CN110444619A - 一种制备大面积硒化锑薄膜的设备及其方法和应用 - Google Patents

一种制备大面积硒化锑薄膜的设备及其方法和应用 Download PDF

Info

Publication number
CN110444619A
CN110444619A CN201910657354.6A CN201910657354A CN110444619A CN 110444619 A CN110444619 A CN 110444619A CN 201910657354 A CN201910657354 A CN 201910657354A CN 110444619 A CN110444619 A CN 110444619A
Authority
CN
China
Prior art keywords
selenizing
film
cylinder
large area
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910657354.6A
Other languages
English (en)
Other versions
CN110444619B (zh
Inventor
李志强
郭春升
梁晓杨
刘涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN201910657354.6A priority Critical patent/CN110444619B/zh
Publication of CN110444619A publication Critical patent/CN110444619A/zh
Application granted granted Critical
Publication of CN110444619B publication Critical patent/CN110444619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提供了一种制备大面积硒化锑薄膜的设备及其方法和应用,所述设备是在沉积设备的沉积室内水平固定有圆筒,所述圆筒的一侧与氩气供气管相连通,圆筒的另一侧开有水平方向延伸的长条孔,在圆筒内同轴设有用于盛装硒化锑颗粒的圆筒形的网漏,所述网漏的一端连有转轴并可在圆筒内旋转;在与所述长条孔相对的位置设有样品台,所述样品台与升降杆相连并可随升降杆匀速上下移动,在样品台与长条孔相对的台面上设有衬底,在样品台与圆筒之间设有挡板。本发明通过调控衬底上下运动次数、衬底与源的温度以及通入高纯氩气的气体流量,制备得到了结晶状态和成膜均匀性好,缺陷密度较小的大面积硒化锑薄膜,其设备及工艺简单,有利于推广与应用。

Description

一种制备大面积硒化锑薄膜的设备及其方法和应用
技术领域
本发明涉及半导体薄膜制备技术领域,具体地说涉及一种制备大面积硒化锑薄膜的设备及其方法和应用。
背景技术
硒化锑(Sb2Se3)作为一种受水和温度影响较小的稳定型无机半导体材料,在自然界储量丰富。Sb2Se3材料为准直接带隙材料,禁带宽度约为1.2eV,吸收系数大于105cm-1,是一种非常理想的光伏材料。根据Shockley-Queisser极限理论,单结Sb2Se3太阳电池光电转换效率在30%以上。
目前,高效率硒化锑太阳电池的制备方法一般为近空间升华及溶液旋涂法。载气输运沉积法(VTD)作为商业CdTe太阳电池一种低成本的制造方法,在制备硒化锑薄膜时应用较少。常见的VTD设备(单温区管式炉)沉积硒化锑薄膜工艺主要实现两个作用:1) 通过优化沉积衬底温度改善薄膜的结晶性;2) 减少薄膜的缺陷。目前技术方案及存在的问题为:一是沉积过程中硒化锑源为粉末,沉积效果较差,工艺复杂,浪费原料;二是沉积过程中衬底温度通过改变衬底和加热器中心之间的距离来实现,衬底温度不能够精确控制,会对成膜质量有一定的影响;三是通过改变机械泵的通风功率来控制稳定的腔室压力,气体不纯可能会对沉积效果及所制备的薄膜的结晶状况有影响。因此,现有的VTD设备不仅无法满足硒化锑薄膜的制备需求,更难以制备出结晶状况好且厚度均匀的大面积硒化锑薄膜。
发明内容
本发明的目的就是提供一种制备大面积硒化锑薄膜的设备及其方法和应用,以解决现有载气输运沉积法制备的硒化锑薄膜质量不理想及无法制备大面积硒化锑薄膜的问题。
本发明的目的是通过以下技术方案实现的:一种制备大面积硒化锑薄膜的设备,其是在沉积设备的沉积室内水平固定有圆筒,所述圆筒的一侧与氩气供气管相连通,圆筒的另一侧开有水平方向延伸的长条孔,在圆筒内同轴设有用于盛装硒化锑颗粒的圆筒形的网漏,所述网漏的一端连有转轴并可在圆筒内旋转;
在与所述长条孔相对的位置设有样品台,所述样品台与升降杆相连并可随升降杆匀速上下移动,在样品台与长条孔相对的台面上设有衬底,在样品台与圆筒之间设有挡板,所述挡板的顶端与沉积室顶面相连,所述挡板的底端沿与长条孔的上沿处于同一高度。
所述样品台连接有热电偶和用于监测衬底温度的第一温度计,所述衬底的面积≥5×5cm2
所述沉积室配置有冷却水循环套、用于抽真空的机械泵、放气阀和压力表,所述圆筒设有用于监测硒化锑源温度的第二温度计。
所述长条孔的长度大于衬底的宽度,所述网漏的长度大于长条孔的长度。
一种制备大面积硒化锑薄膜的方法,包括以下步骤:
a、设置上述设备;
b、将衬底固定在样品台上,在网漏中装入硒化锑颗粒,然后将网漏装入圆筒内;
c、抽真空,然后对衬底和硒化锑源进行升温操作并通入高纯氩气;
d、沉积硒化锑薄膜,在沉积过程中,使网漏匀速旋转,同时通过控制升降杆使样品台匀速上下移动;
e、待沉积的薄膜达到预设厚度后,降温,取出样品。
步骤d中,高纯氩气的气体流量控制在18~20 sccm,沉积压强为6.5~7.5Pa。
步骤d中,衬底温度为320~380℃,硒化锑源的温度在520~560℃之间调控。
通过调节样品台上下运动次数来对硒化锑薄膜的厚度进行控制,所述网漏中单次装入硒化锑颗粒的量不超过网漏容量的1/3。
上述的制备大面积硒化锑薄膜的方法在制作含大面积硒化锑薄膜的太阳能电池中的应用。
本发明在载气输运沉积过程中,通过调控衬底上下运动次数、衬底与源的温度以及通入高纯氩气的气体流量,制备得到了结晶状态和成膜均匀性好,缺陷密度较小的大面积硒化锑薄膜,且本发明的设备及工艺操作简单,条件可控,可在现有设备上进行改造,有利于进一步推广与应用。
本发明在制备过程中,衬底温度可精确调控;制备过程中无污染,不会产生有毒产物;所采用硒化锑源为固态颗粒且沉积速率可调控,更省料;可以更好的控制薄膜的沉积厚度和成膜质量。
附图说明
图1是本发明设备的结构示意图。
图2是本发明所制备的大面积硒化锑薄膜的厚度分布示意图。
图3是本发明制备的大面积硒化锑太阳电池的结构示意图。
图中:1、沉积室;2、圆筒;3、氩气供气管;4、长条孔;5、网漏;6、样品台;7、升降杆;8、衬底;9、挡板;10、第一温度计;11、冷却水循环套;12、机械泵;13、放气阀;14、压力表;15、第二温度计;16、钼背电极;17、硒化锑层;18、硫化镉层;19、本征ZnO层;20、掺铝氧化锌层;21、Ag顶电极层。
具体实施方式
下面以具体实施例详细描述本发明。
实施例1
如图1所示,本发明的设备可在现有的VTD设备基础上进行改造,其结构为在沉积设备的沉积室1内水平固定有圆筒2,圆筒2的一侧与氩气供气管3相连通,圆筒2的另一侧开有水平方向延伸的长条孔4,圆筒2的其他部位密封,在圆筒2内同轴设有用于盛装高纯硒化锑颗粒的圆筒形的网漏5,网漏5的网孔小于硒化锑颗粒,网漏5的一端连有转轴,转轴穿出圆筒端面设置的轴承组件后与驱动装置相连,网漏5可在驱动装置的作用下在圆筒2内匀速旋转。
在与长条孔4相对的位置设有样品台6,样品台6与升降杆7相连并可随升降杆7匀速上下移动(样品台匀速经过长条孔对应的位置),在样品台6与长条孔7相对的台面上放置有衬底8,衬底8的面积为5×5cm2,衬底为沉积钼背电极的玻璃,优选长条孔4的长度大于衬底的宽度,网漏的长度大于长条孔的长度。在样品台与圆筒之间设有挡板9,挡板9的顶端与沉积室顶面相连,挡板9的底端沿与长条孔4的上沿处于同一高度。样品台连接有热电偶和用于监测衬底温度的第一温度计10,热电偶便于精确控制衬底的温度。
沉积室配置有冷却水循环套11、用于抽真空的机械泵12、放气阀13和压力表14,圆筒设有用于监测硒化锑源温度的第二温度计15,以便精确控制源的温度。
应用上述装置制备大面积硒化锑薄膜的方法为:衬底选择为沉积有700nm厚度Mo薄膜的玻璃衬底,衬底大小为5×5cm2。载气输运沉积工艺衬底温度为320℃,上下匀速运动10次,源的温度为540℃,沉积过程中通入高纯氩气,气体流量为20sccm,沉积压强为7.5Pa。所沉积薄膜的厚度分布如图2所示,沉积的大面积薄膜厚度均匀。
实施例2
应用本发明制备大面积硒化锑太阳能电池,太阳能电池的结构为玻璃衬底、钼电极、硒化锑薄膜、硫化镉、氧化锌、掺铝氧化锌、银电极(如图3所示)。
其制备过程如下:
(1)衬底的准备
使用玻璃作为衬底,首先将玻璃在电子清洗剂溶液中浸泡12h,然后将其取出后用去离子水冲洗干净,最后用氮气吹干。
(2)沉积钼背电极
采用磁控溅射技术制备Mo背电极,采用Ar气作为反应气体,溅射气压为0.4 Pa,溅射功率密度约为4 W/cm2,制备的薄膜厚度约为700 nm,制备的薄膜电阻率约为3×10-5 Ω•cm。
(3)沉积硒化锑层
采用载气输运沉积法(VTD)沉积硒化锑层。选择沉积了钼背电极的玻璃为衬底,大小为5×5cm2,衬底温度设置为320℃,上下匀速运动10次,高纯固态硒化锑颗粒为蒸发源,硒化锑源温度设置为540℃。通入高纯氩气,气体流量控制在20sccm,沉积压强为7.5Pa。沉积厚度约为740nm。
(4)沉积硫化镉层
采用化学水浴法沉积硫化镉层,将样片放入镉盐、硫脲、氨水和缓冲剂按一定比例配制而成的溶液中,溶液置于恒温水浴槽中恒温70 ℃并均匀搅拌制得,厚度约为80 nm。
(5)沉积本征ZnO层
采用磁控溅射技术沉积本征ZnO层,溅射功率密度为1 W/cm2,溅射靶材选择纯度为4N的本征ZnO靶材,选择Ar气作为溅射气体,溅射气压约为0.5Pa,衬底温度为常温,厚度约为50 nm。
(6)沉积掺铝的氧化锌层
采用磁控溅射技术沉积掺铝氧化锌层,溅射功率密度为1 W/cm2,溅射靶材选择纯度为4N的掺铝ZnO靶材,选择Ar气作为溅射气体,溅射气压约为0.2Pa,衬底温度为常温,厚度约为300 nm。
(7)沉积Ag顶电极层
采用热蒸发技术沉积Ag顶电极层:腔体真空达到5×10-4 Pa后,利用纯度为4N的银丝作为银源,厚度约为1000 nm。

Claims (9)

1.一种制备大面积硒化锑薄膜的设备,其特征是,在沉积设备的沉积室内水平固定有圆筒,所述圆筒的一侧与氩气供气管相连通,圆筒的另一侧开有水平方向延伸的长条孔,在圆筒内同轴设有用于盛装硒化锑颗粒的圆筒形的网漏,所述网漏的一端连有转轴并可在圆筒内旋转;
在与所述长条孔相对的位置设有样品台,所述样品台与升降杆相连并可随升降杆匀速上下移动,在样品台与长条孔相对的台面上设有衬底,在样品台与圆筒之间设有挡板,所述挡板的顶端与沉积室顶面相连,所述挡板的底端沿与长条孔的上沿处于同一高度。
2.根据权利要求1所述的制备大面积硒化锑薄膜的设备,其特征是,所述样品台连接有热电偶和用于监测衬底温度的第一温度计,所述衬底的面积≥5×5cm2
3.根据权利要求1所述的制备大面积硒化锑薄膜的设备,其特征是,所述沉积室配置有冷却水循环套、用于抽真空的机械泵、放气阀和压力表,所述圆筒设有用于监测硒化锑源温度的第二温度计。
4.根据权利要求1所述的制备大面积硒化锑薄膜的设备,其特征是,所述长条孔的长度大于衬底的宽度,所述网漏的长度大于长条孔的长度。
5.一种制备大面积硒化锑薄膜的方法,其特征是,包括以下步骤:
a、设置权利要求1~4任一所述设备;
b、将衬底固定在样品台上,在网漏中装入硒化锑颗粒,然后将网漏装入圆筒内;
c、抽真空,然后对衬底和硒化锑源进行升温操作并通入高纯氩气;
d、沉积硒化锑薄膜,在沉积过程中,使网漏匀速旋转,同时通过控制升降杆使样品台匀速上下移动;
e、待沉积的薄膜达到预设厚度后,降温,取出样品。
6.根据权利要求5所述的制备大面积硒化锑薄膜的方法,其特征是,步骤d中,高纯氩气的气体流量控制在18~20 sccm,沉积压强为6.5~7.5Pa。
7.根据权利要求5所述的制备大面积硒化锑薄膜的方法,其特征是,步骤d中,衬底温度为320~380℃,硒化锑源的温度在520~560℃之间调控。
8.根据权利要求5所述的制备大面积硒化锑薄膜的方法,其特征是,通过调节样品台上下运动次数来对硒化锑薄膜的厚度进行控制,所述网漏中单次装入硒化锑颗粒的量不超过网漏容量的1/3。
9.一种权利要求5~8任一所述的制备大面积硒化锑薄膜的方法在制作含大面积硒化锑薄膜的太阳能电池中的应用。
CN201910657354.6A 2019-07-19 2019-07-19 一种制备大面积硒化锑薄膜的设备及其方法和应用 Active CN110444619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910657354.6A CN110444619B (zh) 2019-07-19 2019-07-19 一种制备大面积硒化锑薄膜的设备及其方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910657354.6A CN110444619B (zh) 2019-07-19 2019-07-19 一种制备大面积硒化锑薄膜的设备及其方法和应用

Publications (2)

Publication Number Publication Date
CN110444619A true CN110444619A (zh) 2019-11-12
CN110444619B CN110444619B (zh) 2021-04-20

Family

ID=68430738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910657354.6A Active CN110444619B (zh) 2019-07-19 2019-07-19 一种制备大面积硒化锑薄膜的设备及其方法和应用

Country Status (1)

Country Link
CN (1) CN110444619B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148840A (zh) * 2022-07-22 2022-10-04 中国科学技术大学 一种大面积硒化锑薄膜太阳能电池组件及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137916A (en) * 1978-04-19 1979-10-26 Hitachi Denshi Ltd Pickup-tube target
US20090320916A1 (en) * 2008-05-09 2009-12-31 International Business Machines Corporation Techniques for Enhancing Performance of Photovoltaic Devices
CN105932114A (zh) * 2016-07-19 2016-09-07 福建师范大学 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN106917068A (zh) * 2017-03-29 2017-07-04 福建师范大学 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN108123000A (zh) * 2017-12-08 2018-06-05 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法
CN108493276A (zh) * 2018-01-30 2018-09-04 河北大学 一种硒化锑薄膜制备方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137916A (en) * 1978-04-19 1979-10-26 Hitachi Denshi Ltd Pickup-tube target
US20090320916A1 (en) * 2008-05-09 2009-12-31 International Business Machines Corporation Techniques for Enhancing Performance of Photovoltaic Devices
CN105932114A (zh) * 2016-07-19 2016-09-07 福建师范大学 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN106917068A (zh) * 2017-03-29 2017-07-04 福建师范大学 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN108123000A (zh) * 2017-12-08 2018-06-05 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法
CN108493276A (zh) * 2018-01-30 2018-09-04 河北大学 一种硒化锑薄膜制备方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148840A (zh) * 2022-07-22 2022-10-04 中国科学技术大学 一种大面积硒化锑薄膜太阳能电池组件及其制备方法

Also Published As

Publication number Publication date
CN110444619B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN105720132B (zh) 一种柔性衬底上制备cigs吸收层碱金属掺杂方法
US8338214B2 (en) Sodium salt containing CIG targets, methods of making and methods of use thereof
WO2005109525A1 (ja) カルコパイライト型薄膜太陽電池の製造方法
WO2011014245A2 (en) Method for fabricating copper-containing ternary and quaternary chalcogenide thin films
JP2011525297A (ja) 薄膜太陽電池セルのための緩衝層蒸着
CN103343318B (zh) 太阳能电池的光吸收层的制备方法
CN103560169B (zh) 一种大型太阳能薄膜电池片组件生产工艺及设备
CN111020487B (zh) 一种取向可控的准一维结构材料的薄膜制备方法
TW201446991A (zh) 蒸鍍設備及其方法
JP2014078675A (ja) 薄膜太陽電池光吸収層の製造方法
Long et al. Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells
US8703527B2 (en) Photovoltaic devices including copper indium gallium selenide
CN105470113B (zh) 一种CZTSSe薄膜太阳电池吸收层的制备方法
CN110444619A (zh) 一种制备大面积硒化锑薄膜的设备及其方法和应用
CN108493276A (zh) 一种硒化锑薄膜制备方法及装置
Misra et al. A multi-layer Cu: Ga/In sputtered precursor to improve structural properties of CIGS absorber layer
CN104716229B (zh) 铜锌锡硒薄膜太阳电池的制备方法
CN106816490A (zh) 一种碱金属元素掺杂的铜铟镓硒吸收层薄膜的制备方法
CN105679884A (zh) 一种czts光伏电池的制备方法
Kuo et al. Property characterizations of Cu2ZnSnSe4 and Cu2ZnSn (S, Se) 4 films prepared by sputtering with single Cu–Zn–Sn target and a subsequent selenization or sulfo-selenization procedure
US8582105B1 (en) Method and apparatus for leak detection in H2Se furnace
US20150024538A1 (en) Vapor dispensing apparatus and method for solar panel
CN104505462A (zh) 一种有机金属卤化物薄膜及其制备方法与应用
CN104716227A (zh) Czts薄膜太阳电池吸收层的制备方法
US20160020345A1 (en) Method and device of manufacturing compound-semiconductor thin-film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant