求1所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂,其特征在于:亲水链段为聚乙二醇;疏水链段含有双硫五元环碳酸酯单元;带正电荷分子包括精胺、聚乙烯亚胺;疏水链段的分子量为亲水链段分子量的1.5~5倍,带正电荷分子的分子量为亲水链段分子量的2%~40%。
- 根据权利要求2所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂,其特征在于:聚乙二醇的分子量为5000~7500Da;聚乙烯亚胺的分子量为聚乙二醇分子量的7%~40%;精胺的分子量为聚乙二醇分子量的2.7%~4%。
- 根据权利要求1所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂,其特征在于:所述能激活免疫反应的寡核苷酸为CpG;靶向分子为ApoE多肽。
- 权利要求1所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂的制备方法,其特征在于,包括以下步骤:以聚合物、能激活免疫反应的寡核苷酸为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂;或者以聚合物、靶向聚合物、能激活免疫反应的寡核苷酸为原料,通过溶剂置换法制备基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂。
- 根据权利要求6所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂的制备方法,其特征在于,所述能激活免疫反应的寡核苷酸为CpG;靶向分子为ApoE多肽。
- 权利要求1所述基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂在制备抗肿瘤药物中的应用。
- 根据权利要求8所述的应用,其特征在于,抗肿瘤药物为抗脑肿瘤药物。
- 具有不对称膜结构的可逆交联生物可降解聚合物囊泡作为能激活免疫反应的寡核苷酸载体的应用或者在制备能激活免疫反应的寡核苷酸载体中的应用;所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物自组装后得到或者所述具有不对称膜结构的可逆交联生物可降解聚合物囊泡由聚合物与靶向聚合物自组装后得到;所述聚合物包括亲水链段、疏水链段以及带正电荷分子;所述靶向聚合物包括靶向分子、亲水链段以及疏水链段;所述疏水链段为聚碳酸酯链段和/或聚酯链段。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/012,218 US20230256091A1 (en) | 2020-03-11 | 2021-01-31 | Anti-tumor nano adjuvant based on vesicle formed by cross-linked biodegradable polymer, preparation method therefor and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010167801.2A CN111437258B (zh) | 2020-03-11 | 2020-03-11 | 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 |
CN202010167801.2 | 2020-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021179843A1 true WO2021179843A1 (zh) | 2021-09-16 |
Family
ID=71627484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/074571 WO2021179843A1 (zh) | 2020-03-11 | 2021-01-31 | 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230256091A1 (zh) |
CN (1) | CN111437258B (zh) |
WO (1) | WO2021179843A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111437258B (zh) * | 2020-03-11 | 2022-04-26 | 苏州大学 | 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 |
CN113197860A (zh) * | 2021-04-28 | 2021-08-03 | 苏州大学 | 聚合物囊泡纳米sting激动剂及其制备方法与应用 |
CN113350283A (zh) * | 2021-06-04 | 2021-09-07 | 苏州大学 | 一种化疗免疫联合药物及其制备方法与应用 |
CN113368053B (zh) * | 2021-06-04 | 2023-08-01 | 苏州大学 | 一种装载溶瘤肽的聚合物囊泡及其与囊泡免疫佐剂、pd-1单抗的联合用药 |
CN115531554B (zh) * | 2022-10-18 | 2023-08-11 | 河南大学 | 合成致死纳米药物组合载体及其在制备治疗gbm靶向药物上的应用 |
WO2024145901A1 (zh) * | 2023-01-06 | 2024-07-11 | 苏州大学 | 一种共载药胶束及其协同药物体系与制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004085712A2 (en) * | 2003-03-24 | 2004-10-07 | Penn State Research Foundation | Multi-functional polymeric materials and their uses |
CN101792516A (zh) * | 2009-12-28 | 2010-08-04 | 苏州大学 | 生物可降解聚合物囊泡及其制备和应用 |
CN105997880A (zh) * | 2016-07-15 | 2016-10-12 | 苏州大学 | 一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物及其制备方法 |
CN106137968A (zh) * | 2016-07-15 | 2016-11-23 | 苏州大学 | 内膜具有正电的可逆交联生物可降解聚合物囊泡及其制备方法与在制备抗肿瘤药物中的应用 |
CN106177975A (zh) * | 2016-06-30 | 2016-12-07 | 苏州大学 | 具有不对称膜结构的可逆交联生物可降解聚合物囊泡及其制备方法与在核酸药物中的应用 |
CN106905519A (zh) * | 2015-12-22 | 2017-06-30 | 博瑞生物医药(苏州)股份有限公司 | 生物可降解双亲性聚合物、由其制备的聚合物囊泡及在制备肺癌靶向治疗药物中的应用 |
CN107998082A (zh) * | 2017-12-13 | 2018-05-08 | 苏州大学 | 一种还原响应聚合物囊泡纳米药物在制备脑肿瘤治疗药物中的应用 |
CN108126210A (zh) * | 2017-12-13 | 2018-06-08 | 苏州大学 | 一种单靶向还原响应囊泡纳米药物在制备脑肿瘤治疗药物中的应用 |
CN111437258A (zh) * | 2020-03-11 | 2020-07-24 | 苏州大学 | 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 |
-
2020
- 2020-03-11 CN CN202010167801.2A patent/CN111437258B/zh active Active
-
2021
- 2021-01-31 WO PCT/CN2021/074571 patent/WO2021179843A1/zh active Application Filing
- 2021-01-31 US US18/012,218 patent/US20230256091A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004085712A2 (en) * | 2003-03-24 | 2004-10-07 | Penn State Research Foundation | Multi-functional polymeric materials and their uses |
CN101792516A (zh) * | 2009-12-28 | 2010-08-04 | 苏州大学 | 生物可降解聚合物囊泡及其制备和应用 |
CN106905519A (zh) * | 2015-12-22 | 2017-06-30 | 博瑞生物医药(苏州)股份有限公司 | 生物可降解双亲性聚合物、由其制备的聚合物囊泡及在制备肺癌靶向治疗药物中的应用 |
CN106177975A (zh) * | 2016-06-30 | 2016-12-07 | 苏州大学 | 具有不对称膜结构的可逆交联生物可降解聚合物囊泡及其制备方法与在核酸药物中的应用 |
CN105997880A (zh) * | 2016-07-15 | 2016-10-12 | 苏州大学 | 一种基于交联生物可降解聚合物囊泡的抗肿瘤纳米药物及其制备方法 |
CN106137968A (zh) * | 2016-07-15 | 2016-11-23 | 苏州大学 | 内膜具有正电的可逆交联生物可降解聚合物囊泡及其制备方法与在制备抗肿瘤药物中的应用 |
CN107998082A (zh) * | 2017-12-13 | 2018-05-08 | 苏州大学 | 一种还原响应聚合物囊泡纳米药物在制备脑肿瘤治疗药物中的应用 |
CN108126210A (zh) * | 2017-12-13 | 2018-06-08 | 苏州大学 | 一种单靶向还原响应囊泡纳米药物在制备脑肿瘤治疗药物中的应用 |
CN111437258A (zh) * | 2020-03-11 | 2020-07-24 | 苏州大学 | 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 |
Non-Patent Citations (1)
Title |
---|
HONGLIANG XIN; XINYI JIANG; JIJIN GU; XIANYI SHA; LIANGCEN CHEN; KITKI LAW; YANZUO CHEN; XIAO WANG; YE JIANG; XIAOLING FANG;: "Angiopep-conjugated poly(ethylene glycol)-co-poly(-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma", BIOMATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 32, no. 18, 19 February 2011 (2011-02-19), AMSTERDAM, NL, pages 4293 - 4305, XP028245764, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2011.02.044 * |
Also Published As
Publication number | Publication date |
---|---|
US20230256091A1 (en) | 2023-08-17 |
CN111437258B (zh) | 2022-04-26 |
CN111437258A (zh) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021179843A1 (zh) | 基于交联生物可降解聚合物囊泡的抗肿瘤纳米佐剂及其制备方法与应用 | |
Li et al. | Cell-based drug delivery systems for biomedical applications | |
Zhou et al. | Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle | |
CA3016655C (en) | Ovarian cancer specifically targeted biodegradable amphiphilic polymer, polymer vesicle prepared thereby and use thereof | |
KR102144749B1 (ko) | 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용 | |
WO2022253080A1 (zh) | 一种化疗免疫联合药物及其制备方法与应用 | |
WO2022228469A1 (zh) | 聚合物囊泡纳米sting激动剂及其制备方法与应用 | |
WO2022052413A1 (zh) | 具有不对称膜结构的载药聚合物囊泡及其制备方法与在制备治疗急性髓系白血病药物中的应用 | |
WO2016167333A1 (ja) | ポリ(l-アルギニン)セグメント含有ブロック共重合体とポリアニオン性ポリマーのポリイオンコンプレックス | |
Gou et al. | Non‐Pore Dependent and MMP‐9 Responsive Gelatin/Silk Fibroin Composite Microparticles as Universal Delivery Platform for Inhaled Treatment of Lung Cancer | |
CN116763725B (zh) | 一种智能响应型可注射水凝胶及其制备方法和应用 | |
CN112535735B (zh) | 一种可同时放大免疫原性细胞死亡以及增强抗肿瘤效果的联合用药物 | |
CN107281141B (zh) | 生物可降解交联纳米药物冻干粉的制备方法 | |
Liu et al. | Dual-responsive PEG–lipid polyester nanoparticles for siRNA and vaccine delivery elicit anti-cancer immune responses by modulating tumor microenvironment | |
CN112546236B (zh) | 一种pH敏感的双药物骨架聚合物前药及其制备方法和应用 | |
CN114652699A (zh) | 一种尺寸转变型纳米递药载体及其制备方法和应用 | |
CN110214145B (zh) | CP-iRGD多肽、iDPP纳米粒、载药复合物及其制备方法和应用 | |
Xie et al. | Co-delivery of doxorubicin and STING agonist cGAMP for enhanced antitumor immunity | |
CN114053213B (zh) | 术后腔内化疗/免疫协同治疗的缓释凝胶递药系统及其制备方法和应用 | |
CN113995750B (zh) | 基于维生素c水凝胶的肿瘤免疫治疗用药物组合物 | |
CN114702608B (zh) | 一种酯酶响应聚合物及其应用 | |
US10179173B2 (en) | Semi-solid delivery systems | |
CN115887380B (zh) | 一种器官靶向聚合物纳米囊泡系统及其制备方法和应用 | |
CN106727330B (zh) | 一种靶向多功能聚合类脂质体的制备方法 | |
CN118356410A (zh) | 一种适配kras突变型胰腺癌的乏氧响应递药纳米粒及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21766840 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21766840 Country of ref document: EP Kind code of ref document: A1 |