CN110473940A - 紫外led的外延结构 - Google Patents

紫外led的外延结构 Download PDF

Info

Publication number
CN110473940A
CN110473940A CN201910731901.0A CN201910731901A CN110473940A CN 110473940 A CN110473940 A CN 110473940A CN 201910731901 A CN201910731901 A CN 201910731901A CN 110473940 A CN110473940 A CN 110473940A
Authority
CN
China
Prior art keywords
layer
barrier layer
quantum well
thickness
ultraviolet led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910731901.0A
Other languages
English (en)
Other versions
CN110473940B (zh
Inventor
付羿
刘卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd
Original Assignee
JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd filed Critical JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd
Priority to CN201910731901.0A priority Critical patent/CN110473940B/zh
Publication of CN110473940A publication Critical patent/CN110473940A/zh
Application granted granted Critical
Publication of CN110473940B publication Critical patent/CN110473940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种紫外LED的外延结构,包括:在生长衬底表面依次生长的应力控制层、n型电流扩展层、有源区发光层及p型电流扩展层;其中,有源区发光层为由InaGa1‑aN量子阱层和AlbGa1‑bN势垒层形成的周期性结构,周期为4~7;在该周期性结构中,由下到上InaGa1‑aN量子阱层的厚度逐层增加15%,0.01<a<0.05,最下层的InaGa1‑aN量子阱层的厚度为2~4nm;由下到上AlbGa1‑bN势垒层中的Al组分b逐层增加15%,最下层的AlbGa1‑bN势垒层中0.06<b<0.08,有效缓解了InGaN/AlGaN多量子阱结构的应力,减少晶格缺陷的产生,缓解结构中的量子限制stark效应。

Description

紫外LED的外延结构
技术领域
本发明涉及LED技术领域,尤其是一种紫外LED的外延结构。
背景技术
在生长短波长365nm-370nm范围的紫外LED结构时,为了减少外延层内部的光子吸收,通常使用N型的AlGaN替代GaN作为电流扩展层;同时,采用高Al组分的AlGaN作为势垒层把载流子限制在多量子阱中进行复合。但是,N型AlGaN电流扩展层和高Al组分的AlGaN势垒层对InGaN量子阱层施加了较大的压应力,产生了诸如界面缺陷等高密度非辐射复合中心的同时,加剧了量子限制stark效应,限制了InGaN量子阱厚度的增加,从而制约了紫外LED光效的提高。
发明内容
为了克服以上不足,本发明提供了一种紫外LED的外延结构,有效缓解现有紫外LED的外延结构中出现的压应力较大等技术问题。
本发明提供的技术方案为:
一种紫外LED的外延结构,包括:在生长衬底表面依次生长的应力控制层、n型电流扩展层、有源区发光层及p型电流扩展层;其中,有源区发光层为由InaGa1-aN量子阱层和AlbGa1-bN势垒层形成的周期性结构,周期为4~7;
在该周期性结构中,由下到上InaGa1-aN量子阱层的厚度逐层增加15%,0.01<a<0.05,最下层的InaGa1-aN量子阱层的厚度为2~4nm;由下到上AlbGa1-bN势垒层中的Al组分b逐层增加15%,最下层的AlbGa1-bN势垒层中0.06<b<0.08。
在本发明提供的紫外LED的外延结构中,有源区发光层中的InaGa1-aN量子阱层厚度逐渐增加,AlbGa1-bN势垒层中的Al组分逐渐提高,有效缓解了InGaN/AlGaN多量子阱结构的应力,减少晶格缺陷的产生,缓解结构中的量子限制stark效应。此外,由结构中压应力的缓冲,靠近电子阻挡层的最后一个周期的发光阱的厚度大幅增加,大大提高了紫外LED的发光效率。
附图说明
图1为本发明中紫外LED的外延结构示意图;
图2为一实例中有源区发光层结构示意图。
附图标记:
1-生长衬底层,2-应力控制层,3-n型电流扩展层,4-有源区发光层,5-p型电流扩展层。
具体实施方式
为了更清楚地说明本发明实施案例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
如图1所示为本发明提供的紫外LED(发光波长365-370nm)外延结构示意图,从图中看出,该紫外LED的外延结构中包括:在生长衬底(图示中,为硅衬底层1)表面依次生长的应力控制层2、n型电流扩展层3、有源区发光层4及p型电流扩展层5;其中,有源区发光层为由InaGa1-aN量子阱层和AlbGa1-bN势垒层形成的周期性结构,周期为4~7。在该周期性结构中,由下到上InaGa1-aN量子阱层的厚度逐层增加15%,0.01<a<0.05,最下层的InaGa1-aN量子阱层(最靠近电流扩展层3的InaGa1-aN量子阱层)的厚度为2~4nm;由下到上AlbGa1-bN势垒层中的Al组分b逐层增加15%,最下层的AlbGa1-bN势垒层(最靠近电流扩展层3的AlbGa1-bN势垒层)中0.06<b<0.08,且AlbGa1-bN势垒层的厚度为10~15nm,所有AlbGa1-bN势垒层中掺杂有浓度在5×1016~5×1018cm-2之间的硅。
如图2所示,在一实例中,有源区发光层为由3个周期的InaGa1-aN量子阱层和AlbGa1-bN势垒层形成,最下层的InaGa1-aN量子阱层厚度为3nm,往上两个周期InaGa1-aN量子阱层的厚度分别为3.45nm和3.9675nm,a的取值根据发光波长的需求在0.01~0.05之间调整,3个周期中InaGa1-aN量子阱层中的Al组分a不变、AlbGa1-bN势垒层中的Al组分b逐层增加15%,其中,最下层的AlbGa1-bN势垒层中的Al组分b为0.07,往上两个周期AlbGa1-bN势垒层中的Al组分b依次为0.0805和0.092575,厚度均为12nm。
在一实例中,使用MOCVD生长设备、选用Si(111)衬底为硅衬底层1、非掺杂AlN/AlGaN层为应力控制层2,Si掺杂的AlGaN层作为n型电流扩展层3,InaGa1-aN量子阱层和AlbGa1-bN势垒层组成的多量子阱结构作为有源区发光层4,Mg掺杂的AlGaN层作为p型电流扩展层5,具体:
首先,将硅衬底层1放置到MOCVD反应室中,升温到1100℃,并通入H2进行高温表面清洁处理。
随后,将反应室温度设定在800~1200℃,往反应室中通入三甲基铝(TMAl)、氨气(NH3),在H2作为载气的条件下生长一层AlN,相同条件下在AlN上通过三甲基铝(TMAl)、三甲基镓(TMGa)、氨气(NH3)生长一层AlGaN,形成应力控制层2。
紧接着,以硅烷(SiH4)作为掺杂剂,掺杂浓度为8×1018cm-3,生长温度在900~1100℃,实现n型电流扩展层3的生长,生长出来的n型电流扩展层3为Al组分7%的n型Al0.07Ga0.93N层,厚度3000nm。
之后,反应室温度为750℃,以氮气(N2)作为载气,通入三甲基铟(TMIn)、三乙基镓(TEGa)、氨气(NH3)生长厚度为3nm的In0.02Ga0.98N量子阱层;接着将反应室温度升高到850℃,通入三甲基铝(TMAl)、三乙基镓(TEGa)、氨气(NH3)生长厚度为12nm的Al0.07Ga0.93N势垒层,同时通入硅烷(SiH4)进行掺杂,掺杂浓度2×1018cm-3。之后,以相同的生长条件生长有源区发光层中剩余4个周期,其中,以3nm厚的In0.02Ga0.98N量子阱层为基准,每个周期中的In0.02Ga0.98N量子阱层的厚度逐层增加15%,分别为3.45nm、3.97nm、4.56nm及5.28nm;以Al0.07Ga0.93N势垒层为基准,势垒层中的Al组分逐层增加15%,分比为0.0805和0.0926、0.1065及0.1224,得到有源区发光层。
最后,以H2或者N2作为载气,通入TMAl、TMGa及NH3,且以二茂镁(Cp2Mg)作为掺杂剂在外延生长温度为900℃~1000℃的条件下生长p型电流扩展层5,厚度为80nm。
将紫外LED芯片(包括本实例中紫外LED外延结构制备的紫外LED芯片和普通InGaN/AlGaN量子阱结构制备的紫外LED芯片)切割成1.125*1.125mm大小,在350mA电流下进行光功率测量,本实例中LED芯片的光功率为427mW,普通InGaN/AlGaN量子阱结构的紫外LED芯片的光功率为406mW,可见,使用本发明方法制备得到的紫外LED芯片的光功率得到了提升。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种紫外LED的外延结构,其特征在于,包括:在生长衬底表面依次生长的应力控制层、n型电流扩展层、有源区发光层及p型电流扩展层;其中,有源区发光层为由InaGa1-aN量子阱层和AlbGa1-bN势垒层形成的周期性结构,周期为4~7;
在该周期性结构中,由下到上InaGa1-aN量子阱层的厚度逐层增加15%,0.01<a<0.05,最下层的InaGa1-aN量子阱层的厚度为2~4nm;由下到上AlbGa1-bN势垒层中的Al组分b逐层增加15%,最下层的AlbGa1-bN势垒层中0.06<b<0.08。
2.如权利要求1所述的紫外LED的外延结构,其特征在于,AlbGa1-bN势垒层的厚度为10~15nm。
3.如权利要求1或2所述的紫外LED的外延结构,其特征在于,AlbGa1-bN势垒层中掺杂有浓度在5×1016~5×1018cm-2之间的硅。
CN201910731901.0A 2019-08-09 2019-08-09 紫外led的外延结构 Active CN110473940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910731901.0A CN110473940B (zh) 2019-08-09 2019-08-09 紫外led的外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910731901.0A CN110473940B (zh) 2019-08-09 2019-08-09 紫外led的外延结构

Publications (2)

Publication Number Publication Date
CN110473940A true CN110473940A (zh) 2019-11-19
CN110473940B CN110473940B (zh) 2024-05-17

Family

ID=68511598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910731901.0A Active CN110473940B (zh) 2019-08-09 2019-08-09 紫外led的外延结构

Country Status (1)

Country Link
CN (1) CN110473940B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129243A (zh) * 2019-12-02 2020-05-08 晶能光电(江西)有限公司 GaN基紫外LED外延结构
CN112382708A (zh) * 2020-10-30 2021-02-19 苏州紫灿科技有限公司 一种具有组分渐变量子阱结构的深紫外led及制备方法
CN115036400A (zh) * 2020-03-09 2022-09-09 厦门市三安光电科技有限公司 一种微发光二极管外延结构及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055719A (ja) * 2002-07-18 2004-02-19 Shiro Sakai 窒化ガリウム系化合物半導体装置
EP1786044A1 (en) * 2005-11-14 2007-05-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
KR20100055302A (ko) * 2008-11-17 2010-05-26 삼성엘이디 주식회사 질화물 반도체 발광소자
CN103887380A (zh) * 2014-03-28 2014-06-25 西安神光皓瑞光电科技有限公司 一种紫光led的外延生长方法
CN105070805A (zh) * 2015-08-17 2015-11-18 晶能光电(常州)有限公司 一种硅基氮化物紫外led外延结构及其实现方法
CN105932130A (zh) * 2016-04-25 2016-09-07 东莞市中镓半导体科技有限公司 一种具有新型电子阻挡层的近紫外led及其制备方法
CN106784188A (zh) * 2016-12-23 2017-05-31 东莞市中镓半导体科技有限公司 一种具有复合电子阻挡层的近紫外led的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055719A (ja) * 2002-07-18 2004-02-19 Shiro Sakai 窒化ガリウム系化合物半導体装置
EP1786044A1 (en) * 2005-11-14 2007-05-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
KR20100055302A (ko) * 2008-11-17 2010-05-26 삼성엘이디 주식회사 질화물 반도체 발광소자
CN103887380A (zh) * 2014-03-28 2014-06-25 西安神光皓瑞光电科技有限公司 一种紫光led的外延生长方法
CN105070805A (zh) * 2015-08-17 2015-11-18 晶能光电(常州)有限公司 一种硅基氮化物紫外led外延结构及其实现方法
CN105932130A (zh) * 2016-04-25 2016-09-07 东莞市中镓半导体科技有限公司 一种具有新型电子阻挡层的近紫外led及其制备方法
CN106784188A (zh) * 2016-12-23 2017-05-31 东莞市中镓半导体科技有限公司 一种具有复合电子阻挡层的近紫外led的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129243A (zh) * 2019-12-02 2020-05-08 晶能光电(江西)有限公司 GaN基紫外LED外延结构
CN111129243B (zh) * 2019-12-02 2024-05-17 晶能光电股份有限公司 GaN基紫外LED外延结构
CN115036400A (zh) * 2020-03-09 2022-09-09 厦门市三安光电科技有限公司 一种微发光二极管外延结构及其制备方法
CN112382708A (zh) * 2020-10-30 2021-02-19 苏州紫灿科技有限公司 一种具有组分渐变量子阱结构的深紫外led及制备方法

Also Published As

Publication number Publication date
CN110473940B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN101488548B (zh) 一种高In组分多InGaN/GaN量子阱结构的LED
CN101488550B (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN104919604B (zh) 氮化物半导体发光元件
US8816322B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
CN103730552B (zh) 一种提高led发光效率的外延生长方法
CN103824909B (zh) 一种提高GaN基LED发光亮度的外延方法
CN105990479A (zh) 一种氮化镓基发光二极管外延结构及其制备方法
US8716048B2 (en) Light emitting device and method for manufacturing the same
CN100580966C (zh) 一种绿光发光二极管
CN104282808B (zh) 一种紫外led外延有源区结构生长方法
CN103515495B (zh) 一种GaN基发光二极管芯片的生长方法
CN111293198B (zh) 氮化铝系发光二极管结构及其制作方法
CN110473940A (zh) 紫外led的外延结构
CN106935690B (zh) 一种提高紫外led光输出功率的外延结构
CN109119515A (zh) 一种发光二极管外延片及其制造方法
CN105977351B (zh) 一种紫外led有源区多量子阱的生长方法
CN111063772A (zh) 高光效紫外led外延结构
CN104576852A (zh) 一种GaN基LED外延结构的发光量子阱应力调控方法
CN108091741A (zh) 一种发光二极管外延片的生长方法
US9972745B2 (en) Group III nitride semiconductor light-emitting device
CN111916535A (zh) 一种稳定的半极性深紫外uvc发光二极管及其制备方法
CN104617201B (zh) 一种适合高电流密度的GaN基LED外延结构及其生长方法
CN111129243B (zh) GaN基紫外LED外延结构
US9601654B2 (en) Method of producing group III nitride semiconductor light-emitting device
CN109346561A (zh) 一种GaN基发光二极管外延片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 330096 No. 699, Aixi Hubei Road, Nanchang High-tech Development Zone, Jiangxi Province

Applicant after: Jingneng optoelectronics Co.,Ltd.

Address before: 330096 No. 699, Aixi Hubei Road, Nanchang High-tech Development Zone, Jiangxi Province

Applicant before: LATTICE POWER (JIANGXI) Corp.

GR01 Patent grant
GR01 Patent grant