CN108493276A - 一种硒化锑薄膜制备方法及装置 - Google Patents

一种硒化锑薄膜制备方法及装置 Download PDF

Info

Publication number
CN108493276A
CN108493276A CN201810088288.0A CN201810088288A CN108493276A CN 108493276 A CN108493276 A CN 108493276A CN 201810088288 A CN201810088288 A CN 201810088288A CN 108493276 A CN108493276 A CN 108493276A
Authority
CN
China
Prior art keywords
selenium
sputtering
film
selenizing
antimony selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810088288.0A
Other languages
English (en)
Inventor
李志强
梁晓杨
麦耀华
陈静伟
李刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN201810088288.0A priority Critical patent/CN108493276A/zh
Publication of CN108493276A publication Critical patent/CN108493276A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种硒化锑薄膜在线硒补偿方法及装置。本发明的方法是在应用溅射法制备硒化锑薄膜的过程中,在生长室腔体内蒸发固体硒源,以进行在线硒补偿,优化薄膜成分。本发明方法通过调节蒸发硒源的温度时间等参数,可对制备的硒化锑薄膜化学成分进行调节并使之符合化学计量比,解决了应用溅射法制备硒化锑薄膜硒缺失的问题。本发明的装置是在生长室内设有溅射系统和热蒸发系统;所述溅射系统是在所述生长室内设置有带加热丝的旋转衬底台和设置于衬底台下方的溅射靶,以及在所述生长室上设置有冷却系统、进气系统、抽真空系统和气压检测系统;所述热蒸发系统是在所述生长室内设置有用于盛放固态硒源的热蒸发坩埚。

Description

一种硒化锑薄膜制备方法及装置
技术领域
本发明涉及硒化锑光电薄膜材料的制备,具体的说是一种硒化锑薄膜在线硒补偿方法及装置。
背景技术
硒化锑(Sb2Se3)是一种二元化合物材料,禁带宽度大约在1.2eV,吸收系数大概在105cm-1,是一种非常理想的光伏材料,其理论效率可达到30%,并且因其丰富的储量和对环境无污染的特性,使得硒化锑太阳电池具有广阔的应用前景。
硒化锑薄膜的制备方法常见有溅射法、蒸发法及溶液旋涂法,溅射法应用较少,其原因在于,虽然溅射法方法简单高效且应用广泛,但相对于蒸发及溶液旋涂法,在应用溅射法制备硒化锑薄膜时,制备的薄膜硒缺失现象明显,导致薄膜成分偏离化学计量比,而且应用衬底温度优化硒化锑薄膜时,硒缺失程度更为严重。
目前为解决硒缺失的问题,通常需要对所制备的硒化锑薄膜进行硒补偿,通过硒补偿,可以实现两个目的,一是补偿硒元素使得硒化锑薄膜复合化学计量比,二是在较高退火温度下优化薄膜的结晶性。目前所用硒补偿工艺均为后硒化工艺,后硒化工艺常用两种硒源,即固体硒源及气体硒源两种技术路线。使用固体硒源进行后硒化,如硒颗粒、硒粉末等,存在硒化效果较差,工艺复杂的问题;而使用气体硒源进行后硒化,如硒化氢等,硒化效果较好,但硒化氢具有毒性,环境不友好,此外工艺中需增加尾气处理设备对尾气进行处理。此外,后硒化工艺的参数如衬底升温恒温时间、衬底温度等均会影响制备的薄膜的结晶状况,从而影响薄膜的转化效率。
综上,可归纳出现有技术的不足:1)使用固体硒源进行后硒化,硒化效果较差,工艺复杂;2)使用硒化氢作为硒源,硒化氢的毒性不利于技术的推广,且附加的尾气处理设备增加了生产的成本;3)上述两种硒化方式因硒化的衬底温度带来了一个较大的变量,不利于精细化控制及调节;4)上述两种硒化方式引入了一个额外的工艺步骤,增加了生产环节及成本。
发明内容
本发明的目的之一是提供一种硒化锑薄膜制备方法,以解决现有硒化锑薄膜需要额外引入后硒化补硒步骤,增加了生产环节及生产成本的问题,以及解决后硒化补硒工艺效果差、环境不友好的问题。本发明的另一目的是同时提供一种制备硒化锑薄膜的装置,以实现硒化锑薄膜制备过程的同时在线进行硒补偿的目的,简化设备结构。
本发明的目的之一是这样实现的:
一种硒化锑薄膜制备方法,所述方法是:
(1)采用射频磁控溅射工艺在待制膜衬底上溅射制备硒化锑薄膜:选择Ar气为溅射气体,以硒化锑陶瓷靶作为靶材,设定溅射功率密度为0.6~5W/cm2、溅射气压为0.2~10Pa;
(2)在溅射制备硒化锑薄膜的同时进行在线硒补偿,所述在线硒补偿是溅射的同时采用热蒸发工艺蒸发固态硒源,所述硒源为高纯硒颗粒或硒粉末,热蒸发坩埚温度设定为80~160℃,衬底温度设定为150~500℃。
所述的硒化锑薄膜制备方法,所述硒化锑靶材为符合化学计量比的硒化锑或为微富硒或贫硒的硒化锑靶材。
本发明的另一目的是这样实现的:
一种制备硒化锑薄膜的装置,其是在生长室内设有溅射系统和热蒸发系统;所述溅射系统是在所述生长室内设置有带加热丝的旋转衬底台和设置于衬底台下方的溅射靶台,以及在所述生长室上设置有冷却系统、进气系统、抽真空系统和气压检测系统;所述热蒸发系统是在所述生长室内设置有用于盛放固态硒源的热蒸发坩埚,所述热蒸发坩埚带有加热系统。
本发明提出一种新型的硒化锑薄膜的制备方法,通过在溅射硒化锑的过程中,在腔体内蒸发固体硒源进行在线硒补偿,从而解决溅射制备硒化锑薄膜硒缺失的问题。本发明具有以下优点:1)设备简单,只需在溅射腔体中引入一个简单可控的硒蒸发源,且蒸发温度较低,低于160oC,较易实施;2)工艺简单,省去了常用溅射工艺附带的后硒化工艺及相关的设备,有利于生产工艺的简化及生产成本的降低;且制备过程中,衬底温度可设置为常温、低温及高温,溅射功率可以设置为低功率及较高功率,均能实现良好的在线硒补偿,扩展了工艺范围;3)制备过程无污染,相比于硒化氢等后硒化工艺中的硒源,本工艺采用蒸发固体硒源,环境友好;4)制备过程可调节,后硒化工艺中衬底温度,加温时间等参数均会影响硒化的效果,溅射薄膜过程中,高功率及高衬底温度工艺条件下硒化锑薄膜沉积速率较快,降低了制备及生产成本,在线低温蒸发硒源对硒进行补偿,工艺重复性更好,更可控;5)在溅射过程中,低温蒸发硒源对硒化锑靶也有硒补偿效果,能够有效的避免硒化锑靶因硒缺失而引起的靶中毒现象;通过调节低温硒蒸发源的温度,可调控硒的补偿量,工艺可调控;6)降低了应用溅射法制备硒化锑薄膜对靶成分的要求,可以为化学计量比、贫硒或富硒,由于制备硒化锑靶材工艺的不同,靶材的成分会有硒成分上的差异,应用本发明,降低了制靶工艺对沉积工艺的影响。
附图说明
图1是本发明的硒化锑薄膜在线硒补偿装置结构示意图。
图1中:1、生长室,2、基片,3、靶材,4、硒源,5、加热丝,6、第一温度计,7、第二温度计,8、冷却水入口,9、冷却水出口,10、冷却水管,11、流量计,12、分子泵,13、压力计。
图2是硒化锑薄膜薄膜表面形貌扫描图。
图2中:(a)是为进行硒补偿的硒化锑薄膜晶粒形貌,(b)是117℃热蒸发温度条件下进行硒补偿所制备的硒化锑薄膜晶粒形貌,(c)是132℃热蒸发温度条件下进行硒补偿所制备的硒化锑薄膜晶粒形貌。
图3是硒化锑太阳电池结构示意图。
图3中:14、玻璃衬底,15、钼背电极层,16、p型硒化锑半导体层,17、硫化镉半导体n型层,18、本征ZnO半导体层,19、掺铝的氧化锌半导体n型层,20、Ag顶电极层。
图4是所制备的硒化锑太阳电池I-V曲线。
具体实施方式
实施例1 硒化锑薄膜在线硒补偿装置
本发明的装置结构如图1所示,其是在生长室1内分别设有溅射系统和热蒸发系统。
溅射系统是在生长室1内设置有带加热丝5的旋转衬底台,在衬底台下方设置有射频磁控溅射靶台,以及在生长室1的周壁上设置有冷却系统、为生长室1内通入惰性Ar气的进气系统、抽真空系统和气压检测系统。旋转衬底台用于放置待溅射基片2,电热丝5用于对放置在旋转衬底台上的基片2加热,并同过第一温度计6实时监测基片2温度。射频磁控溅射靶台用于放置靶材3,其结构为常规射频磁控溅射结构。冷却机构是在生长室1的周壁上设置有冷却水管10,其冷却水入口8通入冷却水,并由冷却水出口9排出。进气系统是通过输送管路将Ar气输入至生长室1内,在输送管路上设置有流量计11,以检测气体流量。抽真空机构是通过分子泵12对生长室1内抽真空。气压检测系统是在生长室1上设置有对室内气压进行检测的压力计13。
热蒸发系统是在生长室1内设置有用于盛放固态硒源4的热蒸发坩埚,热蒸发坩埚带有加热机构,其温度通过设置于热蒸发坩埚底部的第二温度计7监测。
实施例2 应用本发明的方法制备硒化锑薄膜太阳电池
在线硒补偿制备硒化锑薄膜太阳电池的步骤如下:
(1)衬底的准备
使用玻璃作为衬底,首先将玻璃在电子清洗剂溶液中浸泡12h,然后将其取出,用大量去离子水冲洗干净后,用氮气吹干。
(2)沉积钼背电极层
采用磁控溅射技术制备钼(Mo)背电极层:采用Ar气作为反应气体,溅射气压为0.4Pa,溅射功率密度约为4W/cm2,制备的钼背电极薄膜厚度约为700nm,其电阻率经检测约为3×10-5Ω•cm。
(3)沉积p型硒化锑半导体层
选择射频磁控溅射工艺溅射沉积硒化锑层:溅射功率密度为1.5W/cm2,溅射气压为0.5Pa,溅射靶材选择直径为10cm的圆形靶,靶材为符合化学计量比的硒化锑靶材,选择Ar气作为溅射气体;
溅射沉积硒化锑层的同时,选择热蒸发工艺蒸发固态硒源进行在线硒补偿:选择高纯(纯度99.99%)硒颗粒作为蒸发的硒源,蒸发温度设置为125oC,衬底温度设置为280oC,沉积时间为14min,得到厚度约为700nm的p型硒化锑半导体层。
(4)沉积硫化镉半导体n型层
采用化学水浴法沉积硫化镉半导体n型层:将样片(即步骤(3)所制基片)放入镉盐、硫脲、氨水和缓冲剂按一定比例配制而成的溶液中,溶液置于恒温水浴槽中恒温70 oC并均匀搅拌制得,厚度约为80nm。
(5)沉积本征ZnO半导体层
采用磁控溅射技术沉积本征ZnO半导体层:溅射功率密度为1W/cm2,溅射靶材选择纯度为4N的本征ZnO靶材,选择Ar气作为溅射气体,溅射气压约为0.5Pa,衬底温度为常温,厚度约为50nm。
(6)沉积掺铝的氧化锌半导体n型层
采用磁控溅射技术沉积掺铝氧化锌半导体n型层:溅射功率密度为1 W/cm2,溅射靶材选择纯度为4N的掺铝ZnO靶材,选择Ar气作为溅射气体,溅射气压约为0.2Pa,衬底温度为常温,厚度约为300nm。
(7)沉积Ag顶电极层
采用热蒸发技术沉积Ag顶电极层:腔体真空达到5×10-4Pa后,利用纯度为4N的银丝作为银源,厚度约为300nm。
应用上述工艺后,其结构如图3所示,图3中电池依次由玻璃衬底14、钼背电极层15、p型硒化锑半导体层16、硫化镉半导体n型层17、本征ZnO半导体层18、掺铝的氧化锌半导体n型层19、和Ag顶电极层20构成,该硒化锑薄膜太阳电池光电转化效率为1.48%。而经对比试验,不应用蒸发工艺进行在线硒补偿所制得的硒化锑薄膜太阳电池光电转换效率为0.04%。
图4中是对本发明所制备的硒化锑薄膜太阳电池和不应用蒸发工艺进行在线硒补偿所制得的硒化锑薄膜太阳电池的I-V曲线。
由上述结果可以看出,采用本发明的方法所制备的硒化锑薄膜太阳电池在开路电压短路电流及填充因子更方面均有较大提升。
实施例3
选择沉积有700nm厚度Mo薄膜的玻璃衬底作为基片,在线硒补偿制备硒化锑薄膜:
(1)采用射频磁控溅射工艺(溅射功率密度为1.5W/cm2、溅射气压0.5Pa),以直径为10cm的圆形的符合化学计量比的硒化锑靶材作为溅射靶材,以Ar气作为溅射气体在基片上溅射沉积硒化锑层;
本步骤沉积时间设为14min,所得硒化锑层厚度为约为700nm,
(2)在步骤(1)进行溅射沉积硒化锑层的同时,采用热蒸发工艺,以高纯(纯度99.99%)硒颗粒作为蒸发的硒源在线进行硒补偿。
本例中共进行2组平行试验及1组对比试验,即加热至117oC组、加热至132oC组和硒源蒸发温度未加热组,3组试验中衬底温度均设置为280oC,制备的得到不同硒含量的硒化锑薄膜,所制备的硒化锑薄膜成分分析如表1所示。由表1可以看出,在线硒补偿工艺的应用使制备的薄膜中硒元素所占比例大大升高,且较高的硒蒸发温度使薄膜趋于化学计量比(Sb:Se~40:60),硒蒸发温度为132oC时,Se/Sb为1.53,硒化锑薄膜中硒含量明显升高。
此外,未加热组所制备的硒化锑薄膜形貌扫描结果如图2中(a)所示;硒蒸发温度为117oC时,在线硒补偿工艺制备的薄膜表面形貌如图2中(b)所示;硒蒸发温度为132 oC时,在线硒补偿工艺制备的薄膜表面形貌如图2中(c)所示。由图2中(a)、(b)、(c)对比可以看出,在线硒补偿工艺的应用取得较好结晶性的薄膜,薄膜的晶粒尺寸变大,结晶性提高。

Claims (3)

1.一种硒化锑薄膜制备方法,其特征在于,所述方法是:
(1)采用射频磁控溅射工艺在待制膜基片上溅射制备硒化锑薄膜:选择Ar气为溅射气体,所用靶材为硒化锑陶瓷靶,设定溅射功率密度为0.6~5W/cm2、溅射气压为0.2~10Pa;
(2)在溅射制备硒化锑薄膜的同时进行在线硒补偿,所述在线硒补偿是溅射的同时采用热蒸发工艺蒸发固态硒源,所述硒源为高纯硒颗粒或硒粉末,热蒸发坩埚温度设定为80~160℃,衬底温度设定为150~500℃。
2.根据权利要求1所述的硒化锑薄膜制备方法,其特征在于,所述硒化锑靶材为符合化学计量比的硒化锑或为微富硒或贫硒的硒化锑靶材。
3.一种制备硒化锑薄膜的装置,其特征是,所述装置是在生长室内设有溅射系统和热蒸发系统;所述溅射系统是在所述生长室内设置有带加热丝的旋转衬底台和设置于衬底台下方的溅射靶以及冷却系统、进气系统、抽真空系统和气压检测系统;所述热蒸发系统是在所述生长室内设置有用于盛放固态硒源的热蒸发坩埚,所述热蒸发坩埚带有加热系统。
CN201810088288.0A 2018-01-30 2018-01-30 一种硒化锑薄膜制备方法及装置 Pending CN108493276A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810088288.0A CN108493276A (zh) 2018-01-30 2018-01-30 一种硒化锑薄膜制备方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810088288.0A CN108493276A (zh) 2018-01-30 2018-01-30 一种硒化锑薄膜制备方法及装置

Publications (1)

Publication Number Publication Date
CN108493276A true CN108493276A (zh) 2018-09-04

Family

ID=63343907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810088288.0A Pending CN108493276A (zh) 2018-01-30 2018-01-30 一种硒化锑薄膜制备方法及装置

Country Status (1)

Country Link
CN (1) CN108493276A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117769A (zh) * 2019-05-20 2019-08-13 陕西科技大学 一种硒化锡薄膜的制备方法
CN110444619A (zh) * 2019-07-19 2019-11-12 河北大学 一种制备大面积硒化锑薄膜的设备及其方法和应用
CN112201709A (zh) * 2020-09-25 2021-01-08 暨南大学 一种硒化锑薄膜太阳电池及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129143A (zh) * 2016-07-01 2016-11-16 武汉光电工业技术研究院有限公司 一种高取向性硒化锑薄膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129143A (zh) * 2016-07-01 2016-11-16 武汉光电工业技术研究院有限公司 一种高取向性硒化锑薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANG-XING LIANG ET.AL.: ""Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition"", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
ZHIQIANG LI ET AL.: ""Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3"", 《APPLIED PHYSICS EXPRESS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117769A (zh) * 2019-05-20 2019-08-13 陕西科技大学 一种硒化锡薄膜的制备方法
CN110444619A (zh) * 2019-07-19 2019-11-12 河北大学 一种制备大面积硒化锑薄膜的设备及其方法和应用
CN110444619B (zh) * 2019-07-19 2021-04-20 河北大学 一种制备大面积硒化锑薄膜的设备及其方法和应用
CN112201709A (zh) * 2020-09-25 2021-01-08 暨南大学 一种硒化锑薄膜太阳电池及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN105720132B (zh) 一种柔性衬底上制备cigs吸收层碱金属掺杂方法
US20130224901A1 (en) Production Line to Fabricate CIGS Thin Film Solar Cells via Roll-to-Roll Processes
CN100575539C (zh) 多元共蒸发制备铟镓锑类多晶薄膜的方法
WO2014145177A1 (en) Method and apparatus for depositing copper-indiumgalliumselenide (cuingase2-cigs) thin films and other materials on a substrate
CN101692357A (zh) 一种绒面掺杂氧化锌透明导电薄膜的制备方法
CN101613091A (zh) 一种cigs粉末、靶材、薄膜及其制备方法
CN108493276A (zh) 一种硒化锑薄膜制备方法及装置
CN102800719A (zh) 一种柔性CdTe薄膜太阳能电池及其制备方法
CN111020487B (zh) 一种取向可控的准一维结构材料的薄膜制备方法
CN109811319A (zh) 一种基于Al纳米颗粒光热的智能温控薄膜及其制备方法
CN103710674B (zh) 一种制备cigs薄膜太阳能电池工艺方法
CN110323338A (zh) 一种钙钛矿薄膜太阳能电池的制备方法
KR101542342B1 (ko) Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN107910394A (zh) 一种碲化镉薄膜太阳能电池的吸收层掺硒工艺
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
CN110318035A (zh) 合金化合物薄膜的分立式多热丝沉积方法及装置
CN110819958A (zh) 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
US9136423B1 (en) Method and apparatus for depositing copper—indiumgalliumselenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
CN108831939A (zh) 一种四元共蒸aigs薄膜及其制备方法和应用
US20130157407A1 (en) APPARATUS FOR INLINE PROCESSING OF Cu(In,Ga)(Se,S)2 EMPLOYING A CHALCOGEN SOLUTION COATING MECHANISM
CN103346213A (zh) 一种太阳能电池吸收层的制备方法
CN105762232A (zh) 一种柔性cigs薄膜太阳电池的制备方法
CN110444619A (zh) 一种制备大面积硒化锑薄膜的设备及其方法和应用
CN102492927B (zh) 一种禁带宽度可调的碲锌镉薄膜材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904

RJ01 Rejection of invention patent application after publication