CN110482524A - 一种双活性位修饰的氮掺杂介孔碳的制备方法和应用 - Google Patents

一种双活性位修饰的氮掺杂介孔碳的制备方法和应用 Download PDF

Info

Publication number
CN110482524A
CN110482524A CN201910836994.3A CN201910836994A CN110482524A CN 110482524 A CN110482524 A CN 110482524A CN 201910836994 A CN201910836994 A CN 201910836994A CN 110482524 A CN110482524 A CN 110482524A
Authority
CN
China
Prior art keywords
catalyst
mesoporous carbon
activated position
double activated
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910836994.3A
Other languages
English (en)
Other versions
CN110482524B (zh
Inventor
夏木西卡玛尔·买买提
乔孟飞
胡广志
王颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201910836994.3A priority Critical patent/CN110482524B/zh
Publication of CN110482524A publication Critical patent/CN110482524A/zh
Application granted granted Critical
Publication of CN110482524B publication Critical patent/CN110482524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双活性位修饰的氮掺杂介孔碳的制备方法及用途,该方法利用十二烷基磺酸钠作为牺牲模板,三聚氰胺树脂作为氮源,酚醛树脂作为碳源,六水合硝酸钴和六水合硝酸镍作为金属源,先合成了凝胶状前驱体,再通过两步热解的策略成功合成了双活性位点负载的氮掺杂介孔碳。合成的催化剂具有良好的介孔结构,有利于催化过程中的质量传输。热解过程形成的CoN4活性位使催化剂具备了较高的氧还原催化活性且催化过程接近理想的四电子传输路径,同时形成的还有NiCo2O4活性位,使催化剂具有超高的氧析出催化活性,良好的稳定性和抗甲醇能力。该催化剂原料来源广,制备成本低,性能良好,因而具备在燃料电池和锌空气电池等领域的应用前景。

Description

一种双活性位修饰的氮掺杂介孔碳的制备方法和应用
技术领域
随着经济社会的发展,人类对于能源的需求越来越大,然而化石燃料储量有限,因此很有必要开发新的可再生能源和新型能源的储存转换装置,比如说锌空气电池、燃料电池和电解水系统等。然而当前这些装置尚不能大规模应用,其中一个主要原因就在于电极成本过高,且电极反应的催化效率仍不够高。这主要是因为氧电极反应(包括氧还原反应和氧析出反应)反应缓慢,且当前商业应用的电极催化剂多为贵金属,比如说Pt/C和RuO2,一方面这些稀贵金属在地球上储量很少,即使全部用来做电极材料也难以满足应用;另一方面价格高昂,使得这种能源转换装置难以推广。除此之外,这些贵金属还存在稳定性差以及对甲醇等燃料抵抗性差的缺点。
因此,近年来大量的科研工作围绕开发高性能高稳定性的非贵金属催化剂展开,这些材料按其特征可分为过渡金属及其氧化物、非金属的杂原子掺杂碳材料、金属-氮-碳基的材料等。这其中金属-氮-碳基的材料对于氧还原反应表现出更高的活性,最有望成为Pt基贵金属材料的替代品。金属-氮-碳基的材料使用的多为过渡金属Fe、Co、Ni、Mn等,但是由于Fe3+会与氧还原反应的中间产物发生芬顿反应,进而腐蚀电解池中隔膜等有机物,因此Fe虽然具有最高活性,但并非最优选择。钴具有与铁相近的催化活性,且稳定性更高,因此更适合去制备催化剂。对于氧析出反应,金属氧化物则具有更高活性,其中钴基的Co3O4、NiCo2O4等性能尤佳。除了高活性的金属-氮-碳活性位以外,催化剂的衬底材料也很关键。通常认为的大的比表面积有利于负载或暴露更多的活性,同时也能更多的吸附反应物;良好的介孔结构有助于在电解液中质量传输;高的石墨化程度能够增强活性位稳定性,同时也有助于电子传输,提高导电率。大量科研报道中采用了碳纳米管、石墨烯、多孔碳等活性碳材料作为衬底都取得很好的效果。其中多孔碳材料由于其结构多样、可设计性强、易于制备等优点,更有实际应用的潜力。
对于电催化氧还原反应和电催化氧气析出反应所用催化剂的性能通常要考究以下几个方面:一是催化反应过电位的大小,对于氧还原反应常需要测试其半波电位的大小,对于氧析出反应,通常需要测试其电流密度为10mA/cm2时的过电位,以便于与同类材料比较性能优劣;二是Tafel斜率,通常更小的Tafel斜率说明增加同样大小的电流所需增加的电势更小,催化性能则越强;三是长期使用的稳定性,只有具备在电解液中长期耐受性,才有可能大规模应用与工业中。除此之外,对于氧还原反应我们还需要测试其电子转移数和对于甲醇的耐受性。氧还原反应中,两电子路径的反应主要产物是双氧水,四电子反应路径产物为水,四电子反应比两电子反应具有更高的能量效率,且两电子反应产物双氧水可能会腐蚀催化剂,降低催化活性,因此需要尽可能避免两电子路径反应的发生。另一方面,催化剂若用于燃料电池阴极氧还原,弱阳极室中的甲醇穿透到阴极室可能会导致催化反应逆转,因此还需对其做抗甲醇性能测试。
本发明使用甲醛和间苯二酚合成酚醛树脂为碳源,以三聚氰胺为氮源,以十二烷基磺酸钠作为模板剂,六水合硝酸钴和六水合硝酸镍作为金属源,以两步热解的策略合成了以CoN4为氧还原催化活性中心和NiCo2O4为氧析出反应催化活性中心的双活性位修饰的氮掺杂介孔碳。该催化剂中CoN4活性位使催化剂具备优异的氧还原性能,NiCo2O4使催化剂具备优秀的氧析出活性,大的比表面积暴露了足够多的活性位点,良好的介孔结构使其具备良好的传质能力。电催化性能测试表明,该催化剂氧还原和氧析出催化活性都较高,且在0.1M的KOH电解液中具有良好的稳定性和抗甲醇能力,旋转圆盘和旋转环盘测试表明其催化氧还原反应接近理想的四电子转移路径。此外,该催化剂还具有原料来源广、价格低,合成过程简易,产量高等优点,相比与同类催化剂具有更多优势,具有大规模应用前景。
发明内容
本发明目的在于,提供一种双活性位修饰的氮掺杂介孔碳催化剂的制备方法及用途。该方法使用甲醛和间苯二酚合成的酚醛树脂为碳源,以三聚氰胺为氮源,以十二烷基磺酸钠作为模板剂,六水合硝酸钴和六水合硝酸镍作为金属源,混合搅拌,在pH大于9的水溶液中温度60℃发生交联反应,静置处理和冷冻干燥处理得到金属有机混合物,再经两步碳化处理后即得双活性位修饰的氮掺杂介孔碳催化剂。所制备的催化剂负载着Co-N-C活性位和NiCo2O4活性位,同时还具有丰富的介孔结构、高比表面积、较高稳定性等优点。该催化剂成本低廉、合成工艺简单且产量高,对于大量制备高性能氧还原和氧析出电催化材料提供了新的途径,使得金属空气电池、电解水和燃料电池大规模应用更具可能性。
本发明所述的一种双活性位修饰的氮掺杂介孔碳的制备方法,按下列步骤进行:
a、将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH9,继续搅拌30min,随后加入0.6g六水合硝酸钴、0.3g六水合硝酸镍中一种或两种,继续搅拌1h,并调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳。
所述方法获得的双活性位修饰的氮掺杂介孔碳的用途,将其制备成分散液并修饰在电极表面,用于电催化氧还原反应和电催化氧析出反应中。
本发明所述的一种双活性位修饰的氮掺杂介孔碳催化剂的制备方法及用途,该催化剂以甲醛和间苯二酚合成酚醛树脂为碳源,以三聚氰胺为氮源,以十二烷基磺酸钠作为模板剂,六水合硝酸钴和六水合硝酸镍作为金属源,经过交联反应和冷冻干燥处理得到金属有机混合的前驱体,两步碳化处理后即得双活性位修饰的氮掺杂介孔碳催化剂。该方法的特点为:合成过程使用的十二烷基磺酸钠,酚醛树脂,三聚氰胺,六水合硝酸钴与六水合硝酸镍等皆为丰富易得的材料;以十二烷基磺酸钠为软模版剂,溶胶凝胶方式得到均一孔径的介孔结构;合成的前驱物在500℃碳化1h,再在700℃碳化2h,两步退火的方式使之形成了CoN4结构和NiCo2O4纳米粒;最终得到的催化剂NiCo2O4/CoN4-NMC制备成分散液并修饰在电极表面,将其用于电催化氧还原反应和电催化氧析出反应。
将本发明所述方法得到的催化剂做电化学性能测试表明:该催化剂在碱性条件下对氧还原反应和氧析出反应都表现出较高的电催化活性和稳定性,氧还原催化过程主要以四电子转移的方式推动,且该催化剂表现出很强的抗甲醇性能。同时由于原料廉价易得,合成过程简易,因此适于大规模的商业应用。
与现有的工艺相比,本发明所述方法具有明显的不同:
1.本发明所述的方法需要以十二烷基磺酸钠作为软模版剂,在水溶液中溶胶凝胶的方式合成前驱物,冷冻干燥和高温碳化的方式得到均一孔径的介孔碳;
2.使用三聚氰胺作为氮源,三聚氰胺树脂在十二烷基磺酸钠和间苯二酚发生交联反应的同时原位掺进去,随后热解形成氮掺杂碳;
3.使用六水合硝酸钴和六水合硝酸镍作为金属源,在酚醛树脂合成过程中,碱性条件下共沉淀,接着高温热解,500℃形成NiCo2O4纳米粒子,700℃形成Co-N-C结构;
4.本发明所述方法合成的一种双活性位修饰的氮掺杂介孔碳催化剂一方面继承了原有工艺得到催化剂的优点,活性位具有高的本征活性且长时间工作的耐久性,另一方面又克服了原有工艺产品的不足,改进的介孔结构具有良好的传质能力,合成的CoN4活性位具有高的氧还原催化活性,NiCo2O4活性位具有高的氧析出催化活性。
5.电化学测试数据表明该方法合成的催化剂具有优秀的氧还原和氧析出电催化性能且稳定性良好,在0.1M的KOH溶液中氧还原主要以四电子转移路径进行。
附图说明
图1为本发明实施例1中制备的双活性位修饰的氮掺杂介孔碳NiCo2O4/CoN4-NMC的扫描电镜图;
图2为本发明实施例2-5中制备的所有催化剂样品的X射线衍射图;
图3为本发明实施例2中制备的的双活性位修饰的氮掺杂介孔碳NiCo2O4/CoN4-NMC的X射线光电子能谱图,其中a为NiCo2O4/CoN4-NMC全谱;b为Co2p精细谱;c为Ni2p精细谱;d为N 1s精细谱;
图4为本发明实施例2-5中制备的所有催化剂样品的氧还原测试线性扫描极化曲线图,圆盘转速为1600rpm,其中a为NMC;b为Ni-NMC;c为Co-NMC;d为NiCo2O4/CoN4-NMC;e为Pt/C;
图5为本发明实施例2-5中制备的所有催化剂样品的氧析出测试线性扫描极化曲线图,圆盘转速为1600rpm,其中a为RuO2;b为NiCo2O4/CoN4-NMC;c为Co-NMC;d为Ni-NMC;e为NMC;
图6为本发明实施例1和6中制备的不同温度下合成的所有催化剂样品的氧还原测试线性扫描极化曲线图,圆盘转速为1600rpm,其中a为NiCo2O4/CoN4-NMC-600;b为NiCo2O4/CoN4-NMC-800;c为NiCo2O4/CoN4-NMC-700;
图7为本发明实施例1和6中制备的不同温度下合成的所有催化剂样品的氧析出测试线性扫描极化曲线图,圆盘转速为1600rpm,其中a为NiCo2O4/CoN4-NMC-600;b为NiCo2O4/CoN4-NMC-800;c为NiCo2O4/CoN4-NMC-700;
图8为本发明实施例1中制备的双活性位修饰的氮掺杂介孔碳NiCo2O4/CoN4-NMC和Pt/C的稳定性测试;
图9为本发明实施例1中制备的双活性位修饰的氮掺杂介孔碳NiCo2O4/CoN4-NMC和Pt/C的抗甲醇性能测试。
具体实施方式
下面通过具体实施例对本发明作进一步说明:
实施例1
催化剂制备:
a、将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH9,继续搅拌30min,随后加入0.6g六水合硝酸钴、0.3g六水合硝酸镍,继续搅拌1h,并调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳NiCo2O4/CoN4-NMC;
电化学性能测试:
称取3mg本方法得到的催化剂、400uL水、100uL异丙醇和10ul萘酚,超声均匀后,取10uL滴在旋转圆盘石墨电极上,干燥后使用旋转圆盘电极装置测试其催化氧气还原反应和氧气析出反应的性能,可逆氢电极和铂电极分别为参比电极和对电极,电解液为0.1mol/L氢氧化钾水溶液作为电解液,氧还原线性扫描得到的极化曲线见图4,氧析出线性扫描得到的曲线见图5,半波电位0.85V下稳定性测试见图8和抗甲醇测试见图9。
实施例2
催化剂制备:
a、将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳NMC。
电化学性能测试:
测试方法同实施例1,不同的是用NMC修饰热解石墨电极,具体的测试数据氧还原线性扫描得到的极化曲线见图4,氧析出线性扫描得到的曲线见图5。
实施例3
催化剂制备:
a、将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH9,继续搅拌30min,随后加入0.6g六水合硝酸钴,继续搅拌1h,并调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳Co-NMC。
电化学性能测试:
测试方法同实施例1,不同的是用Co-NMC修饰热解石墨电极,具体的测试数据氧还原线性扫描得到的极化曲线见图4,氧析出线性扫描得到的曲线见图5。
实施例4
催化剂制备:
a、将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH9,继续搅拌30min,随后加入0.3g六水合硝酸镍,继续搅拌1h,并调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳Ni-NMC。
电化学性能测试:
测试方法同实施例1,不同的是用Co-NOPC-4/4修饰热解石墨电极,具体的测试数据氧还原线性扫描得到的极化曲线见图4,氧析出线性扫描得到的曲线见图5。
实施例5
催化剂制备:
a、将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH9,继续搅拌30min,随后加入0.6g六水合硝酸钴、0.3g六水合硝酸镍中一种或两种,继续搅拌1h,并调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳NiCo2O4/CoN4-NMC-600或NiCo2O4/CoN4-NMC-800;
电化学性能测试:
测试方法同实施例1,不同的是用NiCo2O4/CoN4-NMC-600或NiCo2O4/CoN4-NMC-800修饰热解石墨电极,具体的测试数据氧还原线性扫描得到的极化曲线见图6,氧析出线性扫描得到的曲线见图7。

Claims (2)

1.一种双活性位修饰的氮掺杂介孔碳的制备方法,其特征在于按下列步骤进行:
a、 将1.44g十二烷基磺酸钠为模板剂,1.27g间苯二酚和7ml甲醛为碳源,1.26g三聚氰胺树脂为氮源,加入到30ml水中充分搅拌混匀形成浑浊液;
b、将步骤a得到的浑浊液用氢氧化钾调节pH9,继续搅拌30min,随后加入0.6g六水合硝酸钴、0.3g六水合硝酸镍中一种或两种,继续搅拌1h,并调节pH使保持在9±0.2;
c、将步骤b得到的混合物在温度60℃水浴锅中恒温搅拌3h得到棕红色粘稠液;
d、将步骤c得到棕红色粘稠液置于培养皿中静置24h,形成了胶体状树脂混合物;
e、将步骤d得到的胶体状树脂混合物冷冻干燥处理36h,形成棕红色脆性树脂混合物;
f、将步骤e得到的混合物在氮气气氛保护下温度500℃保持2h,继续升温至700℃下保持1h,冷却后取出,即得到双活性位修饰的氮掺杂介孔碳。
2.根据权利要求1所述方法获得的双活性位修饰的氮掺杂介孔碳的用途,其特征在于将其制备成分散液并修饰在电极表面,用于电催化氧还原反应和电催化氧析出反中。
CN201910836994.3A 2019-09-05 2019-09-05 一种双活性位修饰的氮掺杂介孔碳的制备方法和应用 Active CN110482524B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910836994.3A CN110482524B (zh) 2019-09-05 2019-09-05 一种双活性位修饰的氮掺杂介孔碳的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910836994.3A CN110482524B (zh) 2019-09-05 2019-09-05 一种双活性位修饰的氮掺杂介孔碳的制备方法和应用

Publications (2)

Publication Number Publication Date
CN110482524A true CN110482524A (zh) 2019-11-22
CN110482524B CN110482524B (zh) 2023-04-07

Family

ID=68556717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910836994.3A Active CN110482524B (zh) 2019-09-05 2019-09-05 一种双活性位修饰的氮掺杂介孔碳的制备方法和应用

Country Status (1)

Country Link
CN (1) CN110482524B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864222A (zh) * 2020-06-22 2020-10-30 江苏大学 锌基双金属-氮掺碳材料的制备方法及其应用于电极催化剂
CN114540868A (zh) * 2022-01-19 2022-05-27 苏州大学 一种Co、N、S共掺杂碳纳米念珠复合材料的制备方法及其应用
CN114534766A (zh) * 2022-03-21 2022-05-27 兰州交通大学 一种采用凝胶法制备碳基非贵金属介孔m-n-c催化材料的方法及应用
CN114733526A (zh) * 2022-04-25 2022-07-12 浙江天宇药业股份有限公司 一种镍负载的多孔碳材料催化剂及其制备方法和用途
CN115025798A (zh) * 2022-05-23 2022-09-09 南京工业大学 一种高载量含钴碳氮纳米片整体式催化材料及其制备方法和应用
CN115724420A (zh) * 2022-09-30 2023-03-03 重庆长安新能源汽车科技有限公司 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法
CN116120567A (zh) * 2022-11-18 2023-05-16 电子科技大学长三角研究院(湖州) 一种富氮型镍基配位聚合物及其衍生材料的制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682379A (zh) * 2012-09-07 2014-03-26 中国科学院大连化学物理研究所 一种燃料电池用金属掺杂的含氮炭基催化剂及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682379A (zh) * 2012-09-07 2014-03-26 中国科学院大连化学物理研究所 一种燃料电池用金属掺杂的含氮炭基催化剂及其应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864222A (zh) * 2020-06-22 2020-10-30 江苏大学 锌基双金属-氮掺碳材料的制备方法及其应用于电极催化剂
CN114540868A (zh) * 2022-01-19 2022-05-27 苏州大学 一种Co、N、S共掺杂碳纳米念珠复合材料的制备方法及其应用
CN114540868B (zh) * 2022-01-19 2022-11-08 苏州大学 一种Co、N、S共掺杂碳纳米念珠复合材料的制备方法及其应用
CN114534766A (zh) * 2022-03-21 2022-05-27 兰州交通大学 一种采用凝胶法制备碳基非贵金属介孔m-n-c催化材料的方法及应用
CN114534766B (zh) * 2022-03-21 2024-02-20 兰州交通大学 一种采用凝胶法制备碳基非贵金属介孔m-n-c催化材料的方法及应用
CN114733526A (zh) * 2022-04-25 2022-07-12 浙江天宇药业股份有限公司 一种镍负载的多孔碳材料催化剂及其制备方法和用途
CN114733526B (zh) * 2022-04-25 2024-05-17 浙江天宇药业股份有限公司 一种镍负载的多孔碳材料催化剂及其制备方法和用途
CN115025798A (zh) * 2022-05-23 2022-09-09 南京工业大学 一种高载量含钴碳氮纳米片整体式催化材料及其制备方法和应用
CN115724420A (zh) * 2022-09-30 2023-03-03 重庆长安新能源汽车科技有限公司 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法
CN115724420B (zh) * 2022-09-30 2024-04-16 深蓝汽车科技有限公司 一种双金属掺杂多孔碳材料、制备方法、应用及其包覆正极材料和制备方法
CN116120567A (zh) * 2022-11-18 2023-05-16 电子科技大学长三角研究院(湖州) 一种富氮型镍基配位聚合物及其衍生材料的制备方法和应用

Also Published As

Publication number Publication date
CN110482524B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN110482524A (zh) 一种双活性位修饰的氮掺杂介孔碳的制备方法和应用
Li et al. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction
CN109234755B (zh) 一种层状双金属氢氧化物复合结构电催化剂及制备方法
Wang et al. 3 D porous nickel–cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting
Wang et al. Efficient nanointerface hybridization in a nickel/cobalt oxide nanorod bundle structure for urea electrolysis
Pu et al. Efficient water splitting catalyzed by flexible NiP 2 nanosheet array electrodes under both neutral and alkaline solutions
CN109518219B (zh) 一种石墨烯基镍钴双金属析氧催化剂的制备方法及其应用
Xu et al. A hierarchical Ni–Co–O@ Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode
CN109628951B (zh) 一种硫化镍析氢电催化剂及其制备方法与应用
CN107583662B (zh) 一种氧还原催化剂及其制备方法和应用
CN111138675B (zh) 一种含硫非贵金属盐掺杂的空心纳米金属有机框架材料及其制备方法和应用
CN110124673B (zh) 一种硼诱导非晶层状双氢氧化物电催化剂及其制备与应用
Liu et al. Boosting electrocatalytic oxygen evolution over Ce− Co9S8 core–shell nanoneedle arrays by electronic and architectural dual engineering
Zhou et al. Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution
CN110102330A (zh) 一种Co@N,S(two)-Kb高分散核壳结构催化剂、制备方法及其应用
CN108336374A (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
Yang et al. Tuning the composition of tri-metal iron based phosphides integrated on phosphorus-doped vertically aligned graphene arrays for enhanced electrocatalytic activity towards overall water splitting
Qian et al. Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction
CN108039499B (zh) 一种氮掺杂剥离碳纳米管负载四氧化三钴材料的制备方法
Hu et al. High-performance precious metal-free direct ammonia fuel cells endowed by Co-doped Ni4Cu1 anode catalysts
Yang et al. A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting
Sebastian et al. Spinel nickel ferrite nanoparticles supported on a 1T/2H mixed-phase MoS2 heterostructured composite as a bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions
CN112626550B (zh) 一步水热法直接制备多孔硫化镍纳米片电催化剂的方法
Yang et al. RETRACTED ARTICLE: MOF-derived highly active Ni/Co/NC electrocatalyst and its application for hydrogen evolution reaction
Sun et al. A 3D porous Ni-CeO 2 nanosheet array as a highly efficient electrocatalyst toward alkaline hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant