CN110436889A - 一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法 - Google Patents

一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法 Download PDF

Info

Publication number
CN110436889A
CN110436889A CN201910615405.9A CN201910615405A CN110436889A CN 110436889 A CN110436889 A CN 110436889A CN 201910615405 A CN201910615405 A CN 201910615405A CN 110436889 A CN110436889 A CN 110436889A
Authority
CN
China
Prior art keywords
clear opening
electrolyte
anode
slurry
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910615405.9A
Other languages
English (en)
Other versions
CN110436889B (zh
Inventor
郭祥
田彦婷
吴萍萍
聂仲泉
翟爱平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910615405.9A priority Critical patent/CN110436889B/zh
Publication of CN110436889A publication Critical patent/CN110436889A/zh
Application granted granted Critical
Publication of CN110436889B publication Critical patent/CN110436889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5042Zirconium oxides or zirconates; Hafnium oxides or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,属于固体氧化物燃料电池阳极支撑体镀膜技术领域,克服了现有镀膜方法不易在直通孔表面形成致密薄膜的缺点,首先在直通孔阳极支撑体表面手工涂覆一层电解质浆料,干燥烧结后可以阻挡阳极表面90%以上的直通孔道,对后续的电解质浆料起到支撑作用,防止其直接下渗到阳极直孔中。经过后续涂覆电解质浆料,可以在直通孔支撑体上得到致密的电解质薄膜。包括以下步骤:直通孔型阳极支撑体的制备;手工涂覆电解质浆料;干燥并煅烧;旋涂电解质浆料;高温烧结。本发明应用手工涂覆法结合浆料旋涂法在直通孔陶瓷表面制备出致密的电解质薄膜,方法简易、操作便捷、结构紧密,成本较低,有利于量产。

Description

一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法
技术领域
本发明属于固体氧化物燃料电池阳极支撑体镀膜技术领域,具体涉及一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法。
背景技术
固体氧化物燃料电池(SOFC)是一种清洁环保型能源转换装置,能够将各类燃料中的化学能通过电化学反应直接转化为电能,是应对当前环境污染和能源危机问题的一种新兴能源。阳极支撑型固体氧化物燃料电池是目前应用最广泛的固体氧化物燃料电池,具有能量转化效率高、功率密度大、结构稳定等优点,在各大小发电站、便携式电源等很多领域有着广阔的应用前景。当前多孔阳极的制备多采用添加造孔剂的制备方法,由此方法制备的阳极孔道无规律可循,根据Knudsen扩散理论,当气体输运通道为柱状孔时可以大大减小气体的扩散阻力,因此将阳极孔道制备成为直通孔也成为了一种可能的优化SOFC性能的方法,但是直接应用丝网印刷法(screen printing)、旋涂法(spin coating method)等传统镀膜制备方法时无法在直通孔表面获得致密的电解质薄膜,其他方法或价格昂贵,或操作繁琐,不利于此类电池生产的成本。
发明内容
本发明针对传统镀膜方法无法在直通孔阳极表面获得致密的电解质薄膜的问题,提供一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,目的是为直通孔阳极支撑型固体氧化物燃料电池提供一种制备电解质薄膜的方法,具有高效、便捷、廉价、操作简单、结构致密、效果优良等优点。
本发明采用如下技术方案:
一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,包括如下步骤:
第一步,采用海藻酸钠离子凝胶法制备直通孔陶瓷:将阳极粉体与海藻酸钠溶液混合球磨4~12h,真空除泡,将除泡后的浆料注模后,在其上表面喷覆金属阳离子溶液,湿坯固化后切片,经过后续置换、干燥、煅烧,得到直通孔陶瓷阳极支撑体;
第二步,配制电解质浆料:将电解质粉体和粘结剂按质量比为4:6~7:3的比例混合,研磨1~5h,得到电解质浆料A;
第三步,手工涂覆电解质浆料A:使用牙签将第二步配制的电解质浆料A手工涂覆在直通孔陶瓷阳极支撑体的上表面,厚度为30~100μm,形成电解质阻挡层A;
第四步,在300~500℃条件下,烘干涂覆的电解质浆料A,将手工涂覆有电解质浆料A的直通孔陶瓷阳极支撑体在1000~1500℃下,煅烧2~8h,形成电解质阻挡层B;
第五步,将电解质粉体和粘结剂按质量比为1:9~5:5的比例混合,得到电解质浆料B,将电解质浆料B均匀涂覆在电解质阻挡层B上1~10次;
第六步,将涂覆并烘干的电解质浆料B和直通孔陶瓷阳极支撑体在1300~1500℃下,烧结3~6h,得到直通孔陶瓷表面膜。
第一步中所述海藻酸钠溶液的质量分数为0.5~3wt%,阳极粉体的固相含量为1~30%。
第一步中所述阳极粉体包括YSZ、SDC、GDC、NiO/YSZ、NiO/SDC、NiO/GDC、、La1- xSrxTiO3、La1-xSrxVO3、La1-xSrxCr1-yMnyO3、Sr2Mg1-xMnxMoO6、Sr2Fe4/3Mo2/3O6中的任意一种。
第一步中所述金属阳离溶液的浓度为0.5~2mol/L,所述金属阳离子包括Ca2+、Fe2 +、Co2+、Ni2+、Cu2+、Sr2+、Ba2+ 和Pb2+中的任意一种,喷覆次数为20~70次。
第一步中所述阳极粉体中包括质量分数为0~20%的辅助造孔剂,所述辅助造孔剂包括活性炭粉、面粉、木薯粉和纤维中的任意一种。
第一步中所述湿坯固化后切片,切除成型的湿坯的上下表面,保留中间3~10mm厚度的直通孔湿坯,用去离子水清洗,使用5~15wt%的置换溶液置换24~72h,在空气中自然干燥36~48h后,在马弗炉中100~1000℃条件下煅烧1~5h,其中,置换溶液包括葡萄糖酸内酯溶液和叔丁醇等醇类。
第二步和第五步中所述电解粉体包括YSZ、SDC、GDC、La1-xSrxTiO3、La1-xSrxVO3、La1-xSrxCr1-yMnyO3、Sr2Mg1-xMnxMoO6和Sr2Fe4/3Mo2/3O6中的任意一种,电解质粉体球磨4~12h预处理。
第二步和第五步中所述粘结剂由松油醇和乙基纤维素在50~200℃下,加热溶解制得,其中,乙基纤维素在粘结剂中的质量分数为3~15wt%。
第五步中所述涂覆的方法包括旋涂法、离心沉积法、丝网印刷法、提拉法、溶胶-凝胶法、电泳沉积法和流延法中的任意一种。
本发明在直通孔阳极支撑体表面手工涂覆一层电解质浆料,干燥烧结后可以阻挡阳极表面90%以上的直通孔道,对后续的电解质浆料起到支撑作用,防止其直接下渗到阳极直孔中。经过后续涂覆电解质浆料,可以在直通孔支撑体上得到致密的电解质薄膜。
本发明的有益效果如下:
采用本发明所述的基于手工涂覆法在直通孔陶瓷表面镀膜的方法,制得的电解质薄膜均匀致密,厚度为170μm,650℃下电池的电压稳定在1V以上,成功克服了传统镀膜方法无法在直通孔支撑体上制备出致密电解质膜的问题。
附图说明
图1为本发明实施例1所述的YSZ直通孔阳极支撑体的表面和截面SEM图,其中,a为表面SEM图,b为截面SEM图;
图2为本发明实施例1所述的手动涂覆的YSZ电解质阻挡层的表面和截面SEM图,其中,a为表面SEM图,b为截面SEM图;
图3为本发明实施例1所述浆料旋涂法旋涂三层之后电解质薄膜的表面和截面SEM图,其中,a为表面SEM图,b为截面SEM图;
图4为以本发明实施例1制备的阳极支撑体和电解质层为基础制备的单电池在650℃的开路电压图;
图5为以本发明实施例2制备的阳极支撑体和电解质层为基础制备的单电池在650℃的开路电压图。
具体实施方式
实施例1
(1)采用海藻酸钠离子凝胶法制备直通孔陶瓷,将固相含量为10wt%氧化钇稳定氧化锆(YSZ)粉体与质量分数为1.5wt%的海藻酸钠溶液混合球磨6h,使用真空干燥箱进行除泡30min,将除泡后的浆料注入事先准备好的玻璃烧杯中,喷覆1.5mol/L CaCl2溶液,静置36h后固化成型,使用刀片将固化后的浆料切成3mm表面平整的圆柱体,应用10wt%的葡萄糖酸内酯溶液置换12h,使用叔丁醇置换24h,干燥72h,以400℃煅烧1h即可得YSZ直通孔陶瓷阳极支撑体;
(2)以球磨12h的YSZ作为电解质材料,配置YSZ粉体和粘结剂比例为5:5的电解质浆料A,其中,粘结剂由松油醇和乙基纤维素在50~200℃下,加热溶解制得,粘结剂中乙基纤维素的质量分数为5.5wt%,按比例混合后研磨2h;
(3)使用表面平整的牙签蘸取配置好的YSZ电解质浆料A,手工涂覆到多孔支撑体上,涂覆时保持牙签与阳极支撑体的表面平行,使YSZ浆料均匀覆盖直通孔阳极支撑体的上表面;
(4)在420℃条件下烘干电解质浆料20min,对手工涂覆一次电解质浆料A的阳极支撑体进行煅烧,形成电解质阻挡层,煅烧温度为1100℃,时间2h;
(5)配置YSZ粉体和粘结剂比例为3:7的电解质浆料B,其中,粘结剂由松油醇和乙基纤维素在50~200℃下,加热溶解制得,粘结剂中乙基纤维素的质量分数为4.5wt%,采用浆料旋涂法在手工涂覆电解质阻挡层均匀旋涂电解质浆料B 3次,转速为3krpm;
(6)将旋涂并烘干好的电解质和阳极支撑体在1400℃条件下进行共烧结4h,由此可获得直通孔陶瓷表面膜。
如图4所示,以本实施例制备的阳极支撑体和电解质层为基础,向电解质层涂覆LSM阴极,并向直通孔YSZ中浸渍镍纳米粒子后得到单电池。在650℃的开路电压下,电池电压达到1V以上,表明本发明制备的电解质薄膜非常致密。
实施例2
(1)阳极粉体使用质量比为5:5的氧化镍(NiO)和YSZ混合粉体,首先将阳极粉球磨12h,再将10wt%的阳极粉体与1.5wt%的海藻酸钠溶液球磨6h得到阳极浆料,使用真空干燥箱进行除泡30min,真空除泡后,注入事先准备好的玻璃烧杯中,喷覆1.5mol/L CaCl2溶液,静置48h固化成型,使用刀片将固化后的浆料切成高4mm表面平整的圆柱体,应用10wt%的葡萄糖酸内酯溶液置换12h,使用叔丁醇置换24h,干燥72h,400℃煅烧2h得到NiO-YSZ直通孔阳极支撑体。
(2)以球磨12h的YSZ粉体作为电解质材料,配置YSZ和粘结剂比例为5:5的电解质浆料A,其中粘结剂中乙基纤维素的质量分数为5.5wt%,按比例混合研磨2h;
(3)使用表面平整的牙签蘸取配置好的YSZ电解质浆料A,手工涂覆到多孔支撑体上,涂覆时保持牙签与阳极支撑体的表面平行,使其均匀覆盖直通孔阳极支撑体的上表面。
(4)在420℃条件下烘干电解质浆料20min,对手工涂覆一次电解质浆料A的阳极支撑体进行煅烧,形成电解质阻挡层,煅烧温度为1100℃,时间2h。
(5)配置YSZ粉体和粘结剂比例为3:7的电解质浆料B,其中粘结剂中乙基纤维素的质量分数为5.5wt%,采用浆料旋涂法在手工涂覆电解质阻挡层均匀旋涂电解质浆料B 5层,转速为2.5krpm。
(6)将旋涂并烘干好的电解质和阳极支撑体在1400℃条件下进行共烧结4h,由此可获得直通孔陶瓷表面膜。
如图5所示,以本实施例制备的阳极支撑体和电解质层为基础,向电解质层涂覆LSM阴极后得到单电池。在650℃的开路电压如图5所示。
实施例3
(1)采用海藻酸钠离子凝胶法制备直通孔陶瓷,将固相含量为10wt%氧化钇稳定氧化锆(YSZ)粉体与质量分数为1.5wt%的海藻酸钠溶液混合球磨6h,使用真空干燥箱进行除泡30min,将除泡后的浆料注入事先准备好的模具中,喷覆1.5mol/L CaCl2溶液,静置36h固化成型,使用刀片将固化后的浆料切成3mm表面平整的圆柱体,应用10wt%的葡萄糖酸内酯溶液置换12h,使用叔丁醇置换24h,干燥72h,以400℃煅烧1h即可得YSZ直通孔陶瓷阳极支撑体;
(2)以球磨12h的YSZ作为电解质材料,配置YSZ粉体和粘结剂比例为5:5的电解质浆料A,其中粘结剂中乙基纤维素的质量分数为5.5wt%,按比例混合研磨2h;
(3)使用表面平整的牙签蘸取配置好的YSZ电解质浆料A,手工涂覆到多孔支撑体上,涂覆时保持牙签与阳极支撑体的表面平行,使其均匀覆盖直通孔阳极支撑体的上表面;
(4)在420℃条件下烘干电解质浆料20min,对经过涂覆一次电解质浆料A的阳极支撑体进行煅烧,形成电解质阻挡层,煅烧温度为1100℃,时间2h;
(5)采用浆料旋涂法在手工涂覆的电解质阻挡层上均匀旋涂配置好的YSZ与粘结剂配比为5:5的电解质浆料A 1次,转速为3krpm;
(6)将旋涂并烘干好的电解质和阳极支撑体在1400℃条件下进行共烧结4h,由此可获得直通孔陶瓷表面膜。
实施例4
(1)采用海藻酸钠离子凝胶法制备直通孔陶瓷,将固相含量为15wt%氧化钇稳定氧化锆(YSZ)粉体与质量分数为1.5wt%的海藻酸钠溶液混合球磨8h,使用真空干燥箱进行除泡40min,将除泡后的浆料注入事先准备好的玻璃烧杯中,喷覆1mol/L CaCl2溶液,静置36h后固化成型,使用刀片将固化后的浆料切成4mm表面平整的圆柱体,应用10wt%的葡萄糖酸内酯溶液置换12h,使用叔丁醇置换24h,干燥72h,以450℃煅烧1h即可得YSZ直通孔陶瓷阳极支撑体;
(2)以NiO与YSZ质量比为5:5作为电解质过渡层材料,配置YSZ-NiO粉体和粘结剂比例为5:5的电解质过渡层浆料X,其中粘结剂中乙基纤维素的质量分数为5.5wt%,按比例混合研磨2h,其中YSZ-NiO粉体需进行球磨12h预处理;
(3)使用表面平整的牙签蘸取配置好的YSZ-NiO电解质过渡层浆料X,手工涂覆到多孔支撑体上,涂覆时保持牙签与阳极支撑体的表面平行,使YSZ-NiO浆料均匀覆盖直通孔阳极支撑体的上表面;
(4)在420℃条件下烘干电解质过渡层浆料20min,对手工涂覆一次电解质过渡层浆料X的阳极支撑体进行煅烧,形成电解质过度层,煅烧温度为1100℃,时间2h;
(5)配置YSZ粉体和粘结剂比例为3:7的电解质浆料A,其中粘结剂中乙基纤维素的质量分数为5.5wt%,采用浆料旋涂法在手工涂覆的电解质过渡层X均匀旋涂电解质浆料A 6次,转速为4krpm;
(6)旋涂并烘干好的电解质和阳极支撑体在1400℃条件下进行共烧结5h,由此可获得直通孔陶瓷表面膜。
实施例5
(1)阳极材料使用经球磨预处理24h的氧化镍(NiO)纳米粉体、氧化钐掺杂氧化铈(SDC)纳米粉体以及木薯粉,按照质量比为40:58:2混合作为阳极材料,称量质量分数为5wt%的阳极材料与1.5wt%的海藻酸钠溶液混合球磨8h,使用真空干燥箱进行除泡30min,真空除泡后,注入事先准备好的模具中,喷覆1mol/L CuCl2溶液,静置48h固化成型,使用刀片将固化后的浆料切成高4mm表面平整的圆柱体,应用10wt%的葡萄糖酸内酯溶液置换12h,使用叔丁醇置换24h,干燥96h, 500℃煅烧2h即可得用于直通孔阳极支撑型固体氧化物燃料电池电解质薄膜制备的NiO-SDC支撑体;
(2)以球磨24h(此处为电解质粉体,不是阳极的混合浆料)的SDC作为电解质材料,SDC粉体和粘结剂比例为4:6的电解质浆料A,其中粘结剂中乙基纤维素的质量分数为4.5wt%,按比例混合研磨2h;
(3)使用表面平整的牙签蘸取配置好的SDC电解质浆料A,手工涂覆到多孔支撑体上,涂覆时保持牙签与阳极支撑体的表面平行,使其均匀覆盖直通孔阳极支撑体的上表面;
(4)在420℃条件下烘干电解质浆料20min,对经过涂覆一次电解质浆料A的阳极支撑体进行煅烧,形成电解质阻挡层,煅烧温度为1100℃,时间2h;
(5)配置YSZ粉体和粘结剂比例为3:7的电解质浆料B,其中粘结剂中乙基纤维素的质量分数为4.5wt%,采用丝网印刷法在手工涂覆电解质阻挡层均匀旋涂电解质浆料B 5次;
(6)将涂覆并烘干好的电解质和阳极支撑体在1350℃条件下进行共烧结4h,由此可获得直通孔陶瓷表面膜。

Claims (9)

1.一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:包括如下步骤:
第一步,采用海藻酸钠离子凝胶法制备直通孔陶瓷:将阳极粉体与海藻酸钠溶液混合球磨4~12h,真空除泡,将除泡后的浆料注模后,在其上表面喷覆金属阳离子溶液,湿坯固化后切片,经过后续置换、干燥、煅烧,得到直通孔陶瓷阳极支撑体;
第二步,配制电解质浆料:将电解质粉体和粘结剂按质量比为4:6~7:3的比例混合,研磨1~5h,得到电解质浆料A;
第三步,手工涂覆电解质浆料A:使用牙签将第二步配制的电解质浆料A手工涂覆在直通孔陶瓷阳极支撑体的上表面,厚度为30~100μm,形成电解质阻挡层A;
第四步,在300~500℃条件下,烘干涂覆的电解质浆料A,将手工涂覆有电解质浆料A的直通孔陶瓷阳极支撑体在1000~1500℃下,煅烧2~8h,形成电解质阻挡层B;
第五步,将电解质粉体和粘结剂按质量比为1:9~5:5的比例混合,得到电解质浆料B,采用匀胶机将电解质浆料B均匀涂覆在电解质阻挡层B上1~10次;
第六步,将涂覆并烘干的电解质浆料B和直通孔陶瓷阳极支撑体在1300~1500℃下,烧结3~6h,得到直通孔陶瓷表面膜。
2.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第一步中所述海藻酸钠溶液的质量浓度为0.5~3wt%,阳极粉体的固相含量为1~30%。
3.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第一步中所述阳极粉体包括YSZ、SDC、GDC、NiO/YSZ、NiO/SDC、NiO/GDC、La1-xSrxTiO3、La1-xSrxVO3、La1-xSrxCr1-yMnyO3、Sr2Mg1-xMnxMoO6、Sr2Fe4/3Mo2/3O6中的任意一种。
4.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第一步中所述金属阳离溶液的浓度为0.5~2mol/L,所述金属阳离子包括Ca2+、Fe2+、Co2 +、Ni2+、Cu2+、Sr2+、Ba2+ 和Pb2+中的任意一种,喷覆次数为20~70次。
5.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第一步中所述阳极粉体中包括质量分数为0~20%的辅助造孔剂,所述辅助造孔剂包括活性炭粉、面粉、木薯粉和纤维中的任意一种。
6.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第一步中所述湿坯固化后切片,切除成型的湿坯的上下表面,保留中间3~10mm厚度的直通孔湿坯,用去离子水清洗,使用5~15wt%的置换溶液置换24~72h,在空气中自然干燥36~48h后,在马弗炉中100~1000℃条件下煅烧1~5h,其中,置换溶液为葡萄糖酸内酯溶液和叔丁醇等醇类。
7.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第二步和第五步中所述电解粉体包括YSZ、SDC、GDC、La1-xSrxTiO3、La1-xSrxVO3、La1- xSrxCr1-yMnyO3、Sr2Mg1-xMnxMoO6和Sr2Fe4/3Mo2/3O6中的任意一种,电解质粉体球磨4~12h预处理。
8.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第二步和第五步中所述粘结剂由松油醇和乙基纤维素在50~200℃下,加热溶解制得,其中,乙基纤维素在粘结剂中的质量分数为3~15wt%。
9.根据权利要求1所述的一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法,其特征在于:第五步中所述涂覆的方法包括旋涂法、离心沉积法、丝网印刷法、提拉法、溶胶-凝胶法、电泳沉积法和流延法中的任意一种。
CN201910615405.9A 2019-07-09 2019-07-09 一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法 Active CN110436889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910615405.9A CN110436889B (zh) 2019-07-09 2019-07-09 一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910615405.9A CN110436889B (zh) 2019-07-09 2019-07-09 一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法

Publications (2)

Publication Number Publication Date
CN110436889A true CN110436889A (zh) 2019-11-12
CN110436889B CN110436889B (zh) 2022-04-22

Family

ID=68429977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910615405.9A Active CN110436889B (zh) 2019-07-09 2019-07-09 一种基于手工涂覆法在直通孔陶瓷表面镀膜的方法

Country Status (1)

Country Link
CN (1) CN110436889B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1872794A (zh) * 2006-06-27 2006-12-06 哈尔滨工业大学 一种制备氧化物陶瓷膜的改进涂覆方法
US20120003565A1 (en) * 2009-03-16 2012-01-05 Korea Institute Of Science And Technology Anode-supported solid oxide fuel cell comprising a nanoporous layer having a pore gradient structure, and a production method therefor
CN103183513A (zh) * 2011-12-29 2013-07-03 北京有色金属研究总院 一种质子导电陶瓷电解质薄膜的制备方法
CN103985888A (zh) * 2014-04-15 2014-08-13 淮南师范学院 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法
CN108154950A (zh) * 2017-12-01 2018-06-12 北京有色金属研究总院 一种NiO/质子电解质复合薄膜电极结构及其制备方法
CN108550865A (zh) * 2018-05-02 2018-09-18 太原理工大学 制备多孔阳极支撑体及固体氧化燃料电池阳极的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1872794A (zh) * 2006-06-27 2006-12-06 哈尔滨工业大学 一种制备氧化物陶瓷膜的改进涂覆方法
US20120003565A1 (en) * 2009-03-16 2012-01-05 Korea Institute Of Science And Technology Anode-supported solid oxide fuel cell comprising a nanoporous layer having a pore gradient structure, and a production method therefor
CN103183513A (zh) * 2011-12-29 2013-07-03 北京有色金属研究总院 一种质子导电陶瓷电解质薄膜的制备方法
CN103985888A (zh) * 2014-04-15 2014-08-13 淮南师范学院 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法
CN108154950A (zh) * 2017-12-01 2018-06-12 北京有色金属研究总院 一种NiO/质子电解质复合薄膜电极结构及其制备方法
CN108550865A (zh) * 2018-05-02 2018-09-18 太原理工大学 制备多孔阳极支撑体及固体氧化燃料电池阳极的方法

Also Published As

Publication number Publication date
CN110436889B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
KR101272036B1 (ko) 세라믹 과립을 포함하는 고체산화물 연료전지 및 이의 제조방법
CN1323459C (zh) 燃料电池的结构和制备方法
TW201017968A (en) Solid oxide fuel cell and manufacture method thereof
CN103296286B (zh) 新型co2和h2o高温共电解的超晶格复合氧电极及其制备方法
CN100589271C (zh) 一种中空纤维型固体氧化物燃料电池的制备方法
KR101934006B1 (ko) Ni-YSZ 연료(수소)전극을 포함하는 고체산화물 연료전지와 전해셀 및 이의 제조방법
Zhang et al. Improved electrochemical performance of Bi doped La0. 8Sr0. 2FeO3-δ nanofiber cathode for IT-SOFCs via electrospinning
CN107195938A (zh) 一种简单的固体氧化物燃料电池制备方法
CN102011140A (zh) 固体氧化物电解池电解质/氧电极界面微结构修饰方法
CN103151548A (zh) Al2O3-YSZ电解质膜的固体氧化物燃料电池及其制备方法
CN111029592B (zh) 一种蜂窝状高性能的固体氧化物可逆电池氢电极材料及其制备方法
KR101161236B1 (ko) 고체산화물 연료전지의 제조방법
CN103280584B (zh) 电纺法制备复合金属-陶瓷纳米纤维sofc阳极的方法
CN113337834A (zh) 对称材料非对称结构电解池及其制备方法
CN113299940B (zh) 一种用于固体氧化物燃料电池的lscf-gdc阴极功能层及制备方法
CN102185148A (zh) 一种纳米片微孔结构NiO基SOFC复合阳极膜材及制备方法
CN101222050A (zh) 抗碳沉积阳极膜材及其制备方法
CN110400954A (zh) 一种在直通孔阳极支撑体上制备电解质薄膜的方法
Hongyan et al. Preparation and characterization of La0. 8Sr0. 04Ca0. 16Co0. 6Fe0. 4O3-δ-La0. 9Sr0. 1 Ga0. 8Mg0. 2O3 composite cathode thin film for SOFC by slurry spin coating
CN112952041B (zh) 一种石榴石型固态电解质复合正极及其制备方法与应用
CN108630949B (zh) 一种固体氧化物燃料电池及其制备方法
CN112250437B (zh) 一种氧电极支撑的固体氧化物电解电池及其制备方法
CN105908211B (zh) 一种高温电解水制氢稳定运行的电解池装置、电解电池的制备及电解池装置的使用方法
CN108550865A (zh) 制备多孔阳极支撑体及固体氧化燃料电池阳极的方法
Yang et al. Effects of slurry composition on the electrolyte support structure and performance of electrolyte-supported planar solid oxide fuel cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant