CN112093817B - 一种氧化亚铜树枝状晶体的制备方法 - Google Patents

一种氧化亚铜树枝状晶体的制备方法 Download PDF

Info

Publication number
CN112093817B
CN112093817B CN202011179854.2A CN202011179854A CN112093817B CN 112093817 B CN112093817 B CN 112093817B CN 202011179854 A CN202011179854 A CN 202011179854A CN 112093817 B CN112093817 B CN 112093817B
Authority
CN
China
Prior art keywords
cuprous oxide
dendritic
inner container
deionized water
transferring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011179854.2A
Other languages
English (en)
Other versions
CN112093817A (zh
Inventor
饶盛源
邱志惠
阮青锋
徐金燕
郭星哲
徐鑫
张琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN202011179854.2A priority Critical patent/CN112093817B/zh
Publication of CN112093817A publication Critical patent/CN112093817A/zh
Application granted granted Critical
Publication of CN112093817B publication Critical patent/CN112093817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氧化亚铜树枝状晶体的制备方法,将铜盐加入到去离子水中溶解,再往铜盐溶液中加入N,N‑二甲基甲酰胺,羧酸衍生物,将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3‑5遍,60‑80℃烘干,即得到树枝状氧化亚铜。该方法用羧酸衍生物作为铜离子还原剂,只需一锅溶剂热法得到树枝状氧化亚铜。树枝状氧化亚铜主干与分支方向彼此垂直,仔细观察,能发现分支结构是由多个不同指数的晶面构成,具有较大的表面积,对有机染料有一定的降解效果,并且制备工艺简单,重复性好。

Description

一种氧化亚铜树枝状晶体的制备方法
技术领域
本发明涉及氧化亚铜,具体是一种氧化亚铜树枝状晶体的制备方法。
背景技术
氧化亚铜是一种P型半导体,具有独特的光学,光电和催化性能,在太阳能装换、磁存储装置、催化剂等领域有着广泛的应用。
枝状晶体的尺寸、形态以及分布特点等对材料性能和实际应用都产生了重要的影响,前人的研究发现具有枝状形貌的金属及金属化合物材料表现出了独特的物理化学性能,在催化 传感材料、纳米级装置等方面具有广泛的用途,文献报道的树枝状氧化亚铜大多是电沉积法制备的(如图5所示),制备需要特定的电化学设备,所制备的氧化亚铜树枝状晶体大都长在电极基底上。容易造成团聚,产出量少等问题。
发明内容
本发明为氧化亚铜树枝状晶体的制备提供了一种操作简单,无需添加任何表面活性剂,成本低,产出量较高的简便方法,可重复性好。该方法以羧酸衍生物作为铜离子还原剂,采用溶剂热法,缓慢升温至140℃保持24h,成功制备出树枝状氧化亚铜。
本发明一种氧化亚铜树枝状晶体的制备方法,按照下述步骤进行:
将2-3mmol铜盐加入到6-14ml去离子水中溶解,再往铜盐溶液中加入4-8ml N,N-二甲基甲酰胺,1mmol羧酸衍生物,将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;
待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜。
作为优选,所述铜盐为乙酸铜。
作为优选,所述羧酸衍生物为草酸钾,醋酸钠,醋酸钾中的一种。
作为优选,所述反应条件为加热升温属于缓慢升温至140℃,降温是属于缓慢降温。
本发明还提供了用上述方法制备的氧化亚铜树枝状晶体在制备降解有机染料的光催化剂中的应用。
实验表明,用上述方法制备的氧化亚铜树枝状晶体对有机染料光催化降解有一定促进作用,在光照210min内可以使得亚甲基蓝原本只有60%的降解率,提升达到80%。
与现有技术相比,本发明的有益效果是:
N,N-二甲基甲酰胺既做溶剂也做还原剂,减小了传统制备方法中,溶剂与还原剂配比的合理调控难度,更简单制得纯的氧化亚铜相。提供了一种氧化亚铜树枝状晶体溶剂热制备方法,无需添加任何表面活性剂,操作简单,成本低,对设备要求不高。
附图说明
图1为实施例1、2、3、4所得产物的XRD图。
图2为对比例1所得产物的XRD图。
图3为实施例1、2、3、4所得产物的SEM图(分别对应图中a、b、c、d部分)。
图4为对比例1所得产物的SEM图。
图5为电沉积法所得氧化亚铜树枝状产物的SEM图。
图6为本发明实施例制备的氧化亚铜催化亚甲基蓝降解率对比图。
具体实施方式
下面结合实施例和附图对本发明技术方案作进一步的详细说明,但不是对本发明技术方案的限定。
实施例1
将3mmol乙酸铜加入到6ml去离子水中溶解,再往乙酸铜溶液加入6ml N,N-二甲基甲酰胺,1mmol草酸钾,待乙酸铜溶解后将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜,其XRD如图1所示,SEM图如图3a所示。
对比例1
将3mmol乙酸铜加入到6ml去离子水中溶解,再往乙酸铜溶液加入6ml N,N-二甲基甲酰胺,1mmol抗坏血酸,待乙酸铜溶解后将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜,其XRD如图2所示,SEM图如图4所示。
实施例2
将2mmol乙酸铜加入到6ml去离子水中溶解,再往乙酸铜溶液加入6ml N,N-二甲基甲酰胺,1mmol抗坏血酸,待乙酸铜溶解后将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜,其XRD如图1所示,SEM图如图3 b所示。
实施例3
将2mmol乙酸铜加入到14ml去离子水中溶解,再往乙酸铜溶液加入6ml N,N-二甲基甲酰胺,1mmol醋酸钾,待乙酸铜溶解后将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜,其XRD如图1所示,SEM图如图3c所示。
实施例4
将3mmol乙酸铜加入到10ml去离子水中溶解,再往乙酸铜溶液加入6ml N,N-二甲基甲酰胺,1mmol醋酸钾,待乙酸铜溶解后将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜,其XRD如图1所示,SEM图如图3 d所示。
用X 射线衍射仪( XRD)对产物的物质结构进行表征,如图1所示,所有实施例制备的氧化亚铜树枝状晶体,其XRD图与X射线衍射数据库中JCPDS05–0667号卡片的衍射图谱一致,表明实验所得产物均为Cu2O晶体,晶体属于等轴晶系,空间群为
Figure 225471DEST_PATH_IMAGE002
(225),晶胞参数a0=0.4269 nm,α=β=γ=90°。
用扫描电子显微镜( SEM) 观察产物的形貌,如图3所示,树枝状氧化亚铜主干沿着[100]晶向生长,分支着[011] 晶向生长,主干与分支方向彼此垂直,仔细观察,能发现分支结构是由多个不同指数的晶面构成,同侧的侧枝之间彼此平行排列,构成二维结构。
树枝状氧化亚铜按其优先生长的方向平行排列连接成柱状晶粒,随着晶粒的长大,溶质过饱和度降低,结晶质扩散作用变弱,两晶体间的结晶质运移到晶体柱面上生长会越来越困难,这时,两柱状晶体间的结晶质会重新聚集形成另一柱状晶。CH3COO-在含水溶液加热条件下可以发生氧化—还原反应,起到还原剂的作用,有助于Cu2O晶体的成核-生长-再生长过程,并且羧基也很容易与Cu2+配位,形成聚合物链与Cu2+缔合,从而促进树枝状氧化亚铜的形成。
氧化亚铜树枝状晶体的光催化性能:
将0.01g样品分散到浓度为10mg/L的100mL亚甲基蓝溶液中,然后用300w的氙灯照射210min,光照距离是25cm。每隔30分钟取4ml样,离心,使用紫外-可见光谱仪测量MB溶液在664nm左右的吸收度。结果如图6所示,在光照210min内可以使得亚甲基蓝原本只有60%的降解率,提升达到80%。

Claims (2)

1.一种氧化亚铜树枝状晶体的制备方法,其特征在于,具体步骤如下:
将乙酸铜加入到去离子水中溶解,再往乙酸铜溶液中加入N,N-二甲基甲酰胺,羧酸衍生物,将混合溶液转移至聚四氟乙烯内胆中,将内胆盖好并转入高压釜中,缓慢升温至140℃保持24h;
待反应结束后,关闭加热缓慢降至室温,产物分别用无水乙醇、去离子水洗涤3-5遍,60-80℃烘干,即得到树枝状氧化亚铜;
所述羧酸衍生物是草酸钾或醋酸钾;
所述原料用量为:乙酸铜2-3mmol、去离子水6-14ml、N,N-二甲基甲酰胺4-8ml、羧酸衍生物1mmol。
2.根据权利要求1所述制备方法制得氧化亚铜树枝状晶体在制备降解有机染料的光催化剂中应用。
CN202011179854.2A 2020-10-29 2020-10-29 一种氧化亚铜树枝状晶体的制备方法 Active CN112093817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011179854.2A CN112093817B (zh) 2020-10-29 2020-10-29 一种氧化亚铜树枝状晶体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011179854.2A CN112093817B (zh) 2020-10-29 2020-10-29 一种氧化亚铜树枝状晶体的制备方法

Publications (2)

Publication Number Publication Date
CN112093817A CN112093817A (zh) 2020-12-18
CN112093817B true CN112093817B (zh) 2021-10-08

Family

ID=73784916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011179854.2A Active CN112093817B (zh) 2020-10-29 2020-10-29 一种氧化亚铜树枝状晶体的制备方法

Country Status (1)

Country Link
CN (1) CN112093817B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852417B (zh) * 2022-12-07 2023-10-03 南昌大学 一种球状Cu2O纳米颗粒催化剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101412531A (zh) * 2008-10-31 2009-04-22 浙江理工大学 一种实现氧化亚铜晶体形态可控的水热制备方法
CN101698497A (zh) * 2009-11-03 2010-04-28 盐城师范学院 静压湿法制备氧化亚铜技术
RU2442751C1 (ru) * 2010-11-08 2012-02-20 Учреждение Российской академии наук Институт проблем химико-энергетических технологий Сибирского отделения РАН (ИПХЭТ СО РАН) Способ получения наноразмерных частиц оксида меди
CN105883891A (zh) * 2014-12-05 2016-08-24 天津工业大学 一种正十二面体氧化亚铜微纳米晶的制备方法
US20190152796A1 (en) * 2016-04-20 2019-05-23 Nanotheranostics Inc. Preparation of Stable Copper(II) Hydroxide
US11339487B2 (en) * 2019-02-28 2022-05-24 Honda Motor Co., Ltd. Synergistic effects of multi-faceted CU2O nanocrystals for electrochemical CO2 reduction
CN110407245B (zh) * 2019-07-22 2020-11-17 中国矿业大学 一锅法制备薄片状和球状氧化亚铜纳米颗粒的方法

Also Published As

Publication number Publication date
CN112093817A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Desai et al. Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting
CN101234779A (zh) 铜铟硫半导体纳米粒子的制备方法
CN105236491B (zh) 一种丝状w18o49材料的制备方法
Zuo et al. Double-sided ZnO nanorod arrays on single-crystal Ag holed microdisks with enhanced photocataltytic efficiency
CN109761275B (zh) 一种硫化铋银空心纳米球及其制备方法
Bhogaita et al. Hybrid photoanode of TiO2-ZnO synthesized by co-precipitation route for dye-sensitized solar cell using phyllanthus reticulatas pigment sensitizer
CN111495401A (zh) 一种氧缺陷的一水合三氧化钨/碳化钛纳米复合材料的制备方法
Ouyang et al. Shape controlled synthesis and optical properties of Cu2O micro-spheres and octahedrons
CN113275011B (zh) 一种花球状多级结构的氧化亚铜光催化剂的制备方法
CN101635315A (zh) 一种制备三维多枝状硒化铜纳米晶光电薄膜材料的化学方法
CN112093817B (zh) 一种氧化亚铜树枝状晶体的制备方法
CN109225217B (zh) 一种碳化植物叶片@ZnO/Au异质结多级结构组装体催化剂及其制备方法
CN104264131A (zh) 一种在ZnO纳米线阵列上生长的纤维状ZnO纳米线及其制备方法
CN108855033A (zh) 以柚子内皮为模板制备多孔纳米片三维氧化锌光催化材料的方法
CN107930611A (zh) 一种碳点二氧化钛中空微球复合纳米催化剂及其制备方法与应用
CN110841680A (zh) 一种氮、硫-掺杂石墨烯-CuS复合材料的制备方法
CN109317167B (zh) 金属硫族配合物包覆的纳米粒子及其制备方法和应用
CN107149934B (zh) 一种制备CdS/Bi4V2O11异质结复合光催化剂的方法
Peksu et al. Recent progress in solar cells based on one dimensional ZnO nanostructures
CN113713813A (zh) Ag NWs@BaTiO3芯鞘复合压电光催化材料及其制备方法和应用
CN102765743A (zh) 在锌片基底上制备玉米状多级结构氧化锌纳米棒阵列薄膜
Shelar et al. Biological synthesis of Cu2O nanoshells and its optical properties
KR101529140B1 (ko) 헥사고날 텅스텐 브론즈, 및 그의 제조 방법
Yang et al. Synthesis and photocatalysis of Al doped CdS templated by non-surfactant hypocrellins
CN114082425A (zh) 一种Bi2S3/AgBiS2纳米团簇的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant