KR20100055302A - 질화물 반도체 발광소자 - Google Patents

질화물 반도체 발광소자 Download PDF

Info

Publication number
KR20100055302A
KR20100055302A KR1020080114305A KR20080114305A KR20100055302A KR 20100055302 A KR20100055302 A KR 20100055302A KR 1020080114305 A KR1020080114305 A KR 1020080114305A KR 20080114305 A KR20080114305 A KR 20080114305A KR 20100055302 A KR20100055302 A KR 20100055302A
Authority
KR
South Korea
Prior art keywords
nitride semiconductor
layer
semiconductor layer
type nitride
type
Prior art date
Application number
KR1020080114305A
Other languages
English (en)
Other versions
KR101228983B1 (ko
Inventor
박성은
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to KR1020080114305A priority Critical patent/KR101228983B1/ko
Publication of KR20100055302A publication Critical patent/KR20100055302A/ko
Application granted granted Critical
Publication of KR101228983B1 publication Critical patent/KR101228983B1/ko

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

본 발명은 높은 내부 양자 효율을 갖는 질화물 반도체 발광소자에 관한 것이다. 본 발명의 일 측면에 따른 질화물 반도체 발광소자는, n형 질화물 반도체층과 p형 질화물 반도체층; 및 상기 n형 질화물 반도체층과 p형 질화물 반도체층 사이에 형성되며, 복수의 InGaN 양자우물층과 AlGaN 양자장벽층이 교대로 적층되어 이루어진 InGaN/AlGaN 초격자 구조의 활성층;을 포함하며, 상기 AlGaN 양자장벽층은 상기 n형 및 p형 질화물 반도체층에서 주입되는 캐리어가 터널링될 수 있는 두께를 갖고, 상기 p형 질화물 반도체층 쪽으로 갈수록 감소되는 Al 조성을 갖는다.
질화물 반도체, LED

Description

질화물 반도체 발광소자{Nitride Semiconductor Light Emitting Device}
본 발명은 질화물 반도체 발광소자에 관한 것으로, 보다 상세하게는 InGaN/AlGaN 초격자 구조의 활성층을 구비하는 고 내부 양자 효율의 질화물 반도체 발광 소자에 관한 것이다..
질화물 반도체 발광 소자(예컨대, 3족 질화물계 화합물 반도체 LED, LD 등)가 개발된 후, 디스플레이용 백라이트, 카메라용 플래쉬, 조명 등 다양한 분야에서 질화물 반도체 발광 소자가 기존의 형광등이나 백열 전구 등 광원을 대체할 차세대의 주요 광원으로 주목받고 있다. 질화물 반도체 발광 소자의 적용 분야가 확대됨에 따라, 휘도와 발광 효율을 증대시키기 위한 노력이 진행되고 있다. GaN과 관련된 백색 발광 다이오드의 경우 광효율 측면에서 기존의 형광등 및 백열 전구를 추월한 상태이고, 수명과 신뢰성 측면에서 더 우수한 특성들을 보여주고 있다. 그러나, 이러한 장점에도 불구하고 질화물 반도체 발광 소자의 응용분야를 더 확대하기 위해서는 고효율 질화물계 화합물 반도체의 성장에 대한 연구가 필요하다. 이를 위해서는 LED의 구조와 내부 양자효율, 광추출 효율 등의 근본적인 특성 향상을 위한 방안이 이루어져야 한다.
3족 질화물 반도체 LED 등의 질화물 반도체 발광소자는 n형 반도체층과 p형 반도체층과 그 사이에 개재된 3족 질화물계 화합물의 활성층을 포함한다. 이러한 질화물 반도체 발광소자의 기본 동작 원리는, 활성층에 전자와 정공을 주입하여 이 전자와 정공들이 결합하여 빛을 방출하게 하는 것이다. 일반적으로 질화물 반도체 발광소자의 활성층으로는, 하나의 양자우물층을 갖는 단일양자우물(SQW: single quantum well)구조와, 복수개의 양자우물층을 갖는 다중양자우물(MQW: multi-quantum well)구조가 있다. 이중 다중양자우물 구조의 활성층은 단일양자우물 구조에 비해 전류대비 광효율이 우수하고 높은 발광출력을 가지므로 적극적으로 활용되고 있다.
그러나, 전자와 정공의 이동도가 다르기 때문에 일부 캐리어가 활성층 내에서 재결합되지 않고, 또한 활성층 내에서의 오제(Auger) 효과에 의한 비방사성(non-radiative) 재결합으로 인해 활성층 내부에서의 발광성 재결합 효율이 떨어져서 내부 양자 효율이 저감되는 문제가 있다.
본 발명의 일 과제는 상술한 문제점을 해결하는 것으로서, 활성층에서 높은 재결합 효율을 갖고 내부 양자 효율이 향상된 질화물 반도체 발광 소자를 제공하는 것이다.
본 발명의 일 측면에 따른 질화물 반도체 발광소자는, n형 질화물 반도체층과 p형 질화물 반도체층; 및 상기 n형 질화물 반도체층과 p형 질화물 반도체층 사이에 형성되며, 복수의 InGaN 양자우물층과 AlGaN 양자장벽층이 교대로 적층되어 이루어진 InGaN/AlGaN 초격자 구조의 활성층;을 포함하며, 상기 AlGaN 양자장벽층은 상기 n형 및 p형 질화물 반도체층에서 주입되는 캐리어가 터널링될 수 있는 두께를 갖고, 상기 p형 질화물 반도체층 쪽으로 갈수록 감소되는 Al 조성을 갖는다.
본 발명의 실시형태에 따르면, 상기 InGaN 양자우물층은 상기 p형 질화물 반도체층 쪽으로 갈수록 증가하는 두께를 가질 수 있다.
본 발명의 실시형태에 따르면, 상기 InGaN 양자우물층은 Si로 도핑된 n형 반도체이고, 상기 p형 질화물 반도체층 쪽으로 갈수록 증가하는 Si 도핑 농도를 가질 수 있다.
본 발명의 실시형태에 따르면, 상기 AlGaN 양자장벽층은 상기 p형 질화물 반도체층으로 갈수록 감소되는 에너지 밴드갭과 장벽 높이를 가질 수 있다.
본 발명의 실시형태에 따르면, 상기 n형 질화물 반도체층은 상기 활성층과 인접하는 n형 GaN을 포함하고, 상기 p형 질화물 반도체층은 상기 활성층과 인접하는 p형 GaN을 포함할 수 있다.
상기 AlGaN 양자장벽층의 Al 조성은 상기 AlGaN 양자장벽층을 AlxGa1-xN로 표현할 때 0<x<0.3의 범위 내일 수 있다. 더 바람직하게는 격자상수의 불일치 억제를 위해서 0<x<0.2의 범위 내일 수 있다. 상기 AlGaN 양자장벽층의 두께는 10 ~ 30 Å일 수 있다.
본 발명에 따르면, 질화물 반도체 발광소자에 있어서, 활성층 내에서의 재결합 효율을 높임으로써 내부 양자 효율을 증가시킬 수 있다. 또한 활성층 내 InGaN의 두께 또는 도핑 레벨을 변조시킴으로써 오제(Auger) 효과를 감소시킬 수 있고, 이로써 내부 양자 효율을 추가적으로 향상시킬 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지의 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로만 한정되는 것은 아니다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
도 1은 본 발명의 실시형태에 따른 질화물 반도체 발광 소자의 단면도를 나타낸다. 도 1을 참조하면, 질화물 반도체 발광 소자(100)는 사파이어 등의 기판(101), n형 질화물 반도체층(103), 활성층(105) 및 p형 질화물 반도체층(107)을 포함한다. 메사에칭되어 노출된 n형 질화물 반도체층(103) 상에는 n-전극(110)이 형성되며, p형 질화물 반도체층(107) 상에는 투명 전극층(108)과 p-전극(전극 패드)(109)이 형성되어 있다. 본 실시형태에서는 양측 전극(109, 110)이 동일 면에 배치된 수평형 질화물 반도체 구조를 예시하고 있으나, 본 발명이 이에 한정되는 것은 아니고 양측 전극이 발광 구조물(103, 105, 107)의 대향면에 배치된 수직 구조의 질화물 반도체 발광 구조에도 적용될 수 있다는 것은 명확하다.
도 1에 도시된 바와 같이, 활성층(105)은 InGaN 양자우물층(105a)과 AlGaN 양자장벽층(105b)이 교대로 적층된 다중양자우물구조로 되어 있다. 또한, AlGaN 양자장벽층(105b)은 n형 및 p형 질화물 반도체층(103, 107)으로부터 주입되는 전자(e) 및 정공(h)이 터널링될 수 있는 두께(tb)를 가져서, 활성층(105)은 양자장벽 을 통한 터널링을 가능하게 하는 InGaN/AlGaN 초격자 구조의 형태로 되어 있다. 예를 들어, 용이한 캐리어 터널링을 위해 AlGaN 양자장벽층(105b)의 두께(tb)는 10 ~ 30 Å일 수 있다. 활성층(105)에 캐리어를 공급하는 n형 및 p형 질화물 반도체층(103, 107)은 활성층(105)에 인접한 측에 각각 n형 GaN과 p형 GaN을 포함할 수 있다(도 2 참조).
도 2는 도 1의 질화물 반도체 발광 소자에 있어서, 활성층의 에너지 밴드 구조를 개략적으로 나타낸 도면이다. 도 2에서 Ec와 Ev는 각각 전도대(conduction band) 및 가전자대(valence band)의 에지에 해당하는 에너지 레벨을 나타낸다. 도 2에 도시된 바와 같이, 활성층(105) 내 복수의 AlGaN 양자장벽층(105b)은 상기 p형 질화물 반도체층(107) 쪽으로 갈수록 감소되는 Al 조성을 갖는다. 이로써, InGaN/AlGaN 초격자 구조의 활성층(105)에 있어서, AlGaN 양자장벽층(105b)은 p형 질화물 반도체층(107)으로 갈수록 에너지 밴드갭과 장벽 높이가 감소하게 된다. AlGaN 양자장벽층(105b)의 Al 조성은 AlxGa1-xN로 표현할 때 0<x<0.3의 범위 내일 수 있다. Al 조성이 너무 크면 InGaN 양자우물층과의 격자 불일치 문제가 발생할 수 있다. 격자상수의 불일치 억제를 위해서 더 바람직하게는, Al 조성은 AlxGa1-xN로 표현할 때 0<x<0.2의 범위 내로 조절할 수 있다.
상술한 InGaN/AlGaN 초격자 구조의 활성층(105)을 구비함으로써, 전자와 정 공이 터널링을 통해 양자우물층(105a)에 보다 효과적으로 공급되어 재결합 효율을 높일 수 있다. 특히, 초격자 구조 내에서 AlGaN 양자장벽을 이용할 경우, AlGaN 장벽 내에서 발생될 반대 방향의 압전 필드(piezoelectric field) 세기는 상대적으로 GaN 장벽을 적용한 경우의 압전 필드 세기보다 크다. 그 결과, InGaN 양자우물 내부에서 발생되는 압전 필드 세기의 상쇄 효과가 커져서 결과적으로 내부 양자효율 향상으로 이어지게 된다.
또한, p형 질화물 반도체층(107)으로 갈수록 AlGaN 양자장벽층(105b)의 Al 조성 분포를 점차적으로 감소시킴으로써, n형 질화물 반도체층(103)에 인접한 활성층 부분에서 전자의 모멘텀을 어느 정도 줄여줄 수 있고 이로써, 전자(e)가 재결합 없이 p형 질화물 반도체층(107)으로 넘어가는 것을 차단할 수 있다. 따라서, p형 질화물 반도체층(107) 측에(또는 p형 질화물 반도체층(107)에 인접한 활성층 부분에) 별도의 전자 차단층(electron blocking layer)를 마련해둘 필요 없이도, 양자우물층(105a)에서의 재결합 확율을 향상시킬 수 있다.
특히, 정공의 상대적으로 낮은 이동도로 인해서, p형 질화물 반도체층(107)에 인접한 활성층 부분에는 정공에 대한 정공 차단 구조(hole blocking structure)를 둘 필요가 없다. 따라서, 도 2에 도시된 바와 같이 p형 질화물 반도체층(107)에 인접한 활성층 부분에서 정공에 대한 장벽 높이가 상대적으로 낮아도 재결합 향상에 불리하지 않으며, 오히려 전자와의 이동도 차이로 인한 파동 함수 불일치의 문 제를 완화시킬 수 있다.
결과적으로, n형 반도체층(103)에 인접한 상대적으로 높은 AlGaN 장벽(전자에 대한 양자장벽)과 p형 반도체층(107)에 인접한 상대적으로 낮은 AlGaN 장벽(정공에 대한 양자장벽)을 통해서, 전자와 정공간의 이동도 차이에 따른 전자의 파동함수와 정공의 파동함수의 중첩 영역의 감소를 억제할 수 있게 된다. 활성층(105) 내에서 전자와 정공은 p형 질화물 반도체층(107)에 인접한 2개 혹은 3개의 InGaN 양자우물층(105a)에서 주로 재결합할 수 있다.
도 2에 도시된 바와 같이, 복수의 InGaN 양자우물층(105a)은 상기 p형 질화물 반도체층 쪽으로 갈수록 증가하는 두께를 가질 수 있다. 양자우물층(105a)의 두께증가는 양자우물의 스페이스를 증가로 이어지고 이로써 오제(Auger) 효과로 인한 비방사성 재결합(non-radiative recombination)의 확율을 저감시킬 수 있다. 특히, 전자-정공 재결합(RE)은 p형 질화물 반도체층(107)에 인접한 2개 혹은 3개의 InGaN 양자우물층(105a)에서 주로 이루어지므로, p형 질화물 반도체층(107)에 인접한 2~3개의 InGaN 양자우물층(105a)에서의 두께가 중요하다. 상술한 바와 같이 p형 반도체층(107)쪽으로 갈수록 증가하는 두께를 가짐으로써 활성층(105)은 오제 효과를 효율적으로 억제할 수 있게 된다.
또한, 오제 효과의 추가적인 억제를 위해서, InGaN 양자우물층(105a)의 변조 된 도핑레벨을 이용할 수 있다. 즉, 복수의 InGaN 양자우물층(105a)은 Si로 도핑된 n형 반도체로 형성될 수 있는데, 이러한 InGaN 양자우물층(105a) 내의 Si 도핑레벨을 p형 질화물 반도체층 쪽으로 갈수록 증가시킬 수 있다. 이로써, p형 반도체측에 인접한 2~3개의 InGaN 양자우물층(105a)에서 고농도 도핑된 양자우물을 얻게 되고, 그 부분(상기 p형 반도체측에 인접한 2~3개의 InGaN 양자우물층)에서 오제 효과 억제를 추가적으로 실현할 수 있게 된다. 복수의 InGaN 양자우물층(105a)의 Si도핑 레벨을 전체적으로 높이는 것보다 p형 반도체층으로 갈수록 점차적으로 증가시키는 것이 효율적인 오제 효과 감소와 결정 품질 측면에서 유리하다. 결국, p형 반도체측에 인접한 2~3개의 InGaN 양자우물층(105a) 영역에서 두껍거나 또는 고농도 Si 도핑된 InGaN 양자우물을 실현함으로써 오제 효과의 효율적인 감소로 내부 양자 효율을 향상시킬 수 있게 된다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되지 아니한다. 첨부된 청구범위에 의해 권리범위를 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.
도 1은 본 발명의 실시형태에 따른 질화물 반도체 발광 소자의 단면도이다.
도 2는 본 발명의 실시형태에 따른 질화물 반도체 발광 소자의 활성층의 에너지 밴드 구조를 개략적으로 나타낸 도면이다.
<도면의 주요부분에 대한 부호의 설명>
100: 질화물 반도체 발광소자 101: 기판
103: n형 질화물 반도체층 105: 활성층
105a: InGaN 양자우물층 105b: AlGaN 양자장벽층
107: p형 질화물 반도체층 108: 투명 전극층
109: p-전극(전극패드) 110: n-전극

Claims (8)

  1. n형 질화물 반도체층과 p형 질화물 반도체층; 및
    상기 n형 질화물 반도체층과 p형 질화물 반도체층 사이에 형성되며, 복수의 InGaN 양자우물층과 AlGaN 양자장벽층이 교대로 적층되어 이루어진 InGaN/AlGaN 초격자 구조의 활성층;을 포함하며,
    상기 AlGaN 양자장벽층은 상기 n형 및 p형 질화물 반도체층에서 주입되는 캐리어가 터널링될 수 있는 두께를 갖고, 상기 p형 질화물 반도체층 쪽으로 갈수록 감소되는 Al 조성을 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  2. 제1항에 있어서,
    상기 InGaN 양자우물층은 상기 p형 질화물 반도체층 쪽으로 갈수록 증가하는 두께를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  3. 제1항에 있어서,
    상기 InGaN 양자우물층은 Si로 도핑된 n형 반도체이고, 상기 p형 질화물 반도체층 쪽으로 갈수록 증가하는 Si 도핑 농도를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  4. 제1항에 있어서,
    상기 AlGaN 양자장벽층은 상기 p형 질화물 반도체층으로 갈수록 감소되는 에너지 밴드갭과 장벽 높이를 갖는 것을 특징으로 하는 질화물 반도체 발광 소자.
  5. 제1항에 있어서,
    상기 n형 질화물 반도체층은 상기 활성층과 인접하는 n형 GaN을 포함하고, 상기 p형 질화물 반도체층은 상기 활성층과 인접하는 p형 GaN을 포함하는 것을 특징으로 하는 질화물 반도체 발광 소자.
  6. 제1항에 있어서,
    상기 AlGaN 양자장벽층의 Al 조성은 상기 AlGaN 양자장벽층을 AlxGa1-xN로 표현할 때 0<x<0.3의 범위 내인 것을 특징으로 하는 질화물 반도체 발광 소자.
  7. 제1항에 있어서,
    상기 AlGaN 양자장벽층의 Al 조성은 상기 AlGaN 양자장벽층을 AlxGa1-xN로 표 현할 때 0<x<0.2의 범위 내인 것을 특징으로 하는 질화물 반도체 발광 소자.
  8. 제1항에 있어서,
    상기 AlGaN 양자장벽층의 두께는 10 ~ 30 Å인 것을 특징으로 하는 질화물 반도체 발광 소자.
KR1020080114305A 2008-11-17 2008-11-17 질화물 반도체 발광소자 KR101228983B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080114305A KR101228983B1 (ko) 2008-11-17 2008-11-17 질화물 반도체 발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080114305A KR101228983B1 (ko) 2008-11-17 2008-11-17 질화물 반도체 발광소자

Publications (2)

Publication Number Publication Date
KR20100055302A true KR20100055302A (ko) 2010-05-26
KR101228983B1 KR101228983B1 (ko) 2013-02-04

Family

ID=42279802

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080114305A KR101228983B1 (ko) 2008-11-17 2008-11-17 질화물 반도체 발광소자

Country Status (1)

Country Link
KR (1) KR101228983B1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120042340A (ko) * 2010-10-25 2012-05-03 엘지이노텍 주식회사 발광 소자
WO2012078849A2 (en) * 2010-12-08 2012-06-14 Sensor Electronic Technology, Inc. Light emitting device with varying barriers
KR20130007918A (ko) * 2011-07-11 2013-01-21 엘지이노텍 주식회사 발광소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20130017329A (ko) * 2011-08-10 2013-02-20 엘지이노텍 주식회사 발광소자
KR20130029593A (ko) * 2011-09-15 2013-03-25 엘지이노텍 주식회사 발광소자
KR20140119714A (ko) * 2012-01-31 2014-10-10 소이텍 향상된 전하 캐리어들의 분포를 갖는 광활성 장치들 및 그 형성 방법들
KR20150012417A (ko) * 2013-07-25 2015-02-04 엘지이노텍 주식회사 발광 소자
KR20160100426A (ko) * 2015-02-13 2016-08-24 한국산업기술대학교산학협력단 점진적 함정 장벽을 이용한 고효율 duv led
KR20160100425A (ko) * 2015-02-13 2016-08-24 한국산업기술대학교산학협력단 점진적 문턱 장벽을 이용한 고효율 duv led
CN110473940A (zh) * 2019-08-09 2019-11-19 晶能光电(江西)有限公司 紫外led的外延结构
GB2589791B (en) * 2018-07-09 2022-04-27 Univ Iowa Res Found Cascaded superlattice LED system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212561B1 (ko) 2014-08-11 2021-02-08 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자 패키지
CN105742425B (zh) * 2016-04-22 2018-03-27 河北工业大学 具有空穴能量调节层的发光二极管外延结构
CN106784208A (zh) * 2016-11-23 2017-05-31 南昌大学 一种AlInGaN基多量子阱发光二极管的外延结构
KR102555005B1 (ko) 2016-11-24 2023-07-14 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자의 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022825B1 (en) 1997-03-07 2006-05-03 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
JP3311275B2 (ja) * 1997-08-29 2002-08-05 株式会社東芝 窒化物系半導体発光素子
JP2003273473A (ja) 2001-11-05 2003-09-26 Nichia Chem Ind Ltd 半導体素子
KR100691444B1 (ko) 2005-11-19 2007-03-09 삼성전기주식회사 질화물 반도체 발광소자

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120042340A (ko) * 2010-10-25 2012-05-03 엘지이노텍 주식회사 발광 소자
WO2012078849A2 (en) * 2010-12-08 2012-06-14 Sensor Electronic Technology, Inc. Light emitting device with varying barriers
WO2012078849A3 (en) * 2010-12-08 2012-07-26 Sensor Electronic Technology, Inc. Light emitting device with varying barriers
KR20130007918A (ko) * 2011-07-11 2013-01-21 엘지이노텍 주식회사 발광소자, 발광 소자 제조방법 및 발광 소자 패키지
KR20130017329A (ko) * 2011-08-10 2013-02-20 엘지이노텍 주식회사 발광소자
KR20130029593A (ko) * 2011-09-15 2013-03-25 엘지이노텍 주식회사 발광소자
KR20140119714A (ko) * 2012-01-31 2014-10-10 소이텍 향상된 전하 캐리어들의 분포를 갖는 광활성 장치들 및 그 형성 방법들
KR20150012417A (ko) * 2013-07-25 2015-02-04 엘지이노텍 주식회사 발광 소자
KR20160100426A (ko) * 2015-02-13 2016-08-24 한국산업기술대학교산학협력단 점진적 함정 장벽을 이용한 고효율 duv led
KR20160100425A (ko) * 2015-02-13 2016-08-24 한국산업기술대학교산학협력단 점진적 문턱 장벽을 이용한 고효율 duv led
GB2589791B (en) * 2018-07-09 2022-04-27 Univ Iowa Res Found Cascaded superlattice LED system
CN110473940A (zh) * 2019-08-09 2019-11-19 晶能光电(江西)有限公司 紫外led的外延结构
CN110473940B (zh) * 2019-08-09 2024-05-17 晶能光电股份有限公司 紫外led的外延结构

Also Published As

Publication number Publication date
KR101228983B1 (ko) 2013-02-04

Similar Documents

Publication Publication Date Title
KR101228983B1 (ko) 질화물 반도체 발광소자
US7084420B2 (en) Nitride based semiconductor device
KR100649749B1 (ko) 질화물 반도체 발광 소자
KR100862497B1 (ko) 질화물 반도체 소자
US10559718B2 (en) Light-emitting device having plural recesses in layers
KR100541104B1 (ko) 질화물계 반도체 발광소자
KR101611412B1 (ko) 발광 소자
JP5165702B2 (ja) 窒化物半導体発光素子
JP4503570B2 (ja) 窒化物半導体素子
JP2015046598A (ja) 正孔注入層を備える半導体発光素子及びその製造方法
JP2010251714A (ja) 白色発光ダイオード
KR101111749B1 (ko) 다층구조 양자장벽을 사용한 질화물 반도체 발광소자
JP6484551B2 (ja) 発光素子
TW201717428A (zh) 發光模組
KR100905877B1 (ko) 질화물 반도체 소자
KR20120129029A (ko) 발광 소자
KR20100049451A (ko) 질화물 반도체 소자
KR102391302B1 (ko) 발광 소자 및 이의 제조 방법
KR20100066807A (ko) 질화물 반도체 발광소자
CN111326626A (zh) 一种能够改善空穴传输能力的半导体发光器件
JP2014003121A (ja) 窒化物半導体発光素子
KR100891826B1 (ko) 반도체 발광소자
CN111326616A (zh) 一种半导体发光元件
CN111326618A (zh) 一种能够调整电子迁移速率的半导体发光器件
KR20110100569A (ko) 질화물 반도체 소자

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
N231 Notification of change of applicant
J301 Trial decision

Free format text: TRIAL NUMBER: 2011101003255; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110503

Effective date: 20121120

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20110503

Effective date: 20121120

GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8