CN110449037A - 一种二维层状蛭石膜、制备及应用 - Google Patents

一种二维层状蛭石膜、制备及应用 Download PDF

Info

Publication number
CN110449037A
CN110449037A CN201910608966.6A CN201910608966A CN110449037A CN 110449037 A CN110449037 A CN 110449037A CN 201910608966 A CN201910608966 A CN 201910608966A CN 110449037 A CN110449037 A CN 110449037A
Authority
CN
China
Prior art keywords
vermiculite
film
dimensional layer
nano piece
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910608966.6A
Other languages
English (en)
Other versions
CN110449037B (zh
Inventor
王琎
杨冰
田梦涛
王磊
张治杰
朱甲妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN201910608966.6A priority Critical patent/CN110449037B/zh
Publication of CN110449037A publication Critical patent/CN110449037A/zh
Application granted granted Critical
Publication of CN110449037B publication Critical patent/CN110449037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0062Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种二维层状蛭石膜及其制备方法,包括如下步骤:步骤一:将热膨胀蛭石与LiCl溶液混合,加热搅拌,离心洗涤,制得粉末A;步骤二:将粉末A与双氧水混合,加热搅拌,离心洗涤,制得粉末B;步骤三:将粉末B与水混合,常温搅拌,高速离心除杂后,低速离心得到高浓度、大尺寸二维蛭石纳米片溶液;步骤四:将步骤三中制得的二维蛭石纳米片在多孔基材表面进行层层规则堆叠,得到二维层状蛭石膜。本方法制得的蛭石纳米片具有片层尺寸大、产率高,制备成本低、工艺过程简单。本发明的方法利用热膨胀蛭石制备二维层状蛭石膜,制得的二维层状蛭石膜具有优异的膜分离性能,在精确截留溶质分子、离子的同时,仍保持较高的溶剂透过水平。

Description

一种二维层状蛭石膜、制备及应用
技术领域
本发明属于纳米材料及功能薄膜技术领域,具体涉及一种二维层状蛭石膜、制备及应用。
背景技术
自2004年石墨烯材料发现,石墨烯及类石墨烯二维纳米材料在储能、光学、生物及传感等多个领域表现了极大应用潜力。在膜分离技术领域,通过二维纳米片进行平行、规则的层层堆叠,从而构成宏观层状薄膜,利用薄膜内大量的层间纳米通道,可实现优于传统高分子薄膜的快速传输、精确筛分性能。金万勤CN103611431B、王海辉CN106178979A专利分别报道了氧化石墨烯、MXene等二维层状膜在分子与离子分离方面的优异性能。
但是,综合既往研究与专利可以看到,一方面,多数二维纳米材料的前驱体价格昂贵,制备过程复杂,且伴随大量酸、碱的使用,产率也相对较低,限制了二维材料的推广应用;另一方面,目前所制备纳米片尺寸普遍在0.1-0.5μm,较小的纳米片使得层状膜需达到较大厚度,才能完全避免因纳米片间无法有效搭接造成的结构缺陷,以实现对分子、离子等纳米级溶质的高效截留,但较厚的薄膜无疑将导致薄膜渗透性能的下降。因此,制备具有片层尺寸大的二维纳米片,在此基础上构筑超薄、无结构缺陷的薄膜,是二维层状膜在膜分离技术领域推广应用的关键技术之一。
蛭石是一种具有层状结构的天然黏土化合物,主要由硅氧四面体,铝氧四面体构成。我国蛭石资源储量约占世界的六分之一,长期以来,蛭石仅应用于建筑、农业等传统领域。田维亮报道了利用球磨对蛭石分层,制备单层蛭石纳米片的方法,但制备过程能耗较大,且所制备的蛭石纳米片尺寸较小。
发明内容
针对上述现有技术不足与缺陷,本发明的目的在于,提供一种二维层状蛭石膜、制备及应用,解决现有技术中的分离膜的结构缺陷及过滤性能不佳的技术问题。
为了达到上述目的,本申请采用如下技术方案予以实现:
一种二维层状蛭石膜的制备方法,包括如下步骤:
步骤一:将热膨胀蛭石与LiCl溶液混合,加热搅拌,离心洗涤,制得粉末A;
步骤二:将粉末A与双氧水混合,加热搅拌,离心洗涤,制得粉末B;
步骤三:将粉末B与水混合,常温搅拌,高速离心除杂后,低速离心得到高浓度、大尺寸二维蛭石纳米片溶液;
步骤四:将纳米片在多孔基底表面进行层层规则堆叠,得到二维层状蛭石膜。
具体的,步骤一中的热膨胀蛭石、水以及LiCl的质量比为1:35~40:3~5,加热温度120℃,搅拌时间18~24小时。
具体的,步骤二中的粉末A与双氧水的质量比为1:35~40,双氧水质量分数为30%,加热温度150℃,搅拌时间36~48小时。
具体的,步骤三高速离心的速度为6000~8000rpm,离心时间30~40min,低速离心的速度为1500~2000rpm,离心时间60min。
具体的,步骤三中得到二维蛭石纳米片溶液的浓度为1g/L以上,纳米片尺寸10~25μm。
具体的,步骤四中得到的二维层状蛭石膜的厚度为10~70nm;
具体的,步骤四中的层层堆叠方法为抽滤法、旋涂法或是喷涂法。
具体的,所述的多孔基底为聚偏氟乙烯膜、尼龙、混合纤维素酯膜或阳极氧化铝滤膜,多孔基底的孔径为100~450nm。
本发明还公开了一种二维层状蛭石膜,所述的二维层状蛭石膜采用所述的二维层状蛭石膜制备方法制备。
本发明还公开了上述制备方法制备的二维层状蛭石膜在膜分离领域中的应用。
本发明与现有技术相比,有益的技术效果是:
(Ⅰ)本发明的制备方法利用热膨胀蛭石制备纳米片溶液,单层蛭石纳米片的产率可达30%以上,纳米片尺寸达到10-25μm,随后在多孔基材表面进行层层规则堆叠,制得的二维层状蛭石膜具有优异的水渗透性能与分子、离子筛分性能。
(Ⅱ)本发明的制备的二维层状蛭石膜厚度为10nm已经可以实现薄膜无孔洞等结构缺陷,该厚度保证了分离膜对分子具有较高截留率的同时,具有优异的溶剂分子透过能力。
(Ⅲ)本发明提供的二维蛭石纳米片制备方法,具有原料成本低,工艺简单,产率高,制得纳米片尺寸大,制备过程无酸、碱使用,无环境污染。
附图说明
图1是二维层状蛭石膜的X射线衍射图谱
图2是二维蛭石纳米片扫描电镜图;
图3是蛭石膜过滤实验中透过侧离子浓度随时间的变化曲线
以下结合附图和实施例对本发明的具体内容作进一步详细解释说明。
具体实施方式
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:
步骤一:将热膨胀蛭石颗粒加入氯化锂溶液中,在油浴温度120℃下,磁力搅拌24h,其中热膨胀蛭石、水以及LiCl的质量比1:35:3。然后离心洗涤,直至上清液不得检测出氯离子,制得粉末A。
步骤二:将粉末A末按照1:35的质量比加入30%双氧水溶液中,在油浴温度150℃下,磁力搅拌48h,然后将其离心洗涤,得到粉末B。
步骤三:将B粉末加入100ml去离子水中,在6000rpm下离心40min,去除小片层以及杂质,再在2000rpm下离心60min,吸取上层液体得到稳定的二维蛭石纳米片胶体溶液,浓度为8.0g/L。
步骤四:取步骤三所得蛭石纳米片溶液,使用真空抽滤装置,将蛭石纳米片堆积到孔径为0.22μm,直径为43mm的聚偏氟乙烯膜基底上,然后干燥24小时,得到二维蛭石膜,膜的厚度通过二维蛭石纳米片溶液质量浓度和体积结合得到的薄膜直径进行计算。
二维层状蛭石膜结构的验证:
利用X射线衍射仪(XRD)对蛭石原料与蛭石薄膜进行了测试,结果由于层间阳离子较为复杂、混乱阳离子的存在,热膨胀蛭石原料在2Theta=5-14°范围内出现了多个衍射峰,按照实施例1方法制得蛭石层状薄膜后,在上述角度范围内,蛭石层状膜仅在6.30°出现衍射峰,证明原层间阳离子已经被完全置换,蛭石层状膜是单层蛭石纳米片按照层层接触的方式堆叠而成,XRD衍射图谱具体数据如图1所示。
单层蛭石纳米片大小的验证:
利用扫描电子显微镜(SEM)对蛭石纳米片的形貌进行了测试,所采用的蛭石纳米片为实施例1中制备的蛭石纳米片,从图2可以看到,单层蛭石纳米片很薄,接近透明,其大小在15-20μm。
应用:薄膜的对分子的选择性
将本实施例制备的厚度为10nm的二维蛭石膜放入死端过滤装置中,进行浓度为20mg/L的亚甲蓝染料分子的甲醇溶液的过滤,过滤压力设置为0.1bar,通过对所收集透过液中亚甲蓝浓度的检测发现,透过液中无亚甲蓝分子的存在,证明厚度仅为10nm的蛭石薄膜无孔洞、裂纹等结构缺陷,可以完全阻拦亚甲蓝分子的透过;此外,通过对透过液质量的称量,可以计算得到蛭石薄膜的甲醇通量为3.4L/(m2·h·bar),在保证对亚甲蓝分子实现100%截留率的同时,本实施例制备的蛭石膜的水通量远高于目前文献报道的聚合物薄膜,可有效的实现亚甲蓝分子与溶剂分子的分离。
应用:薄膜的对离子的选择性
将本实施例制备的厚度为60nm的二维蛭石膜放入U型过滤装置中,分别将0.5mol/L NaCl与AlCl3溶液和纯水加入原液室与纯水室。通过记录单位时间内纯水侧的电导率,计算对离子的透过速率。可以看出,本实施例的二维超薄蛭石膜可以有效的实现溶液中Na+与Al3+的分离,图3为60nm蛭石膜过滤时透过侧离子浓度随时间的变化曲线。
实施例2:
本实施例步骤同实施例1,不同的是,步骤一的热膨胀蛭石、水以及LiCl的质量比为1:40:5。本实施例制备可制备与实施例1尺寸基本相同的单层蛭石纳米片,纳米片胶体溶液为6.7g/L。通过对蛭石薄膜的分离性能测试发现,本实施例制备的蛭石薄膜对分子、离子选择性能与实施例1基本保持一致。
实施例3:
本实施例步骤同实施例1,不同的是,步骤一的搅拌时间18h,本实施例可制备与实施例1基本相同的单层蛭石纳米片,蛭石纳米片的尺寸未受到搅拌反应时间的影响,但纳米片胶体溶液略低,为6.5g/L。通过对蛭石薄膜的分离性能测试发现,本实施例制备的蛭石薄膜对分子、离子选择性能与实施例1基本保持一致。
实施例4:
本实施例步骤同实施例1,不同的是,步骤二中的搅拌时间为36h,本实施例可制备与实施例1基本相同的单层蛭石纳米片,蛭石纳米片的尺寸未受到搅拌反应时间的影响,但由于双氧水反应时间的缩减,纳米片产率较实施例1略有下降。
实施例5:
本实施例步骤同实施例1,不同的是,步骤三中的高速离心速度为8000rpm,离心时间为30min,通过对蛭石纳米片尺寸与浓度的测量发现,本实施例制备的纳米片与实施例1基本保持一致。
实施例6:
本实施例步骤同实施例1,不同的是,步骤三中的低速离心的速度为1500rpm,该条件下制备的纳米片产率较高,纳米片胶体溶液的浓度为8.5g/L,纳米片的尺寸大小以实施例1基本保持一致。
实施例7:
本实施例步骤同实施例1,不同的是步骤四取步骤三所得蛭石纳米片溶液,使用真空抽滤装置,将一定量蛭石纳米片堆积到孔径为0.22μm,直径为43mm的尼龙基底上,得到厚度为10nm的二维蛭石膜。通过对20mg/L的亚甲蓝染料分子的甲醇溶液的过滤实验发现,本实施例制备的二维蛭石膜可以实现100%对亚甲蓝分子的截留,但薄膜的水通量较实施例1较小,为3.0 L/(m2·h·bar),这是由于尼龙基底本身的透水能力低于聚偏氟乙烯基底,最终导致了蛭石薄膜的通量下降。离子过滤实验研究结果表明,本实施例制备的薄膜对离子的筛分性能与实施例1基本保持一致。
实施例8:
本实施例步骤同实施例1,不同的是步骤四取步骤三所得蛭石纳米片溶液,使用旋涂法,将蛭石纳米片堆积、成膜,得到厚度为10nm的二维蛭石膜。通过对20mg/L的亚甲蓝染料分子溶液的过滤实验发现,本实施例制备的二维蛭石膜可保持与实施例1相同的分离性能,对亚甲蓝分子的截留率接近100%,水通量为3.3 L/(m2·h·bar)。
对比例1:
本对比例步骤同实施例1,不同的是,本对比例中步骤一的热膨胀蛭石、水以及LiCl的质量比为1:45:2,在本实施例中,由于锂离子浓度较低,难以完全交换出蛭石层间的镁离子,最终导致热膨胀蛭石难以分层,单层的二维蛭石纳米片的产率低于10%。
对比例2:
本对比例步骤同实施例1,不同的是,步骤一的反应时间为12h,由于反应时间短,锂离子难以与蛭石内部的层间阳离子进行完全交换,最终导致热膨胀蛭石难以分成单层的二维纳米片。
对比例3:
本对比例步骤同实施例1,不同的是,步骤三将粉末A末加入150ml 15%双氧水溶液中,由于双氧水浓度较低,无法分解产生足够的氧气进入蛭石的层间,使多层蛭石难以进一步分层为单层蛭石纳米片,蛭石纳米片的产率较低。
对比例4:
本对比例步骤同实施例1,不同的是,步骤三在油浴温度90℃下,磁力搅拌48h,在该温度下,双氧水无法充分的分解生成氧气,进而影响多层蛭石的分层,很难获得单层二维蛭石纳米片。
对比例5:
本对比例步骤同实施例1,不同的是,步骤四中将B粉末加入100ml去离子水中,在低于6000rpm以下速度离心1h,使得难以去除蛭石纳米片溶液中的尺寸较小的纳米片与杂质。在将纳米片溶液堆叠成膜后,膜面出现了大量的微孔缺陷,导致蛭石膜对分子与离子的分离性能严重下降。
对比例6:
本对比例步骤同实施例1,不同的是,步骤四中将B粉末加入100ml去离子水中,在6000rpm下离心1h除去较小纳米片后,在低于2000rpm下离心1h。离心后清液中除含有单层蛭石纳米片外,还含有未刻蚀完全的多层蛭石及较大杂质,最终影响蛭石溶液成膜性能以及后续的分离性能。
对比例7:
本对比例步骤同实施例1,不同的是,步骤四中将B粉末加入100ml去离子水中,在6000rpm下离心1h,在高于2000rpm下离心1h,吸取上层液体得到的蛭石胶体溶液中单层纳米片尺寸小且数量低,影响二维蛭石的产率。
对比例8:
本对比例步骤同实施例1,不同的是,步骤四中使用真空抽滤装置,将实施例1蛭石纳米溶液堆积量减少五分之一,得到8nm二维蛭石薄膜,将本实施例制备的厚度为8nm的二维蛭石膜进行分离实验,结果蛭石膜厚度过薄,膜面上存在由于纳米片无法完全相互搭接而造成的微孔缺陷,无法实现对亚甲蓝分子的100%截留,不同价态盐离子的透过速率也较实施例1有明显上升,各离子间的渗透速度基本相同,无法实现有效的筛分。
本发明的热膨胀蛭石原料为我国普遍存在的层间镁、钾离子型蛭石,根据实际层间离子不同,也可采用的其他盐离子溶液进行步骤一的离子交换过程。
本发明在膜分离领域中应用,除上述实施例中提及的亚甲蓝分子与乙醇分子、Na+与Al3+的分离,也可利用蛭石薄膜对其他具有不同直径、价态的分子或离子进行有效分离。

Claims (9)

1.一种二维层状蛭石膜的制备方法,其特征在于,包括如下步骤:
步骤一:将热膨胀蛭石与LiCl溶液混合,加热搅拌,离心洗涤,制得粉末A;
步骤二:将粉末A与双氧水混合,加热搅拌,离心洗涤,制得粉末B;
步骤三:将粉末B与水混合,常温搅拌,高速离心除杂后,低速离心得到二维蛭石纳米片溶液;
步骤四:将步骤三中制得的二维蛭石纳米片在多孔基底表面进行层层堆叠,得到二维层状蛭石膜。
2.如权利要求1所述的方法,其特征在于,步骤一中的热膨胀蛭石、水以及LiCl的质量比为1:35~40:3~5,加热温度120℃,搅拌时间18~24小时。
3.如权利要求1所述的方法,其特征在于,步骤二中的粉末A与双氧水的质量比为1:35~40,所述的双氧水质量分数为30%,加热温度150℃,搅拌时间36~48小时。
4.如权利要求1所述的方法,其特征在于,步骤三中高速离心的速度为6000~8000rpm,离心时间30~40min,低速离心的速度为1500~2000rpm,离心时间60min。
5.如权利要求1所述的方法,其特征在于,步骤三中得到二维蛭石纳米片溶液的浓度为1g/L以上,纳米片直径10~25μm。
6.如权利要求1所述的方法,其特征在于,步骤四中得到的二维层状蛭石膜的厚度为10~70nm。
7.如权利要求1所述的方法,其特征在于,步骤四中的多孔基底为聚偏氟乙烯膜、尼龙、混合纤维素酯膜或阳极氧化铝滤膜,多孔基底的孔径为100~450nm。
8.一种二维层状蛭石膜,其特征在于,所述的二维层状蛭石膜采用如权利要求1~7任一权利要求所述的二维层状蛭石膜制备方法制备。
9.如权利要求1~7任一项权利要求所述的二维层状蛭石膜制备方法制得的二维层状蛭石膜在膜分离领域中的应用。
CN201910608966.6A 2019-07-08 2019-07-08 一种二维层状蛭石膜、制备及应用 Active CN110449037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910608966.6A CN110449037B (zh) 2019-07-08 2019-07-08 一种二维层状蛭石膜、制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910608966.6A CN110449037B (zh) 2019-07-08 2019-07-08 一种二维层状蛭石膜、制备及应用

Publications (2)

Publication Number Publication Date
CN110449037A true CN110449037A (zh) 2019-11-15
CN110449037B CN110449037B (zh) 2021-10-29

Family

ID=68482386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910608966.6A Active CN110449037B (zh) 2019-07-08 2019-07-08 一种二维层状蛭石膜、制备及应用

Country Status (1)

Country Link
CN (1) CN110449037B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233509A (zh) * 2020-01-17 2020-06-05 西南科技大学 一种蛭石纳米片及其制备方法
CN111389225A (zh) * 2020-04-15 2020-07-10 大连理工大学 一种蛭石基离子筛分膜及其制备方法
CN112332022A (zh) * 2020-11-03 2021-02-05 贵州梅岭电源有限公司 一种多孔生蛭石片及其在锂离子电池中的应用方法
CN113830777A (zh) * 2021-10-27 2021-12-24 深圳先进技术研究院 一种蛭石纳米片及其制备方法
CN114832636A (zh) * 2022-05-03 2022-08-02 北京工业大学 一种水处理用低成本、大面积黏土基分离膜的制备方法
CN114849492A (zh) * 2022-05-03 2022-08-05 北京工业大学 一种水处理用高通量二维黏土基分离膜的制备方法
CN115028171A (zh) * 2022-06-30 2022-09-09 陕西科技大学 一种通过离子交换法制备玄武岩纳米片及制备方法
CN115231582A (zh) * 2022-07-19 2022-10-25 西安交通大学 一种二维蒙脱土大尺径纳米片剥离方法
CN115990415A (zh) * 2022-10-27 2023-04-21 塔里木大学 基于超薄蛭石纳米片填充的混合基质膜及制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791969A (en) * 1972-03-22 1974-02-12 Grace W R & Co Process for preparing vermiculite permselective membranes
US5326500A (en) * 1993-06-14 1994-07-05 W.R. Grace & Co.-Conn. Vermiculite composition with improved chemical exfoliation
CN101850983A (zh) * 2010-03-12 2010-10-06 中国科学院新疆理化技术研究所 用球磨法制备大层间距有机蛭石
CN102070154A (zh) * 2010-12-07 2011-05-25 东华大学 一种无机蛭石膜的制备方法
CN102167531A (zh) * 2011-03-07 2011-08-31 西南科技大学 一种利用超声波预处理方式制备膨胀蛭石的方法
CN106431046A (zh) * 2016-10-18 2017-02-22 南京依柯卡特排放技术股份有限公司 一种蛭石改性膨胀制备方法
CN107879333A (zh) * 2017-11-09 2018-04-06 哈尔滨万鑫石墨谷科技有限公司 一种层状材料的剥离方法及剥离得到的高质量剥层材料
CN109179436A (zh) * 2018-11-08 2019-01-11 贵州大学 一种基于柔性粘土薄膜的二维纳流体通道阵列的构建方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791969A (en) * 1972-03-22 1974-02-12 Grace W R & Co Process for preparing vermiculite permselective membranes
US5326500A (en) * 1993-06-14 1994-07-05 W.R. Grace & Co.-Conn. Vermiculite composition with improved chemical exfoliation
CN101850983A (zh) * 2010-03-12 2010-10-06 中国科学院新疆理化技术研究所 用球磨法制备大层间距有机蛭石
CN102070154A (zh) * 2010-12-07 2011-05-25 东华大学 一种无机蛭石膜的制备方法
CN102167531A (zh) * 2011-03-07 2011-08-31 西南科技大学 一种利用超声波预处理方式制备膨胀蛭石的方法
CN106431046A (zh) * 2016-10-18 2017-02-22 南京依柯卡特排放技术股份有限公司 一种蛭石改性膨胀制备方法
CN107879333A (zh) * 2017-11-09 2018-04-06 哈尔滨万鑫石墨谷科技有限公司 一种层状材料的剥离方法及剥离得到的高质量剥层材料
CN109179436A (zh) * 2018-11-08 2019-01-11 贵州大学 一种基于柔性粘土薄膜的二维纳流体通道阵列的构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARVIN MARCOCHAMBI-PERALTA,ET AL: "Effects of exchanged cation, acid treatment and high shear mechanical treatment on the swelling and the particle size distribution of vermiculite", 《APPLIED CLAY SCIENCE》 *
邵姣婧 等: "二维纳米材料的自上而下制备_可控液相剥离", 《新型炭材料》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233509A (zh) * 2020-01-17 2020-06-05 西南科技大学 一种蛭石纳米片及其制备方法
CN111389225A (zh) * 2020-04-15 2020-07-10 大连理工大学 一种蛭石基离子筛分膜及其制备方法
CN112332022A (zh) * 2020-11-03 2021-02-05 贵州梅岭电源有限公司 一种多孔生蛭石片及其在锂离子电池中的应用方法
CN113830777A (zh) * 2021-10-27 2021-12-24 深圳先进技术研究院 一种蛭石纳米片及其制备方法
CN114832636A (zh) * 2022-05-03 2022-08-02 北京工业大学 一种水处理用低成本、大面积黏土基分离膜的制备方法
CN114849492A (zh) * 2022-05-03 2022-08-05 北京工业大学 一种水处理用高通量二维黏土基分离膜的制备方法
CN115028171A (zh) * 2022-06-30 2022-09-09 陕西科技大学 一种通过离子交换法制备玄武岩纳米片及制备方法
CN115028171B (zh) * 2022-06-30 2023-12-01 陕西科技大学 一种通过离子交换法制备玄武岩纳米片及制备方法
CN115231582A (zh) * 2022-07-19 2022-10-25 西安交通大学 一种二维蒙脱土大尺径纳米片剥离方法
CN115231582B (zh) * 2022-07-19 2023-12-19 西安交通大学 一种二维蒙脱土大尺径纳米片剥离方法
CN115990415A (zh) * 2022-10-27 2023-04-21 塔里木大学 基于超薄蛭石纳米片填充的混合基质膜及制备方法和应用

Also Published As

Publication number Publication date
CN110449037B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN110449037A (zh) 一种二维层状蛭石膜、制备及应用
Long et al. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes
Song et al. A review of graphene-based separation membrane: Materials, characteristics, preparation and applications
Wang et al. Construction of TiO2@ graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance
Zhang et al. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes
Vatanpour et al. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes
Zhao et al. High flux nanofiltration membranes prepared with a graphene oxide homo-structure
CN103272491B (zh) 一种基于配位作用的原位自组装有机/无机杂化膜制备方法
CN110124529A (zh) 一种氧化石墨烯/MXene复合膜的制备方法及应用
Zhu et al. Preparation and characterization of TiO2-regenerated cellulose inorganic–polymer hybrid membranes for dehydration of caprolactam
CN105960276A (zh) 用于水处理的超薄石墨烯基膜及其形成方法和用途
US10710025B2 (en) Inorganic fibrous membrane and a method of fabricating thereof
CN106621831B (zh) 一种快速将微滤或超滤膜原位转化为纳滤膜的方法
Yuan et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl–/SO42–
CN111389225A (zh) 一种蛭石基离子筛分膜及其制备方法
CN110280147A (zh) 一种层间通道尺寸可控的耐溶胀二维层状膜、制备及应用
CN106474936A (zh) 高分子改性自支撑碳纳米管组装膜的制备方法
Zhao et al. Smart integration of MOFs and CQDs to fabricate defect-free and self-cleaning TFN membranes for dye removal
CN113648850A (zh) 具有高通量和高去除率MXene/还原多孔氧化石墨烯(r-HGO)复合膜的制备方法
Gao et al. Development of hydrophilic PES membranes using F127 and HKUST-1 based on the RTIPS method: Mitigate the permeability-selectivity trade-off
CN108993165A (zh) 一种层状无机材料有机溶剂纳滤复合膜及其制备方法
Mao et al. Hydrophobic metal-organic framework@ graphene oxide membrane with enhanced water transport for desalination
Huang et al. Highly permeable and dye-rejective nanofiltration membranes of TiO2 and Bi2S3 double-embedded Ti3C2Tx with a visible-light-induced self-cleaning ability
Etemadi et al. Effect of coagulation treatment on antifouling properties of PVC nanocomposite membrane in a submerged membrane system for water treatment
Meng et al. Incorporating imine-based covalent organic frameworks nanosheet as an active filler for long-term nanofiltration desalination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant