CN110501611B - 一种配电网全线速动故障定位方法及系统 - Google Patents

一种配电网全线速动故障定位方法及系统 Download PDF

Info

Publication number
CN110501611B
CN110501611B CN201910788186.4A CN201910788186A CN110501611B CN 110501611 B CN110501611 B CN 110501611B CN 201910788186 A CN201910788186 A CN 201910788186A CN 110501611 B CN110501611 B CN 110501611B
Authority
CN
China
Prior art keywords
boundary
fault
line
capacitor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910788186.4A
Other languages
English (en)
Other versions
CN110501611A (zh
Inventor
郭上华
罗勋华
陈奎阳
李贞�
胡兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai XJ Electric Co Ltd
Original Assignee
Zhuhai XJ Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai XJ Electric Co Ltd filed Critical Zhuhai XJ Electric Co Ltd
Priority to CN201910788186.4A priority Critical patent/CN110501611B/zh
Publication of CN110501611A publication Critical patent/CN110501611A/zh
Application granted granted Critical
Publication of CN110501611B publication Critical patent/CN110501611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

本发明涉及一种配电网全线速动故障定位方法及装置,用于实现以下方案:基于电容电子式电压传感器结构,选取能形成边界元件的电容作为高压臂电容及对应的电子式电压传感器,使用电流传感器对流过边界电容的相电流值进行采样,利用得到采样数据;设定启动阈值,搜索第一极值点及第一极值点后的多个数据点,并保存多个数据点;将多个数据点进行解耦处理,得到对应的线模电流值;采样数据及线模电流值根据衰减指数函数进行拟合计算,得到衰减时间常数;对边界电容值与实际边界电容参数进行对比,对比结果符合设定值的为近故障点。本发明的有益效果为:方案实现简单,无需复杂的设备;正常运行状态下峰值很小,且故障暂态信号易于提取。

Description

一种配电网全线速动故障定位方法及系统
技术领域
本发明涉及配电终端故障定位,特别涉及一种配电网全线速动故障定位方法及系统。
背景技术
随着配电断路器的造价逐年降低,配电负荷开关逐渐丧失价格优势,供电公司逐步更多使用配电断路器进行配电自动化建设,而配电断路器需要级差配合才能快速切除近故障点区段。但配电网供电半径较短、馈线开关分段层次较多,难以根据短路电流差异和通过设置时间级差有选择性地快速地隔离故障区段。目前,基于选线选段技术的就地馈线自动化模式在处理故障过程中存在越级跳闸,导致非故障区段停电,扩大事故影响范围;智能分布式馈线自动化具有迅速切除故障而不造成故障点电源侧非故障区段停电的优势,但成熟应用仅限于具备光纤通信的配电区域,且故障切除速度和可靠性受通信信道的影响较大。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种配电网全线速动故障定位方法及系统,对于近故障点,流过分压电容初始暂态故障电流满足指数衰减函数关系,衰减时间常数由分压电容与线路波阻抗确定;而对于远故障点区段,故障行波经过边界元件多次折反射后,流过分压电容初始暂态电流衰减时间常数变小。据此,利用流过分压电容电流拟合出衰减时间常数,在线路参数一定情况下求出边界电容值,再与实际分压电容值比较,当两者参数基本一致时即可识别出该点即为近故障点,进而确定故障区段。
本发明的技术方案包括一种配电网全线速动故障定位方法,该方法包括以下步骤:S10,基于电容电子式电压传感器结构,选取能形成边界元件的电容作为高压臂电容及对应的电子式电压传感器,使用电流传感器对流过边界电容的相电流值进行采样,利用得到采样数据进行故障区段定位;S20,设定启动阈值,当任意相的电流大于启动阈值时,搜索第一极值点及第一极值点后的多个数据点,并保存多个数据点;S30,将多个数据点进行解耦处理,得到对应的线模电流值;S40,基于采样数据及线模电流值根据衰减指数函数进行拟合计算,得到衰减时间常数;S50,根据衰减时间常数计算边界电容值,对边界电容值与实际边界电容参数进行对比,对比结果符合设定值的为近故障点。
根据所述的配电网全线速动故障定位方法,其中步骤S10具体包括:使用基于电容分压的电子式电压传感器测量线路相电压,以及,使用电流传感器以设定频率采集流过边界电容的三相电流iCA、iCB、iCC
在一个优选的实施方案中,其中采样频率fs=10MHz。
根据所述的配电网全线速动故障定位方法,其中步骤S20具体包括:设定启动阈值Iset,当iCA、iCB、iCC其中一相电流瞬时绝对值大于启动值Iset时,开始搜寻第一个极值点,并保存第一个极值点后的N个数据点,其中N为τC*fs,其
Figure GDA0003030833310000021
为近故障点初始暂态电流衰减时间常数,Z为线路波阻抗。
根据所述的配电网全线速动故障定位方法,其中线路波阻抗Z通过
Figure GDA0003030833310000022
进行计算,其中L1为线路单位长度正序电感,C1为正序电容C1
根据所述的配电网全线速动故障定位方法,其中步骤S30具体包括:通过卡伦鲍厄变换对保存的N点数据进行解耦,其公式为
Figure GDA0003030833310000023
得到流过测点边界电容的线模电流i1为i1(1)、i1(2)、i1(3)、……、i1(N)。
根据所述的配电网全线速动故障定位方法,其中步骤S40具体包括:通过衰减指数函数
Figure GDA0003030833310000024
对采样数据进行计算,并采用最小二乘法对参数u和τC进行拟合计算,得到衰减时间常数,其中流过边界电容的初始暂态电流满足衰减指数函数要求。
根据所述的配电网全线速动故障定位方法,其中步骤S50具体包括:根据衰减时间常数τC计算出边界电容值
Figure GDA0003030833310000025
与实际边界电容参数C进行比较,即判断不等式
Figure GDA0003030833310000026
是否成立,将符合不等式判别对应的测量点作为近故障点,其中k为可靠误差系数,且k值取值范围为-10~10。
本发明的技术方案还包括一种配电网全线速动故障定位装置,所述故障定位装置用于执行上述任意一项方法,其特征在于:采集装置,包括基于电容分压的电子式电压传感器,以及,设置于电子式电压传感器的电流传感器,用于对流过边界电容的电流进行采样;分析装置,用于执行所述步骤S20~S50中任意一项的方法。
本发明的有益效果为:
(1)本发明提出的基于分压电容电流的全线速动故障定位方法无需加装额外的一次边界元件,只需借助于现有的配电开关一二次深度融合的电子式电容电压传感器,加装电流测量元件,而流过分压电容的峰值电流小,只需二次侧电流传感器即可实现;
(2)传统利用线路故障电流行波和电压行波的全线速动保护方法易受测量精度的影响,暂态信号容易淹没,而本发明测量的电容电流在正常运行状态下峰值很小,只有几十μA,而故障状态下,电容峰值电流达到几十安培,因而故障暂态信号易于提取。
附图说明
下面结合附图和实施例对本发明进一步地说明;
图1a,1b为行波旁过电容的示意图和等值电路图;
图2为故障行波旁过电容示意图;
图3所示为根据本发明实施方式的分压电容电流获取示意图;
图4所示为根据本发明实施方式的总体流程图;
图5所示为根据本发明实施方式的配电网相间故障仿真模型;
图6所示为根据本发明实施方式的近故障点三相电流波形图;
图7a,7b,7c所示为根据本发明实施方式的流过分段点分压电容的线模电流图;
图8所示为根据本发明实施方式的τC时间内流过分段点分压电容的线模电流及计算电容值。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
配电网发生故障时,故障点电压突变,近似于在故障点产生一个阶跃电压行波,行波的幅值与故障前的相电压大小相等,极性相反,并向故障点两端开始传播,当遇到线路参数不连续节点时,会产生波的折射和反射。如图1a和图1b,可以采用彼德逊法计算行波旁过电容时的折射波时域表达式。
从图1b中可以看出uc=u1,进而列写回路方程:
Figure GDA0003030833310000041
从而可以求得故障行波经过旁路电容后的电压行波表达式为:
Figure GDA0003030833310000042
式中
Figure GDA0003030833310000051
为回路时间常数。则此时流过旁路电容的电流ic的时域表达式为:
Figure GDA0003030833310000052
图2为故障行波旁过电容示意图。当故障行波由故障点向线路某一侧传播时,如果遇到多处由旁路电容不连续节点,则会发生多次折射,对同一线路,边界电容两侧线路波阻抗参数一致,假定都为Z,则由上述分析可知:
Figure GDA0003030833310000053
则此时流过旁路电容C1的电流ic1的时域表达式为:
Figure GDA0003030833310000054
图3所示为根据本发明实施方式的分压电容电流获取示意图。鉴于目前配电开关一二次深度融合推进过程中,传统电磁式电压互感器逐渐被电子式电容分压传感器替代,用于获取相电压的传感器主要由高压电容壁C1和取样电容C2组成。为满足边界保护形成的条件,且不增加整个系统的对地容性电流,本发明中将高压电容壁C1取值为0.01μf,再由相电压传感器一二次标准变比则可以确定取样电容值C2,最终由分压电容C1与C2串联形成用于单端量故障定位的边界元件,即边界电容。通过测量流过边界元件的电流,如图3所示iCA、iCB、iCC,采用式(3)即可拟合出衰减时间常数,进而求出边界电容值,再与实际电容值C比较,当两者参数基本一致时即可识别出该点即为近故障点,从而实现基于单端量的全线速动故障定位。
图4所示为根据本发明实施方式的总体流程图。该流程包括:S10,基于电容电子式电压传感器结构,选取能形成边界元件的电容作为高压臂电容及对应的电子式电压传感器,使用电流传感器对流过边界电容的相电流值进行采样,利用得到采样数据进行故障区段定位;S20,设定启动阈值,当任意一相边界电容流过的电流值大于启动阈值时,搜索第一极值点及第一极值点后的多个数据点,并保存多个数据点;S30,将多个数据点进行解耦处理,得到对应的线模电流值;S40,基于采样数据及线模电流值根据衰减指数函数进行拟合计算,得到衰减时间常数;S50,根据衰减时间常数计算边界电容值,对边界电容值与实际边界电容参数进行对比,对比结果符合设定值的为近故障点。
其中步骤S10于电容电子式电压传感器结构,选取能形成边界元件的电容作为高压臂电容,然后依据一二次融合成套设备要求的电压传感器变比选取适当的取样电容,从而构成满足本发明专利要求的电子式电压传感器;既可以用于测量10kV配电线路相电压,也可作为配电网全线速动故障定位的边界元件。后者还需采用高频性能传变好的电流传感器对流过边界电容的相电流值进行采样,利用得到采样数据进行故障区段定位。
基于上述流程,本发明的技术方案提出了较为详细的实施过程。如下(1)~(5)步骤所示:
(1)采用基于电容分压的电子式电压传感器测量线路相电压,并安装具有宽频带响应、高精度测量的电流传感器用于采集流过边界电容的电流iCA、iCB、iCC,采样频率设定为fs=10MHz。
(2)设定启动阈值Iset,当iCA、iCB、iCC其中一相电流瞬时绝对值大于启动值Iset时,开始搜寻第一个极值点,并保存第一个极值点后的N=τC*fs个数据点,其中
Figure GDA0003030833310000061
为近故障点初始暂态电流衰减时间常数,Z为线路波阻抗,可以利用线路单位长度正序电感L1和正序电容C1代入式(6)求得:
Figure GDA0003030833310000062
(3)利用式(7)卡伦鲍厄变换对保存的N点数据进行解耦:
Figure GDA0003030833310000063
得到流过测点边界电容的线模电流i1为:i1(1)、i1(2)、i1(3)……i1(N)。
(4)预设流过边界电容的初始暂态电流满足式(8)所示的衰减指数函数,将采样数据代入函数,并采用最小二乘法对参数u和τC进行拟合。
Figure GDA0003030833310000071
(5)拟合出衰减时间常数τC后,即可以求出边界电容值
Figure GDA0003030833310000072
与实际边界电容参数C进行比较,当符合式(9)时即可判定该测量点为近故障点。
Figure GDA0003030833310000073
图5所示为根据本发明实施方式的配电网相间故障仿真模型。在PSCAD环境下搭建配电网相间故障仿真模型,对图5所示的10kV不接地配电系统进行仿真验证,其中架空线路选用频域相关的Frequency Dependent(Phase)Model模型,利用仿真平台自带子程序计算出工频下线路参数为:正序阻抗Z1=0.034675+j0.423365Ω/km;正序对地导纳b1=j2.726μs/km;零序阻抗Z0=0.3+j1.1426Ω/km;零序对地导纳b0=j1.93555μs/km。其中第一条馈线长度为L4=30km,第二条线路分成四个区段,各区段长度分别为L1=3m,L2=3km,L3=5km,故障点发生在分段开关F3的下游。为简化仿真,各电子式电压传感器用实际边界电容参数C为0.01微法的边界电容代替。
通过上述线路正序参数即可以求出线路的波阻抗为Z=394Ω,进而求出近故障点流过边界电容的初始暂态电路衰减时间常数
Figure GDA0003030833310000074
当流过边界电容电流超启动值后,应保存第一个极值点后N=τC*fs=20个数据点用于拟合出求解τC′值,进而求出边界电容值。
图6所示为根据本发明实施方式的近故障点三相电流波形图。为BC两相故障时,近故障分段点F3处线路ABC三相电流,从图中可以看出,故障暂态行波电流相对线路工频故障电流非常微弱,基本上无法分辨故障电流行波。
图7a,7b,7c所示为根据本发明实施方式的流过分段点分压电容的线模电流图。表示故障线路上不同分段点F1、F2、F3处流过边界电容的电流值,从仿真结果可以看出当线路无故障时,边界电容电流基本为零,故障后,边界电容充电电流马上达到峰值,然后开始放电,如此不断充放电。
图8所示为根据本发明实施方式的τC时间内流过分段点分压电容的线模电流及计算电容值。此外,越是靠近故障点的边界电容电流波形越接近式(3)的衰减时间常数,通过拟合可得如图8所示的各分段点边界电容值,从拟合结果可得只有近故障点的拟合边界电容值与实际电容值误差在一个数量级范围内,其余各拟合边界电容值远大于实际电容值,因此根据式(9)即可判断定电流Is所在测点即为近故障点。
基于上述实施例,本发明具备以下优点:(1)本发明提出的基于分压电容电流的全线速动故障定位方法无需加装额外的一次边界元件,只需借助于现有的配电开关一二次深度融合的电子式电容电压传感器,加装电流测量元件,而流过分压电容的峰值电流小,只需二次侧电流传感器即可实现。(2)传统利用线路故障电流行波和电压行波的全线速动保护方法易受测量精度的影响,暂态信号容易淹没,而本发明测量的电容电流在正常运行状态下峰值很小,只有几十μA,而故障状态下,电容峰值电流达到几十安培,因而故障暂态信号易于提取。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (9)

1.一种配电网全线速动故障定位方法,其特征在于,该方法包括以下步骤:
S10,基于电容电子式电压传感器结构,选取能形成边界元件的电容作为高压臂电容及对应的电子式电压传感器,使用电流传感器对流过边界电容的相电流值进行采样,利用得到采样数据进行故障区段定位;
S20,设定启动阈值,当任意一相边界电容流过的电流值大于启动阈值时,搜索第一极值点及第一极值点后的多个数据点,并保存多个数据点;
S30,将多个数据点进行解耦处理,得到对应的线模电流值;
S40,基于采样数据及线模电流值根据衰减指数函数进行拟合计算,得到衰减时间常数;
S50,根据衰减时间常数计算边界电容值,对边界电容值与实际边界电容参数进行对比,对比结果符合设定值的为近故障点。
2.根据权利要求1所述的配电网全线速动故障定位方法,其特征在于,所述步骤S10具体包括:
使用基于电容分压的电子式电压传感器测量线路相电压,以及,使用电流传感器以设定频率采集流过边界电容的三相电流iCA、iCB、iCC
3.根据权利要求2所述的配电网全线速动故障定位方法,其特征在于,所述采样频率fs=10MHz。
4.根据权利要求2所述的配电网全线速动故障定位方法,其特征在于,所述步骤S20具体包括:
设定启动阈值Iset,当iCA、iCB、iCC其中一相电流瞬时绝对值大于启动值Iset时,开始搜寻第一个极值点,并保存第一个极值点后的N个数据点,其中N为τC*fs,其
Figure FDA0003030833300000011
为近故障点初始暂态电流衰减时间常数,Z为线路波阻抗。
5.根据权利要求4所述的配电网全线速动故障定位方法,其特征在于,所述线路波阻抗Z通过
Figure FDA0003030833300000012
进行计算,其中L1为线路单位长度正序电感,C1为正序电容C1
6.根据权利要求4所述的配电网全线速动故障定位方法,其特征在于,所述步骤S30具体包括:
通过卡伦鲍厄变换对保存的N点数据进行解耦,其公式为
Figure FDA0003030833300000021
得到流过测点边界电容的线模电流i1为i1(1)、i1(2)、i1(3)、……、i1(N)。
7.根据权利要求6所述的配电网全线速动故障定位方法,其特征在于,所述步骤S40具体包括:
通过衰减指数函数
Figure FDA0003030833300000022
对采样数据进行计算,并采用最小二乘法对参数u和τC进行拟合计算,得到衰减时间常数,其中流过边界电容的初始暂态电流满足衰减指数函数要求。
8.根据权利要求7所述的配电网全线速动故障定位方法,其特征在于,所述步骤S50具体包括:
根据衰减时间常数τC计算出边界电容值
Figure FDA0003030833300000023
与实际边界电容参数C进行比较,即判断不等式
Figure FDA0003030833300000024
是否成立,将符合不等式判别对应的测量点作为近故障点,其中k为可靠误差系数,且k值取值范围为-10~10。
9.一种配电网全线速动故障定位装置,所述故障定位装置用于执行权利要求1-8中任一项所述的方法,其特征在于:
采集装置,包括基于电容分压的电子式电压传感器,以及,设置于电子式电压传感器的电流传感器,用于对流过边界电容的电流进行采样;
分析装置,用于执行所述步骤S20~S50中任意一项的方法。
CN201910788186.4A 2019-08-26 2019-08-26 一种配电网全线速动故障定位方法及系统 Active CN110501611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910788186.4A CN110501611B (zh) 2019-08-26 2019-08-26 一种配电网全线速动故障定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910788186.4A CN110501611B (zh) 2019-08-26 2019-08-26 一种配电网全线速动故障定位方法及系统

Publications (2)

Publication Number Publication Date
CN110501611A CN110501611A (zh) 2019-11-26
CN110501611B true CN110501611B (zh) 2021-07-06

Family

ID=68589389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910788186.4A Active CN110501611B (zh) 2019-08-26 2019-08-26 一种配电网全线速动故障定位方法及系统

Country Status (1)

Country Link
CN (1) CN110501611B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113378111B (zh) * 2021-06-22 2022-09-20 四川汇源光通信有限公司 一种输电线路行波电流有效性判断方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254492A (ja) * 1984-05-31 1985-12-16 Fujitsu Ltd 量子干渉型ジヨセフソンメモリセル
DE10116328A1 (de) * 2001-04-02 2002-10-17 Infineon Technologies Ag Verfahren zur Verifikation eines Layouts einer integrierten Schaltung mit Hilfe eines Rechners sowie dessen Anwendung zur Herstellung einer integrierten Schaltung
CN102005740A (zh) * 2010-10-29 2011-04-06 昆明理工大学 利用极波小波能量比值的特高压直流线路边界元件方法
CN103901322A (zh) * 2014-03-31 2014-07-02 国家电网公司 基于分界开关工频零序电压电流的小电流接地故障分界法
CN105119253A (zh) * 2015-09-14 2015-12-02 国家电网公司 一种分界开关零序电流保护整定值计算方法
JP2016040818A (ja) * 2014-08-13 2016-03-24 株式会社村田製作所 積層セラミックコンデンサ、これを含む積層セラミックコンデンサ連、および、積層セラミックコンデンサの実装体
CN106896297A (zh) * 2017-04-25 2017-06-27 武汉理工大学 一种综合计及稳态和暂态响应特性的配电线路模型构建方法
CN107465176A (zh) * 2017-08-07 2017-12-12 西安交通大学 一种基于电容边界的配电线路单端全线速动保护方法
CN107589346A (zh) * 2017-10-20 2018-01-16 邓永忠 配电网通过故障指示器实现故障定位和分界的方法
CN107681641A (zh) * 2017-08-01 2018-02-09 华北电力大学 基于直流电抗器电压的多端柔性直流电网边界保护方法
CN108551160A (zh) * 2018-03-15 2018-09-18 中国电力科学研究院有限公司 一种基于极波能量的多端直流输电系统故障区段的判断方法及系统
CN108663602A (zh) * 2018-05-14 2018-10-16 山东大学 柔性直流配电网单极故障选线与区段定位方法及系统
CN109100605A (zh) * 2018-10-23 2018-12-28 国网江苏省电力有限公司徐州供电分公司 利用故障边界条件的高压电缆单相接地故障的单端定位方法
CN109309380A (zh) * 2018-10-09 2019-02-05 珠海许继电气有限公司 基于并联电抗器电流特征的自适应三相重合闸方法及系统
CN109802372A (zh) * 2019-03-05 2019-05-24 华北电力大学 基于暂态电流波形特征的快速差动保护方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016938A (ko) * 2011-08-09 2013-02-19 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN106469905B (zh) * 2016-11-11 2020-01-10 国网山东省电力公司枣庄供电公司 基于配网“三道防线”的配网保护方法
CN107290624B (zh) * 2017-06-19 2019-12-31 武汉理工大学 一种适用于非有效接地配电网的三相配电线路模型

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254492A (ja) * 1984-05-31 1985-12-16 Fujitsu Ltd 量子干渉型ジヨセフソンメモリセル
DE10116328A1 (de) * 2001-04-02 2002-10-17 Infineon Technologies Ag Verfahren zur Verifikation eines Layouts einer integrierten Schaltung mit Hilfe eines Rechners sowie dessen Anwendung zur Herstellung einer integrierten Schaltung
CN102005740A (zh) * 2010-10-29 2011-04-06 昆明理工大学 利用极波小波能量比值的特高压直流线路边界元件方法
CN103901322A (zh) * 2014-03-31 2014-07-02 国家电网公司 基于分界开关工频零序电压电流的小电流接地故障分界法
JP2016040818A (ja) * 2014-08-13 2016-03-24 株式会社村田製作所 積層セラミックコンデンサ、これを含む積層セラミックコンデンサ連、および、積層セラミックコンデンサの実装体
CN105119253A (zh) * 2015-09-14 2015-12-02 国家电网公司 一种分界开关零序电流保护整定值计算方法
CN106896297A (zh) * 2017-04-25 2017-06-27 武汉理工大学 一种综合计及稳态和暂态响应特性的配电线路模型构建方法
CN107681641A (zh) * 2017-08-01 2018-02-09 华北电力大学 基于直流电抗器电压的多端柔性直流电网边界保护方法
CN107465176A (zh) * 2017-08-07 2017-12-12 西安交通大学 一种基于电容边界的配电线路单端全线速动保护方法
CN107589346A (zh) * 2017-10-20 2018-01-16 邓永忠 配电网通过故障指示器实现故障定位和分界的方法
CN108551160A (zh) * 2018-03-15 2018-09-18 中国电力科学研究院有限公司 一种基于极波能量的多端直流输电系统故障区段的判断方法及系统
CN108663602A (zh) * 2018-05-14 2018-10-16 山东大学 柔性直流配电网单极故障选线与区段定位方法及系统
CN109309380A (zh) * 2018-10-09 2019-02-05 珠海许继电气有限公司 基于并联电抗器电流特征的自适应三相重合闸方法及系统
CN109100605A (zh) * 2018-10-23 2018-12-28 国网江苏省电力有限公司徐州供电分公司 利用故障边界条件的高压电缆单相接地故障的单端定位方法
CN109802372A (zh) * 2019-03-05 2019-05-24 华北电力大学 基于暂态电流波形特征的快速差动保护方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A Fault-Location Algorithm for Series-Compensated Double-Circuit Transmission Lines Using the Distributed Parameter Line Model;Ning Kang等;《 IEEE Transactions on Power Delivery》;20150212;360-365页 *
Current Limiting Protection Scheme for Multi-Terminal DC Grids Based on Transient Boundary Voltage;Jian Liu等;《 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2)》;20181220;3-8页 *
Simulation on Grounding Fault Location of Distribution Network Based on Regional Parameters;Bo Zhang等;《 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE)》;20190325;216-221页 *
VSC-HVDC电缆保护与故障测距方法;赵普;《中国优秀博士学位论文全文库》;20160203;230-240页 *
交直流配电网的故障分析与保护方法研究;丁凡凡;《中国优秀硕士学位论文全文库》;20190304;58-67页 *
基于并联电容参数识别的VSC-HVDC输电线路纵联保护;宋国兵等;《电力系统自动化》;20130810;23-46页 *
超高压输电线路边界保护的研究;哈恒旭;《中国优秀博士学位论文全文库》;20030120;12-45页 *

Also Published As

Publication number Publication date
CN110501611A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110082636B (zh) 一种电力电缆故障定位方法及系统
CN102768324B (zh) 小电流接地系统单相接地故障区段定位方法
CN102967779B (zh) 一种输电线路分布参数的辨识方法
CN105004969A (zh) 架空线配电网单相接地故障的定位方法
CN104865495A (zh) 电力线路故障行波定位方法及系统
CN103439636A (zh) 一种电缆断路点位置检测方法
CN103543376A (zh) 用于小电流接地系统故障选线的径向基神经网络方法
CN109387733A (zh) 一种配电线路单相接地故障定位方法及系统
CN102565629A (zh) 一种基于集中参数π模型的交流输电线路故障选相测后模拟方法
CN104898028A (zh) 架空线配电网单相接地故障的测距方法及定位方法
CN102621452A (zh) 一种基于信号距离和π型线路模型的纵联保护方法
CN106291262A (zh) 配电网架空线单相接地故障的检测定位方法
CN110501611B (zh) 一种配电网全线速动故障定位方法及系统
Han et al. Locating phase-to-ground short-circuit faults on radial distribution lines
Yu et al. A novel traveling wave fault location method for transmission network based on directed tree model and linear fitting
CN110244192B (zh) 一种电力架空线接地故障测距方法
CN108845233A (zh) 配电网架空线路单相接地双端检测定位方法
CN115015687A (zh) 一种四端环状柔性直流电网故障测距方法及系统
RU2540443C1 (ru) Способ определения места обрыва на воздушной линии электропередачи
CN103487724A (zh) 一种配电网单相接地故障定位方法
CN103454561B (zh) 一种配电网单相接地故障定位方法
Qianqian et al. A new smart distribution grid fault self-healing system based on traveling-wave
JP3586266B2 (ja) 送電線の故障点標定方法およびそれを用いた故障点標定システム
CN115469189A (zh) 基于护套首末端电流比和环流比的电缆护套故障判断方法
CN116087678A (zh) 一种高压输电电缆护层接地故障在线定位方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant