CN110491687A - 一种透明氧化镍薄膜变容管的制备方法 - Google Patents

一种透明氧化镍薄膜变容管的制备方法 Download PDF

Info

Publication number
CN110491687A
CN110491687A CN201910752257.5A CN201910752257A CN110491687A CN 110491687 A CN110491687 A CN 110491687A CN 201910752257 A CN201910752257 A CN 201910752257A CN 110491687 A CN110491687 A CN 110491687A
Authority
CN
China
Prior art keywords
film
transparent
glass substrate
preparation
nickel film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910752257.5A
Other languages
English (en)
Inventor
李玲霞
彭伟
于仕辉
杨盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910752257.5A priority Critical patent/CN110491687A/zh
Publication of CN110491687A publication Critical patent/CN110491687A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种透明氧化镍薄膜变容管的制备方法,先清洗基片,采用磁控溅射方法制备NiO薄膜,溅射气压为10mTorr,溅射功率为50~250W,再退火处理;再采用蒸镀方法,使Cu附着于透明导电玻璃基片上NiO薄膜的表面,再将带有Cu薄膜的透明导电玻璃基片进行碘化处理,得到CuI薄膜,作为顶电极,制得p型碘化铜为顶电极的透明氧化镍薄膜变容管。本发明的调谐率在正偏压下达到90.6%,在负偏压下调谐率只有8.3%,平均透过率为75.5%,具有良好的应用前景。

Description

一种透明氧化镍薄膜变容管的制备方法
技术领域
本发明是关于电子信息材料与元器件的,具体涉及一种新型透明NiO薄膜变容管及其制备方法。
背景技术
近几十年来,微波介质陶瓷材料由于其介电常数高,介电损耗低,频率温度系数小等优良特性受到极大的关注。介电调谐材料是指具有介电常数随偏置电压改变而变化的一类非线性介电材料,基于这种这一特性,这种材料被广泛用于移相器、介质谐振器、介质滤波器、微波介质天线、介质稳频振荡器、介质波导传输线等。这些器件在卫星通信、移动通信、广播电视、雷达、卫星定位导航等诸多通信相关领域得到应用,表现出超高可靠性、微型化、低成本的特性,应用前景广阔。
NiO薄膜由于其良好的透光性和介电性能,已制备出具有高调谐特性的氧化镍薄膜变容管,但缺点是变容管透明性只有60%,调谐性能70%。我们首次将p型导电薄膜用做NiO薄膜的顶电极,制备的正负偏压下不同调谐率的NiO透明压控薄膜变容管,具有正偏压下90.6%,负偏压下8.3%的调谐特性,且驱动电压较低,这种薄膜器件在微波通信中会得到广泛应用。
发明内容
本发明的目的,是克服现有技术的氧化镍薄膜变容管透明性只有60%、调谐性能仅70%的缺点和不足,结合磁控溅射和真空热蒸镀技术,首次采用p型的CuI薄膜作为NiO压控薄膜变容管顶电极,提供了一种制备正负偏压下调谐率不同的以p型碘化铜为顶电极的透明氧化镍薄膜变容管。
本发明通过如下技术方案予以实现。
一种透明氧化镍薄膜变容管的制备方法,具有如下步骤:
(1)清洗基片
将表面附有电极的透明导电玻璃基片放入有机溶剂中超声清洗,用去离子水冲洗后在氮气流中进行干燥;
(2)制备NiO薄膜
(a)将步骤(1)干燥后的透明导电玻璃基片放入磁控溅射样品台上,将金属Ni靶材装置在相应的射频溅射靶上,再将磁控溅射系统的本底真空抽至6.0×10-6Torr,然后将透明导电玻璃基片加热至300~500℃;
(b)以高纯Ar和O2作为溅射气体,溅射气压为10mTorr,溅射功率为50~250W,进行溅射沉积得到NiO薄膜;
(c)将步骤(b)得到的具有NiO薄膜的透明导电玻璃基片置于气氛炉中进行后退火处理,通入纯度为99%的O2,退火气压为0.02Mpa;
(3)制备顶电极
(a)将步骤(2)(c)退火后的具有NiO薄膜的透明导电玻璃基片放入真空热蒸镀设备样品台上,将金属Cu蒸发源装置在相应的蒸发舟内,再将真空热蒸镀系统的本底真空抽至9.0×10-4Pa,然后使样品台旋转;
(b)打开蒸发源上方挡板,开启蒸发源的电源,电源电流设置为90~130A,进行蒸镀,使Cu附着于透明导电玻璃基片上NiO薄膜的表面,得到带有Cu薄膜、NiO薄膜的透明导电玻璃基片;
(c)将碘单质颗粒用清洗干净的研钵进行研磨得到碘粉末,过筛后得到尺寸均匀的碘粉末;将尺寸均匀的碘粉末平铺在培养皿中,振动使其表面尽量保持平整;
(d)将步骤(b)中得到带有Cu薄膜的透明导电玻璃基片倒置,镀有Cu薄膜的一面朝下,放入步骤(c)培养皿内平铺好的碘粉末中进行碘化,得到CuI薄膜,作为顶电极;
(e)待碘化完成后,从碘粉末中取出顶电极为CuI的透明导电玻璃基片,用氮气流吹去表面多余的碘粉末,得到p型碘化铜为顶电极的透明氧化镍薄膜变容管。
所述步骤(1)的基片为FTO导电玻璃基片或者ITO导电玻璃基片,其表面附有电极;所述FTO导电玻璃的表面附有掺氟氧化铟的电极,ITO导电玻璃的表面附有掺铟氧化锡的电极。
所述步骤(1)的有机溶剂为丙酮和/或者酒精。
所述步骤(2)(a)的NiO靶材的纯度大于99.99%。
所述步骤(2)(b)与步骤(3)(b)的氩气和氧气的纯度为99.99%,O2:Ar=3:1。
所述步骤(2)(c)的后退火温度为500-700℃,保温时间为10min。
所述步骤(3)(a)的金属Cu为无包覆层的铜线,该铜线纯度大于99.9%;样品台旋转速度为0~20r/min。
所述步骤(3)(b)的蒸镀时间2~8min,Cu薄膜厚度为25~70nm。
所述步骤(3)(c)的碘单质颗粒的纯度为99.99%。
所述步骤(3)(d)的碘化时间为5-30min,CuI薄膜厚度为50~350nm。
本发明制备的以p型碘化铜为顶电极的透明氧化镍薄膜变容管的调谐率在正负偏压下表现出不同的调谐率,在正偏压下达到90.6%,在负偏压下调谐率只有8.3%,平均透过率为75.5%,同时,不仅调谐率高,驱动电压低,可见光透过性优良,具有良好的应用前景。
附图说明
图1为实施例1制备在ITO衬底上顶电极为CuI的NiO薄膜的变容(随电场变化)图谱;
图2为实施例1的制备在ITO衬底上顶电极为CuI的NiO薄膜的透过率图谱。
具体实施方式
下面结合具体实施例对本发明作进一步说明,这些事例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
(1)清洗基片
将表面附有ITO导电玻璃基片放入丙酮和酒精中分别超声清洗15min,用去离子水冲洗后在氮气流中进行干燥;
(2)制备NiO薄膜
(a)将步骤(1)干燥后的ITO导电玻璃基片放入磁控溅射样品台上,将购买的金属Ni靶材装置在相应的直流溅射靶上,金属NiO靶材的纯度大于99.99%,将磁控溅射系统的本底真空抽至6.0×10-6Torr,然后开启基片加热,设置为500℃;
(b)以高纯Ar和O2作为溅射气体,O2:Ar=3:1,溅射气压为10mTorr,溅射功率为140W,在ITO上沉积得到厚度为200nm的NiO薄膜,其厚度可通过调节时间、气压、氧氩比和加热温度等控制;
(c)将步骤(b)得到的NiO薄膜的ITO导电玻璃基片置于气氛炉中进行后退火处理,后退货温度设置为700℃,通入纯度为99%的O2,退火气压为0.02Mpa,退火时间为10min;
(3)制备顶电极
(a)将步骤(2)(c)退火后的NiO薄膜ITO导电玻璃基片放入真空热蒸镀设备样品台上,将金属Cu蒸发源装置在相应的蒸发舟内,再将真空热蒸镀系统的本底真空抽至9.0×10-4Pa,将样品台转速调为10r/min;所述金属Cu为无包覆层的铜线,该铜线纯度大于99.9%;
(b)打开蒸发源上方挡板,开启蒸发源的电源,电源电流设置为120A,蒸镀3min,NiO薄膜之上得到覆盖有30nm厚的Cu薄膜;
(c)将碘单质颗粒用清洗干净的研钵进行研磨得到碘粉末,过筛后得到尺寸均匀的碘粉末,碘单质颗粒的纯度为99.99%;将碘粉末平铺在培养皿中,振动使其表面尽量保持平整;
(d)将步骤(b)中得到带有Cu薄膜的NiO薄膜ITO导电玻璃基片倒置,镀有Cu薄膜的一面朝下,放入步骤(c)培养皿内平铺好的碘粉末中碘化15分钟,得到CuI薄膜,作为顶电极,CuI薄膜厚度为180nm;
(e)从碘粉末中取出ITO导电玻璃基片,用氮气流吹去表面多余的碘粉末,得到p型碘化铜为顶电极的透明氧化镍薄膜变容管。
图1为实施例1的制备在ITO导电玻璃基片上顶电极为CuI的NiO薄膜的变容(随电场变化)图谱,在正偏压下达到90.6%,在负偏压下调谐率只有8.3%。
图2为实施例1的制备在ITO导电玻璃基片上顶电极为CuI的NiO薄膜的透过率图谱,平均透过率为75.5%。
实施例2
实施例2的NiO后退火温度为600℃,退火时间为10min,其他工艺步骤及其工艺参数和实施例中相同。
经检测实施例2中的NiO变容管在正偏压调谐率为82.3%,在负偏压下调谐率10.4%,透光率为72.4%。
实施例3
实施例3的NiO厚度为100nm,其他工艺步骤及其工艺参数和实施例中相同。
经检测实施例3中的NiO变容管在正偏压调谐率为88.5%,在负偏压下调谐率11.6%,透光率为79.5%。

Claims (10)

1.一种透明氧化镍薄膜变容管的制备方法,具有如下步骤:
(1)清洗基片
将表面附有电极的透明导电玻璃基片放入有机溶剂中超声清洗,用去离子水冲洗后在氮气流中进行干燥;
(2)制备NiO薄膜
(a)将步骤(1)干燥后的透明导电玻璃基片放入磁控溅射样品台上,将金属Ni靶材装置在相应的射频溅射靶上,再将磁控溅射系统的本底真空抽至6.0×10-6Torr,然后将透明导电玻璃基片加热至300~500℃;
(b)以高纯Ar和O2作为溅射气体,溅射气压为10mTorr,溅射功率为50~250W,进行溅射沉积得到NiO薄膜;
(c)将步骤(b)得到的具有NiO薄膜的透明导电玻璃基片置于气氛炉中进行后退火处理,通入纯度为99%的O2,退火气压为0.02Mpa。
(3)制备顶电极
(a)将步骤(2)(c)退火后的具有NiO薄膜的透明导电玻璃基片放入真空热蒸镀设备样品台上,将金属Cu蒸发源装置在相应的蒸发舟内,再将真空热蒸镀系统的本底真空抽至9.0×10-4Pa,然后使样品台旋转;
(b)打开蒸发源上方挡板,开启蒸发源的电源,电源电流设置为90~130A,进行蒸镀,使Cu附着于透明导电玻璃基片上NiO薄膜的表面,得到带有Cu薄膜、NiO薄膜的透明导电玻璃基片;
(c)将碘单质颗粒用清洗干净的研钵进行研磨得到碘粉末,过筛后得到尺寸均匀的碘粉末;将尺寸均匀的碘粉末平铺在培养皿中,振动使其表面尽量保持平整;
(d)将步骤(b)中得到带有Cu薄膜的透明导电玻璃基片倒置,镀有Cu薄膜的一面朝下,放入步骤(c)培养皿内平铺好的碘粉末中进行碘化,得到CuI薄膜,作为顶电极;
(e)待碘化完成后,从碘粉末中取出顶电极为CuI的透明导电玻璃基片,用氮气流吹去表面多余的碘粉末,得到p型碘化铜为顶电极的透明氧化镍薄膜变容管。
2.根据权利要求1所述的一种以p型碘化铜为顶电极的透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(1)的基片为FTO导电玻璃基片或者ITO导电玻璃基片,其表面附有电极;所述FTO导电玻璃的表面附有掺氟氧化铟的电极,ITO导电玻璃的表面附有掺铟氧化锡的电极。
3.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(1)的有机溶剂为丙酮和/或者酒精。
4.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(2)(a)的NiO靶材的纯度大于99.99%。
5.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(2)(b)与步骤(3)(b)的氩气和氧气的纯度为99.99%,O2:Ar=3:1。
6.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(2)(c)的后退火温度为500-700℃,保温时间为10min。
7.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(3)(a)的金属Cu为无包覆层的铜线,该铜线纯度大于99.9%;样品台旋转速度为0~20r/min。
8.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(3)(b)的蒸镀时间2~8min,Cu薄膜厚度为25~70nm。
9.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(3)(c)的碘单质颗粒的纯度为99.99%。
10.根据权利要求1所述的一种透明氧化镍薄膜变容管的制备方法,其特征在于,所述步骤(3)(d)的碘化时间为5-30min,CuI薄膜厚度为50~350nm。
CN201910752257.5A 2019-08-14 2019-08-14 一种透明氧化镍薄膜变容管的制备方法 Pending CN110491687A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910752257.5A CN110491687A (zh) 2019-08-14 2019-08-14 一种透明氧化镍薄膜变容管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910752257.5A CN110491687A (zh) 2019-08-14 2019-08-14 一种透明氧化镍薄膜变容管的制备方法

Publications (1)

Publication Number Publication Date
CN110491687A true CN110491687A (zh) 2019-11-22

Family

ID=68551175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910752257.5A Pending CN110491687A (zh) 2019-08-14 2019-08-14 一种透明氧化镍薄膜变容管的制备方法

Country Status (1)

Country Link
CN (1) CN110491687A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952674A (zh) * 2014-04-08 2014-07-30 天津大学 一种氧化锌压控变容管的制备方法
CN103996541A (zh) * 2014-05-30 2014-08-20 天津大学 一种透明压控薄膜变容管及其制备方法
CN104078238A (zh) * 2014-07-08 2014-10-01 天津大学 一种高调谐压控透明氧化镍薄膜电容器的制备方法
CN104099565A (zh) * 2014-07-08 2014-10-15 天津大学 一种氧化镍压控薄膜变容管的制备方法
CN106783173A (zh) * 2016-11-23 2017-05-31 东莞理工学院 一种新型全透明bzt薄膜变容管及其制备方法
CN109979675A (zh) * 2019-03-12 2019-07-05 天津大学 一种高透过率p型碘化铜透明导电薄膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952674A (zh) * 2014-04-08 2014-07-30 天津大学 一种氧化锌压控变容管的制备方法
CN103996541A (zh) * 2014-05-30 2014-08-20 天津大学 一种透明压控薄膜变容管及其制备方法
CN104078238A (zh) * 2014-07-08 2014-10-01 天津大学 一种高调谐压控透明氧化镍薄膜电容器的制备方法
CN104099565A (zh) * 2014-07-08 2014-10-15 天津大学 一种氧化镍压控薄膜变容管的制备方法
CN106783173A (zh) * 2016-11-23 2017-05-31 东莞理工学院 一种新型全透明bzt薄膜变容管及其制备方法
CN109979675A (zh) * 2019-03-12 2019-07-05 天津大学 一种高透过率p型碘化铜透明导电薄膜的制备方法

Similar Documents

Publication Publication Date Title
CN105821378B (zh) 一种铌掺杂二氧化锡透明导电膜及其制备方法
CN103397303B (zh) 透明铌酸镁铋薄膜压控变容管的制备方法
Li et al. Preparation and properties of tungsten-doped indium oxide thin films
Chiang et al. Deposition of high-transmittance ITO thin films on polycarbonate substrates for capacitive-touch applications
Ge et al. Efficient Near‐Infrared PbS Quantum Dot Solar Cells Employing Hydrogenated In2O3 Transparent Electrode
Sun et al. Effects of ambient high-temperature annealing on microstructure, elemental composition, optical and electrical properties of indium tin oxide films
Zamudio et al. Optimization of AZO films for integrating optically transparent antennas with photovoltaics
Peng et al. Excellent properties of Ga‐doped ZnO film as an alternative transparent electrode for thin‐film solar cells
JP5647130B2 (ja) 透明導電性亜鉛酸化物ディスプレイフィルム及びその製造方法
CN110491687A (zh) 一种透明氧化镍薄膜变容管的制备方法
CN106893984B (zh) 增强可见光波段透射的掺锡氧化铟基复合薄膜的制备方法
CN108914064A (zh) 一种新型rpd用多元导电氧化物材料及其制备方法
CN104078238B (zh) 一种高调谐压控透明氧化镍薄膜电容器的制备方法
CN102839348B (zh) 掺氟氧化锡薄膜的制备方法
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
CN102312201A (zh) 一种Al掺杂的氧化锌透明导电薄膜的制备方法
CN104099565B (zh) 一种氧化镍压控薄膜变容管的制备方法
CN104134541A (zh) 一种全透型薄膜压控变容管及其制备方法
Shahiduzzaman et al. Thin film deposition method for ZnO nanosheets using low-temperature microwave-excited atmospheric pressure plasma jet
Guo et al. Energy level matching between transparent conducting electrodes and the electronic transport layer to enhance performance of all-inorganic CsPbBr3 solar cells
CN108642473B (zh) 一种具有电磁屏蔽功能的红外透明窗口及其制备方法
CN106024110A (zh) 一种锡酸锶基柔性透明导电电极及其制备方法
Ou et al. Characterization of Al-Doped ZnO transparent conducting thin film prepared by off-axis magnetron sputtering
CN103996541A (zh) 一种透明压控薄膜变容管及其制备方法
US11930649B2 (en) Transparent top electrode composite film for organic optoelectronic devices and its preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191122