CN110407245B - 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法 - Google Patents

一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法 Download PDF

Info

Publication number
CN110407245B
CN110407245B CN201910660997.6A CN201910660997A CN110407245B CN 110407245 B CN110407245 B CN 110407245B CN 201910660997 A CN201910660997 A CN 201910660997A CN 110407245 B CN110407245 B CN 110407245B
Authority
CN
China
Prior art keywords
cuprous oxide
flaky
spherical
oxide nanoparticles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910660997.6A
Other languages
English (en)
Other versions
CN110407245A (zh
Inventor
吴玲
吴昱林
程子豪
刘子怡
金赛佳
张伦
姚磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201910660997.6A priority Critical patent/CN110407245B/zh
Publication of CN110407245A publication Critical patent/CN110407245A/zh
Application granted granted Critical
Publication of CN110407245B publication Critical patent/CN110407245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法,步骤是:先将0.429g硝酸铜溶解于30ml N,N‑二甲基甲酰胺中,搅拌均匀,然后加入0.165g聚乙烯吡咯烷酮,搅拌至彻底溶解,再加入0.04g硼氢化钠,常温下搅拌至反应体系呈黑色,然后将混合溶液置于80℃条件下持续搅拌30min,停止加热,冷却到室温,得到含有氧化亚铜的悬浊液,离心,洗涤,真空干燥,即得到薄片状和球状氧化亚铜纳米颗粒。本发明通过一锅反应得到了两种不同形貌的氧化亚铜颗粒,薄片状颗粒和纳米晶颗粒堆砌成的球形颗粒使得Cu2O比表面积和表面化学活性大大提高,展示出良好的吸附性能和光催化性能,且制备工艺简单、重复性好。

Description

一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法
技术领域
本发明属于纳米材料领域,涉及一种氧化亚铜纳米颗粒的制备方法,具体涉及一种一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法。
背景技术
纳米材料的尺寸和形貌极大地影响其性质,进而决定其应用价值。氧化亚铜(Cu2O)是一种典型的金属缺位p型半导体,禁带宽度约2.2eV,能有效利用可见光,产生光生空穴电子对,在环境保护中对有机污染物降解处理方面的应用得到了很大的发展。为提高其光催化性能,研究者采用各种办法进行形貌调控来提高其表面积。氧化亚铜的制备技术常见的有电解法、固相法和液相法(亚硫酸钠还原CuSO4法、水合肼还原法、水热法、微波辐照法、高能射线辐照法、葡萄糖还原法)等。缩小颗粒尺寸,容易造成小颗粒团聚,影响其表面性能,空心或者核壳层结构的实验条件难控制,可重复性差。
发明内容
本发明的目的是提供一种一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法,操作简单、可重复性好。
为实现上述目的,本发明采用的技术方案如下:一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法,包括以下步骤:
(1)将0.429g硝酸铜溶解于30ml N,N-二甲基甲酰胺中,搅拌均匀得到淡蓝色铜离子溶液;
(2)将0.165g聚乙烯吡咯烷酮加入上述步骤(1)配制的溶液中,搅拌至彻底溶解;所述聚乙烯吡咯烷酮的分子量为50000;
(3)将0.04g硼氢化钠加入上述步骤(2)配制的溶液中,常温下搅拌至反应体系呈黑色,然后将混合溶液置于80℃条件下持续搅拌30min,停止加热,冷却到室温,得到含有氧化亚铜的悬浊液;
(4)将上述含有氧化亚铜的悬浊液高速离心,得到氧化亚铜颗粒,然后用去离子水和无水乙醇交叉洗涤数次;
(5)将洗涤后的氧化亚铜颗粒真空干燥,即得到薄片状和球状氧化亚铜纳米颗粒。
优选的,步骤(5)中,所述真空干燥的温度为60℃,时间为4小时。
优选的,步骤(4)中,所述离心的转速为16000转/分。
本发明还提供由上述方法制得的薄片状和球状氧化亚铜纳米颗粒在制备有机染料吸附剂中的应用。
实验表明,由上述方法制得的薄片状和球状氧化亚铜纳米颗粒具有很强的吸附性,使得10mg/L甲基橙溶液在25分钟内的脱色率高达90%。
本发明还提供由上述方法制得的薄片状和球状氧化亚铜纳米颗粒在制备降解有机染料的光催化剂中的应用。
实验表明,由上述方法制得的薄片状和球状氧化亚铜纳米颗粒具有很强的光催化性能,使得10mg/L甲基橙溶液在20分钟的降解率达到90.4%。
与现有技术相比,本发明具有如下有益效果:
1、本发明选用硝酸铜为铜源,N,N-二甲基甲酰胺为反应溶剂,聚乙烯吡咯烷酮为分散剂,硼氢化钠为强还原剂,通过调节反应溶剂的用量和反应温度,一锅制备得到两种不同形貌的氧化亚铜颗粒,并且产生了新的形貌(薄片状)的颗粒。产物形貌增大了其表面积,大大提高了氧化亚铜的光催化性能。薄片状颗粒和纳米晶颗粒堆砌成的球形颗粒使得Cu2O比表面积和表面化学活性大大提高,展示出良好的吸附性能和光催化性能。从所得产物对甲基橙的吸附和光催化降解实验中得出,反应不到20分钟左右,0.02g样品在黑暗环境中和光照条件下对甲基橙溶液的降解率都能够达到90%以上,这些结果表明在有机染料的吸附和催化降解等领域具有潜在应用价值。
2、本发明提供的制备方法反应温度低,反应时间短,制备工艺简单且重复性好,环境友好。
附图说明
图1为本发明实施例制备的Cu2O颗粒的x射线衍射图。
图2为本发明实施例制备的Cu2O纳米颗粒的SEM图。
图3为本发明实施例制备的Cu2O纳米颗粒的TEM图(A.200nm;B.10nm)。
图4为本发明实施例制备的Cu2O纳米颗粒的甲基橙暗吸附降解图。
图5为本发明实施例制备的Cu2O纳米颗粒的甲基橙光催化降解图。
图6为本发明对比例制备的Cu2O纳米颗粒的SEM图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例、对比例中所用原料和试剂,如无特殊说明,均为市售商品,纯度为分析纯及以上。
实施例
(1)将0.429g硝酸铜(Cu(NO3)2·3H2O)溶解于30ml N,N-二甲基甲酰胺(DMF)中,搅拌均匀得到淡蓝色铜离子溶液;
(2)将0.165g聚乙烯吡咯烷酮(PVP)加入上述步骤(1)配制的溶液中,持续搅拌至彻底溶解;所述聚乙烯吡咯烷酮的分子量为50000;
(3)将0.04g硼氢化钠加入上述步骤(2)配制的溶液中,常温下搅拌至反应体系呈黑色,然后将盛有反应溶液的烧瓶放入80℃油浴中,持续搅拌30min,停止加热,冷却到室温,得到含有氧化亚铜的悬浊液;
(4)将上述含有氧化亚铜的悬浊液高速离心,转速为16000转/分,得到氧化亚铜颗粒,然后用去离子水和无水乙醇交叉洗涤数次,除去反应过程中的其他杂质;
(5)将洗涤后的氧化亚铜颗粒置于真空干燥箱中,在60℃下真空干燥4小时,即得到薄片状和球状氧化亚铜纳米颗粒。
用X射线衍射仪进行氧化亚铜颗粒物相分析,如图1所示,所合成的材料在29.60°、36.59°、42.56°、61.45°、73.89°处出现5个衍射峰,分别对应于Cu2O的(110)、(111)、(200)、(220)、(311)晶面,和Cu2O标准卡29.58°、36.45°、42.33°、61.39°、73.59°基本一致,可确定所制备的颗粒为氧化亚铜晶体结构,纯相。
用扫描电子显微镜进行氧化亚铜的表面形貌分析,如图2所示,具有球形和薄片状两种形貌,球形颗粒粒径大约150nm,薄片状尺寸大约200nm;薄片状颗粒具有较大的比表面积,球形颗粒表面粗糙多孔。
用透射电子显微镜进行氧化亚铜颗粒内部结构分析,如图3所示,样品具有球形和薄片状两种形貌,球形颗粒是由大约5nm的纳米晶组装而成,片状结构颗粒非常薄,大约一个纳米晶的厚度。可以明显看出,纳米球以及纳米薄片的边缘生长不完整,说明原子配位严重不足,这使其具有多个活性位点,进而提高了它的光催化性能以及吸附性能。
一锅生成两种不同的形貌,可能与溶液的过饱和度有关。反应开始,PVP浓度较大,覆盖在晶体的各个表面上,使各晶面的表面能几乎接近相等,再加上PVP的空间位阻效应,使其各向同性生长,容易生成分散的松散球状颗粒。随着反应的进行,在相对低的过饱和度条件下,PVP择优生长<110>方向,导致片状结构的颗粒形成。
纳米Cu2O的吸附性能
样品的吸附性能测试实验在室温25℃下进行,具体实验过程是:将0.02g的Cu2O样品分散到浓度为10mg/L的100mL甲基橙水溶液中,并在黑暗的条件下激烈搅拌,每隔5分钟从中取出3mL悬浮液离心,去除固体物质,然后使用752N紫外-可见光谱仪测量MO溶液在464nm处的吸收度。结果如图4所示,说明样品具有很强的吸附性,使得甲基橙溶液在25分钟内的脱色率高达90%。
纳米Cu2O的光催化性能
将0.02g样品分散到浓度为10mg/L的100mL甲基橙水溶液中,然后用150W的灯(北京光电技术有限公司生产)照射混合液。其中,光的照度为66600Lux,灯距离液面的距离为18cm。可见光照射下,每隔数分钟取出3mL悬浮液离心,去除固体物质;再次使用752N紫外-可见光谱仪测量MO溶液在464nm处的吸收度。结果如图5所示,甲基橙溶液在20分钟的降解率达到90.4%,光催化降解效果明显,说明样品具有很强的光催化性能。
对比例
(1)将0.4g醋酸铜(Cu(CH3COO)2·H2O)溶解于30ml N,N-二甲基甲酰胺(DMF)中,搅拌均匀得到淡蓝色铜离子溶液;
(2)将0.165g聚乙烯吡咯烷酮(PVP)加入上述步骤(1)配制的溶液中,持续搅拌至彻底溶解;所述聚乙烯吡咯烷酮的分子量为50000;
(3)将0.04g硼氢化钠加入上述步骤(2)配制的溶液中,常温下搅拌至反应体系呈黑色,然后将盛有反应溶液的烧瓶放入80℃油浴中,持续搅拌30min,停止加热,冷却到室温,得到含有氧化亚铜的悬浊液;
(4)将上述含有氧化亚铜的悬浊液高速离心,转速为16000转/分,得到氧化亚铜颗粒,然后用去离子水和无水乙醇交叉洗涤数次,除去反应过程中的其他杂质;
(5)将洗涤后的氧化亚铜颗粒置于真空干燥箱中,在60℃下真空干燥4小时,即得到氧化亚铜纳米颗粒。
用扫描电子显微镜进行氧化亚铜的表面形貌分析,如图6所示,样品是由平均约10nm类球形纳米晶组成的不规则纳米团,纳米团的平均粒径约100nm,疏松多孔。
实施例与对比例的结果对比表明,不同类型的酸根离子对Cu2O的最终形貌有很大的影响。这可能是由于两种酸根离子的配位能力不同而导致的。羧酸根的配位能力较强,这样就会降低溶液的过饱和浓度,抑制Cu2O的成核与生长。因此,醋酸铜作为铜盐生成的Cu2O颗粒要细小得多。

Claims (5)

1.一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法,其特征在于,包括以下步骤:
(1)将0.429g硝酸铜溶解于30ml N,N-二甲基甲酰胺中,搅拌均匀得到淡蓝色铜离子溶液;
(2)将0.165g聚乙烯吡咯烷酮加入上述步骤(1)配制的溶液中,持续搅拌至彻底溶解;所述聚乙烯吡咯烷酮的分子量为50000;
(3)将0.04g硼氢化钠加入上述步骤(2)配制的溶液中,常温下搅拌至反应体系呈黑色,然后将混合溶液置于80℃条件下持续搅拌30min,停止加热,冷却到室温,得到含有氧化亚铜的悬浊液;
(4)将上述含有氧化亚铜的悬浊液高速离心,得到氧化亚铜颗粒,然后用去离子水和无水乙醇交叉洗涤数次;
(5)将洗涤后的氧化亚铜颗粒真空干燥,即得到薄片状和球状氧化亚铜纳米颗粒。
2.根据权利要求1所述的一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法,其特征在于,步骤(5)中,所述真空干燥的温度为60℃,时间为4小时。
3.根据权利要求1所述的一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法,其特征在于,步骤(4)中,所述离心的转速为16000转/分。
4.权利要求1所述的方法制得的薄片状和球状氧化亚铜纳米颗粒在制备有机染料吸附剂中的应用。
5.权利要求1所述的方法制得的薄片状和球状氧化亚铜纳米颗粒在制备降解有机染料的光催化剂中的应用。
CN201910660997.6A 2019-07-22 2019-07-22 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法 Active CN110407245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910660997.6A CN110407245B (zh) 2019-07-22 2019-07-22 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910660997.6A CN110407245B (zh) 2019-07-22 2019-07-22 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN110407245A CN110407245A (zh) 2019-11-05
CN110407245B true CN110407245B (zh) 2020-11-17

Family

ID=68362298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910660997.6A Active CN110407245B (zh) 2019-07-22 2019-07-22 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN110407245B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112093817B (zh) * 2020-10-29 2021-10-08 广西师范大学 一种氧化亚铜树枝状晶体的制备方法
CN115304100A (zh) * 2022-08-29 2022-11-08 徐州联禾升钢结构工程有限公司 一种金属防腐保护材料及其制备方法
CN115592125B (zh) * 2022-09-26 2024-02-02 昆明贵研新材料科技有限公司 一种微米片和亚微米颗粒共存的金粉制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427246C (zh) * 2005-11-04 2008-10-22 清华大学 一种合成氧化亚铜纳米球的方法及氧化亚铜纳米球的应用
CN101348275B (zh) * 2008-09-11 2010-06-30 北京航空航天大学 多面体状氧化亚铜纳米颗粒的制备方法
CN102502771B (zh) * 2011-10-21 2013-11-20 黑龙江大学 一种分级花状结构氧化亚铜的制备方法
CN103172104B (zh) * 2013-04-03 2015-05-13 浙江理工大学 纳米氧化亚铜的制备方法
CN103387258B (zh) * 2013-08-07 2015-05-27 武汉理工大学 一种氧化亚铜纳米空心球及其合成方法、应用方法
WO2016088554A1 (ja) * 2014-12-03 2016-06-09 株式会社日立製作所 接合用金属酸化物粒子、これを含む焼結接合剤、接合用金属酸化物粒子の製造方法、及び電子部品の接合方法
CN104477969B (zh) * 2014-12-22 2017-02-22 中国矿业大学 类球形和书签状纳米氧化亚铜颗粒的制备方法

Also Published As

Publication number Publication date
CN110407245A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN110407245B (zh) 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法
Fang et al. Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic performance
Flores et al. Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures
Zhang et al. Construction and photocatalysis of carbon quantum dots/layered mesoporous titanium dioxide (CQDs/LM-TiO2) composites
Yin et al. Size dependent photocatalytic activity of ZnS nanostructures prepared by a facile precipitation method
Zhang et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate
Yin et al. Hierarchical nanostructures of nickel-doped zinc oxide: Morphology controlled synthesis and enhanced visible-light photocatalytic activity
Pei et al. Zinc vanadate nanorods and their visible light photocatalytic activity
Sun et al. Bottom-up assembly of hierarchical Cu 2 O nanospheres: controllable synthesis, formation mechanism and enhanced photochemical activities
CN108311164B (zh) 一种铁改性光催化材料及其制备方法和应用
Li et al. Solvent co-mediated synthesis of ultrathin BiOCl nanosheets with highly efficient visible-light photocatalytic activity
CN104860357B (zh) 单分散的纳米片和/或纳米环及其制备和应用
CN110694627A (zh) 一种三氧化二铁纳米环光催化剂及其制备方法
Peng et al. One dimensional hierarchical BiOCl microrods: their synthesis and their photocatalytic performance
Shang et al. An insight on the role of PVP in the synthesis of monoclinic WO3 with efficiently photocatalytic activity
CN113275011A (zh) 一种花球状多级结构的氧化亚铜光催化剂的制备方法
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
CN112142097A (zh) 三水合锡酸镉及其制备方法和应用
CN113426461B (zh) 银掺杂多晶面铁酸锌光催化纳米材料的制备方法
Zhang et al. Surfactant-free hydrothermal synthesis, growth mechanism and photocatalytic properties of PbMoO4 polyhedron microcrystals
Rabbani et al. Visible-light-driven photocatalytic properties of copper (I) oxide (Cu2O) and its graphene-based nanocomposites
Jiang et al. Solvothermal synthesis of TiO2/Bi2WO6 heterojunction photocatalyst with optimized interface structure and enabled photocatalytic performance
CN110227517B (zh) CuBi2O4/BiPO4p-n型异质结光催化剂、制备方法及其应用
CN109046341B (zh) 一种可见光响应的硅酸银/凹凸棒复合催化剂的制备方法
Roselin et al. Transformation of commercial TiO2 into anatase with improved activity of Fe, Cu and Cu–Fe oxides loaded TiO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant