CN110392846A - 电磁辐射探测设备 - Google Patents

电磁辐射探测设备 Download PDF

Info

Publication number
CN110392846A
CN110392846A CN201880017244.7A CN201880017244A CN110392846A CN 110392846 A CN110392846 A CN 110392846A CN 201880017244 A CN201880017244 A CN 201880017244A CN 110392846 A CN110392846 A CN 110392846A
Authority
CN
China
Prior art keywords
equipment
diode section
unit
diode
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880017244.7A
Other languages
English (en)
Other versions
CN110392846B (zh
Inventor
K.奥尼尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixar Quantum Co Ltd
Original Assignee
Pixar Quantum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixar Quantum Co Ltd filed Critical Pixar Quantum Co Ltd
Publication of CN110392846A publication Critical patent/CN110392846A/zh
Application granted granted Critical
Publication of CN110392846B publication Critical patent/CN110392846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20182Modular detectors, e.g. tiled scintillators or tiled photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/36Devices specially adapted for detecting X-ray radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

一种电磁辐射探测设备(1),包括具有被划分为多个M列的多个N行的单元(2)的矩阵,每个单元包括响应于入射在所述设备(1)上的电磁辐射的多个二极管段(3)。扫描驱动器(4)向所述矩阵的各行提供多个N个扫描线信号,每个用于使得能够读取来自所述矩阵的所选行的单元(2)的电荷值。读取器(5)从所述矩阵的各列读取多个M个可变电荷值信号,每个对应于所述矩阵的所选行内的单元(2)。每个二极管段(3)连接到足以在雪崩倍增盖革模式下操作每个二极管段(3)的驱动电压;并且与雪崩猝灭电阻器(8)串联连接到所述读取器。

Description

电磁辐射探测设备
技术领域
本发明涉及一种电磁辐射探测设备。
背景技术
在诸如数字射线照相(DR)的应用中,平板探测器(FPD)可用于间接采集X射线图像。FPD典型地包括单像素传感器电路的矩阵,并且使用在探测器的整个区域上使用“磷光体”(未示出)的、从X射线光子到光学光子的间接转换。在X射线成像中使用的典型闪烁材料是磷光体,诸如结构化的碘化铯(CsI(Tl))和硫氧化钆(Gd2O2S(Tb)),也称为GadOx或GOS。到达各像素电路内的光电二极管的来自磷光体的光学光子被转换成单个电子-空穴对,并且使用分立电容器和/或寄生电容将所得电荷存储在像素电路内。
图1示出了使用有源矩阵(AM)顺序寻址方案的传统非晶硅背板硅FPD的3×3像素部分的电路图。图2示出了用于图1中所示的矩阵部分的个别像素的第一示例的横截面。图3示出了使用玻璃上硅(Silicon-on-Glass)工艺形成的个别像素的第二示例的横截面。如图2和图3中所示,该个别像素包括电连接到对应的薄膜开关晶体管的单个探测二极管。
在操作中,通过顺序寻址行栅电极来读出在像素电路的X射线曝光期间累积(在未示出的电容器中)的电荷,其将像素电路的开关薄膜晶体管从截止状态转变为导通状态。然后将与该像素位置处的X射线强度成比例的所得电荷传导到用于列的相应读出电路。
US 7,323,692中,Rowlands和Zhao描述了使用有源矩阵寻址方案在X射线成像间接转换探测器中使用雪崩层(avalanche layer)。这里,X射线进入诸如碘化铯(CsI)的磷光体,生成一批(a shower of)光学光子,光学光子经由雪崩层中的光电效应进一步生成电子-空穴对,雪崩层可以是非晶硒或非晶硅。
然而,这些探测器受到低剂量入射电磁辐射下的探测量子效率(DQE)的限制。
因此,诸如孕妇、儿童或肥胖者的高风险类别对象的高质量、大面积X射线图像需要高剂量水平以获得有用的图像。如果认为曝光风险太高而无法进行,则必须使用替代的、较差的诊断方法。
另外,在虚拟现实应用中,目前通过对照射(典型地在红外波长范围内)下的身体或眼睛进行成像来实现手势识别和眼球跟踪。然而,近红外成像传感器,尤其是对于眼球跟踪,受到场景照射强度和由采集/积分时间限制的速度的限制。
本发明的目的是为了减轻这些缺点。
发明内容
根据本发明,提供一种根据权利要求1的电磁辐射探测设备。
本发明依赖于辐射探测设备的二极管中的雪崩倍增盖革(Geiger)模式击穿,以针对被转换为信号的每个电磁辐射量子或光子产生高电荷脉冲。这意味着数千个电子电荷可以贡献于由单个光子生成的信号,这与传统非晶硅二极管实现方式中的转换增益低于一(unity)的过程不同。
辐射探测设备的每个单元或像素具有包括多个二极管段的分段结构,以控制雪崩倍增的增益。
一旦引发雪崩,具有高电阻的电阻器被串联连接到单元的每个二极管段,以防止或熄灭各个二极管段的失控雪崩(runaway avalanche)。
因此,本发明的实施例使得能够以较低、更安全的曝光剂量对诸如高风险类别对象的对象进行高质量、大面积的X射线成像。
在一些使用情况下,可以用比现有技术更低的剂量和更高的帧速率进行对象的高帧速率序列成像,例如血管造影。
替代地,在不需要限制X射线剂量的探测设备的使用情况下,可以减少每帧的曝光时间。这减少由于曝光期间的患者移动(例如,由于血流或心跳)所导致的图像模糊,得到改善的图像质量。此外,对于动态扫描货物的危险&威胁应用,较短的曝光时间将由于扫描期间的物体移动减少而导致较少的模糊。
在根据本发明的辐射探测设备的医学应用中,有:CT成像、PET成像、SPECT成像和DR(数字射线照相)成像。
其他非医学应用包括:机场处的货物扫描或探测、或辐射探测(例如,用于核物理实验、非破坏性测试、或用于大面积危险和威胁)。
在可以受益于使用该电磁辐射探测设备的其他成像应用中,有:LiDAR成像、VR视网膜相机、低光水平接触图像传感器(CIS)和安全应用(例如用于低光水平相机)。
根据第三方面,提供根据权利要求25的飞行时间成像设备。
该方面的实施例可以每个成像像素具有单个二极管段。
这些设备得到应用,目标是捕获单个光子的到达时间,其中光子在二极管内生成多个电子,并提高这种设备的探测质量。
该方面的实施例的应用包括测距或三角测量应用。
附图说明
现在将参考附图通过示例的方式描述本发明的实施例,附图中:
图1示出了现有技术的非晶硅有源矩阵FPD的一部分;
图2示出了图1中所示的现有技术的FPD部分的第一示例性个别单元的横截面,其中二极管的阳极经由薄膜晶体管连接到数据线;
图3示出了现有技术的第二示例性个别像素的横截面,其中二极管经由由玻璃上硅工艺形成的薄膜晶体管连接到数据线;
图4示出了根据本发明的示例性实施例的有源矩阵FPD的一部分;
图5示出了图4中所示的FPD部分的个别单元的实施例的横截面;
图6示出了图5中所示的个别单元的单个二极管段结构的平面视图,以及形成该段的层的平面并排视图;
图7示出了图5中所示的个别单元的平面视图,以及形成该单元的层的平面并排视图;
图8(a)示出了可用于图4中所示的FPD的非晶硅二极管的二极管叠层;
图8(b)示出了图8(a)的二极管堆叠的替代;
图9示出了可用于图4中所示的FPD的混合相硅二极管的二极管叠层;
图10以横截面示出了图5中所示的单元的变型,其具有光导透明层;
图11以横截面示出了图4中所示的FPD部分的个别单元的又一实施例;
图12示出了图1的示例性FPD相对于图4中所示的FPD实施例的对剂量的模拟DQE;
图13示出了图4的实施例的替代配置;
图14示出了由玻璃上硅工艺形成的图13中所示的FPD部分的个别单元的实施例的横截面;
图15示出了图4的实施例的又一替代配置;
图16示出了由玻璃上硅工艺形成的图15中所示的FPD部分的个别单元的实施例的横截面;
图17示出了根据本发明的示例性实施例的有源矩阵飞行时间成像设备的一部分;
图18示出了由玻璃上硅工艺形成的图17中所示的FPD部分的个别单元的实施例的横截面;以及
图19至图21示出了用于图17的设备的示例性时序图。
具体实施方式
参考图4,公开了根据本发明的有源矩阵FPD 1的示例性实施例。FPD 1包括具有被划分为多个M列的多个N行的单元2的矩阵(仅示出其3×3部分)。矩阵被并入探测器中,探测器可以包括聚焦光学器件(未示出),聚焦光学器件确定探测器的视场并且在其他方面是常规的。
每个单元2包括响应于入射在FPD 1上的电磁辐射的多个二极管段3。在实施例中,每个单元包括以3×3栅格排列的9个二极管段。然而,应该理解的是,该布置可以变化,并且可以包含以替代布置排列的各种数量的段。然而,用于本申请的实施例的二极管段仍然可以占据与现有技术的一元(unitary)二极管实现方式类似的区域并因此提供类似的分辨率。
每个单元2还包括晶体管10,用于选择性地将单元2的二极管段3连接到与读取器5相关联的数据线6。二极管段3中的每一个经由相应的雪崩猝灭(quenching)电阻器8并联连接到晶体管10。
对于间接X射线探测应用,FPD 1可包括至少一层例如磷光体的闪烁材料,用于将入射的X射线光子转换成可以到达单元2的二极管段3的光学光子。响应于入射的光学光子,二极管段3生成电荷信号。以该方式,FPD1可以执行间接X射线/电荷信号转换。
二极管段3的操作受由供电部件7施加到二极管段3的阴极的反向驱动电压偏置的影响。反向电压偏置高于二极管段3的击穿电压,使得二极管段3操作在雪崩倍增盖革模式下。在该模式中,对于单光子吸收事件,由二极管段3生成许多电子-空穴对,与现有技术解决方案相比,对于给定的X射线曝光得到更高的生成电荷,如图12中的图形所示。
尽管未在图4中示出,但是可以在单元内提供的分立电容器中或者使用寄生电容来存储该电荷。
取决于二极管段3的击穿电压,反向电压偏置的典型值可以在10V和30V之间的范围内。所施加的反向电压偏置是DC电压,但是可以通过帧时间(典型地对于50Hz帧速率为20ms)来门控。替代地,可以以脉冲模式施加反向电压偏置,其中脉冲宽度由X射线脉冲宽度(典型地约2ms)确定;以该方式,与使用DC偏置相比,可靠性被提高,并且FPD 1的读出操作可以在更低的电压下发生。
参考图5、图10、图11和图14中所示的示例性实施例,单元2内的二极管段3的侧壁22通过电介质材料23彼此横向分开,从而提供横向受限的结构以控制盖革雪崩倍增的增益。二极管段尺寸可以在2μm(典型的光刻制造工艺特征尺寸所强加的限制)到150μm(最大像素尺寸限制)之间。
每个电阻器8被设计成提供足够高的限流电阻,以在雪崩事件之后使二极管段3返回到预击穿状态。取决于所使用的二极管段3,电阻值可以在50kΩ和2kΩ之间的范围内,并且更典型地在100kΩ和400kΩ之间。
返回图4,单元2的读出以与图1中所示的现有技术示例相同的方式发生。具体地,FPD 1包括:
-扫描驱动器4,用于向矩阵的各行提供多个N扫描线信号,每个用于使得能够读取来自所选行的单元2的电荷值;以及
-读取器5,从矩阵的各列读取多个M个可变电荷值信号,每个对应于所选行内的单元2。
将来自扫描驱动器4的扫描线信号施加到所选行中的晶体管10的栅极11,以便导通这些晶体管10。以该方式,所选行内的单元2的二极管段3被可操作地连接到对应的数据线6,并且读取器5可以从数据线6顺序地读取由所选行内的单元2的二极管段3生成的可变电荷值信号。以该方式,可以执行行线的顺序有源矩阵寻址,以确定在FPD1的每个单元位置处的电荷值,并因此确定入射辐射强度。
关于制造,在图5、图10和图11所示的示例性实施例中,单元2包括形成在基底20上的金属层11、21,并且在金属层的相应部分21上彼此间隔开地形成单元2的二极管段3。如上面提到的,金属部分11用作晶体管10的栅极接触。金属层21的一部分用作二极管段3的阴极并连接到电源部件7;以该方式,可以将操作反向偏置电压施加到二极管段3。
单元2还包括在二极管段3上方形成的对电磁辐射透明的导电透明层25。例如,层25可以由例如氧化铟锡(ITO)的导电氧化物制成。
当存在于FPD 1中时,闪烁材料层设置在层25上方,使得层25允许由闪烁材料生成的光子由其穿过并到达二极管段3。
在沉积层25之前,在二极管段3的侧壁22周围沉积钝化电介质材料23,例如氧化硅。材料23的暴露表面不需要与二极管段3的暴露表面共面,并且因此,如实施例中所示,沉积在二极管段3上方的层25和电介质材料23不需要是平面的,因此在这种情况下,对于每个二极管段3,层25包括位于二极管段3的上端上方的焊盘27和在钝化材料上方远离焊盘27延伸的两个横向部分28。
使二极管段3以及层23和25的表面成形的可能性导致诸如图10的实施例中所示的机会,其中焊盘27形成有圆顶形状29以用作光学透镜,用来将入射辐射聚焦到对应的下层二极管段3的中心。可以通过使用多个沉积步骤在井中沉积层25的连续部分来产生和控制该圆顶形状。
在图5和图10的实施例中,层25用作单元2的二极管段3的阳极和晶体管10之间的电连接,其中连接轨道提供电阻器8。晶体管10通过金属层12可操作地连接到单元2所属的矩阵列的数据线6。以该方式,当来自扫描驱动器4的扫描行信号被施加到栅极11以导通晶体管10时,由二极管段3生成的电荷信号可以到达数据线6以由读取器5读取。
为了更好地可视化图5和图10中所示的单元2的结构,图6示出了用于单元2的单个二极管段结构26的平面视图,以及构成该结构的基础层的平面视图26。首先沉积包括部分11、21的金属层,随后是半导体二极管层3。然后沉积钝化层23(在图6(c)中,矩形表示该层中的孔,通过该孔可以制成与二极管层3的接触和金属接触11)。然后沉积ITO层25,并且图6(d)示出了将二极管段连接到晶体管10的形成电阻器8的轨道。未示出用于制造晶体管10和接触层12的附加层,但其在其他方面是常规的。
图7示出了完整单元2的平面视图,以及其层21、11;3;23和25的平面视图,其中二极管段3和它们的电阻器8彼此并联连接。
现在参考图13,还可以反转单元2'内的二极管段3'的极性。在这种情况下,每个二极管阳极经由猝灭电阻器8连接到电源部件7,而每个阴极连接到晶体管10。图14示出了包括基底20的这种单元2',使用玻璃上硅工艺在基底20上形成二极管段3'和薄膜晶体管10。在这种情况下,单元2'包括连接到晶体管10的第一金属层部分31和第二金属层部分32。金属层31与单元2所属的矩阵列的数据线6相关联。
第一层电介质材料23a填充金属层部分31和32与基底20之间的空间。电介质23c可以与材料23a同时沉积。第二层电介质材料23b设置在第一金属层部分31和第二金属层部分32上方,并且第三层金属材料33设置在第二层电介质材料23上方并连接到第二金属层部分32。
二极管段3'设置在第三层金属材料33上方,并且导电透明层25位于二极管段3'和钝化材料23的上端上。同样,层25用作二极管段3的阳极回到电源7的接触;并且二极管阴极经由层33和32连接到晶体管10,其中电阻器8被限定在层25内。
当来自扫描驱动器4的扫描驱动信号驱动晶体管10的栅极11以导通时,由二极管段3'生成的电荷信号可以通过金属层33、32、31到达数据线6,以由读取器5读取。
应当理解,在图4和图13中所示的实施例的变型中,电阻器8可以分别连接在二极管3和电源7之间;或者分别连接在二极管3'和晶体管10之间。
同样,当存在于FPD 1中时,闪烁材料层设置在层25上方。
在图11所示的实施例中,与图5和图10中所示的结构类似,单元2包括位于基底20上方的金属层21、11上的间隔开的二极管段3a的下部阵列。单元2还包括间隔开的二极管段3b的上部阵列,其中二极管段3a相对于上部阵列的二极管段3b偏移,以这种方式以便设置在二极管段3b之间的空间下方。在二极管段3a、3b的每个阵列上方分别形成ITO层25a、25b。
二极管段3b位于对应的间隔开的金属部分30上,金属部分30用作二极管段3b的阴极接触。在位于下行中的二极管段3a的上端上的导电透明层25上方但横向偏移于导电透明层25在Z方向上设置金属部分30。层25a和25b通过通孔25c连接,以便用作这种二极管段3b以及段3a的阳极连接。
以该方式,未被上部二极管段3b的二极管段3b吸收的光子被下行的二极管段3a吸收,从而使用分段二极管结构达到100%的填充因子探测。
此外,如图11中所示,通过延伸上行二极管段3b使得其二极管段3b中的一些设置在晶体管10上方,可以进一步提高探测率。
图11中所示的原理同样适用于图14的玻璃上硅实施例。
现在参照图15和图16,在前述实施例的又一变型中,矩阵而不是读取器5”包含复位电路9。因此,每个单元包含连接在电源7和二极管2”之间的另一个晶体管12。晶体管栅极由复位电路9驱动,以根据需要清除每个二极管2”上的电荷。如前所述,必须在可以开始任何信号采集之前初始化每个二极管2”。这通过脉冲复位晶体管12以设置跨二极管的电压用于盖革模式操作来实现。一旦复位晶体管12截止,积分周期就开始。入射光(辐射)生成可以在每个二极管2”中引发雪崩事件的电子-空穴对,导致像素上的电荷改变。在积分周期结束时,通过接通晶体管11来选择读出TFT(行),并且将总累积电荷转移到读取器电路5”。在图15的示例中,负载电阻器13'将数据线6连接到读取器电路5”而不是图4和图13的实施例的电荷放大器13,并且应当理解的是,这些可以互换使用。图16以与图14的实现方式相同的方式示出了该电路的示例性玻璃上硅实现方式,其中ITO层25经由单独的电阻器(未示出)将二极管段3”连接到附加的晶体管12。
利用FPD成像系统常用的读出系统实现的本发明的实施例增加了电磁辐射探测设备对像素处的给定光子速率的信噪比。对于给定剂量的入射电磁辐射,探测设备的所得探测量子效率(DQE)增加。相反,给定DQE值的剂量减少。为了说明,图12中示出了图1的传统方法相对于图4的实施例的DQE对剂量的曲线图。
图12示出了本发明的实施例的S形状的DQE对X射线剂量水平曲线如何移到针对图1、图2和图3的传统方法的曲线的左侧。这意味着对于要求50%的DQE的X射线图像,所达到的剂量减少为82%,对应于剂量水平降低5倍。虽然DQE是影响X射线图像质量的主要品质因数(principle figure of merit),特别是对于低曝光水平,但应注意诸如调制传递函数(MTF)的其他参数无需受到本发明的不利影响。
在图5-图7、图10-图11和图13-图14中所示的实施例中,与单元2、2'的二极管段3、3'串联的雪崩猝灭电阻器8被图案化到用作二极管段3的接触的导电透明层25中。替代地或另外地,雪崩猝灭电阻器8可以:
-集成到二极管台面中作为附加的高阻层;以及/或者
-集成到二极管段3下面的金属层21、33中。
现在参考图8-图9,公开了用于实现FPD 1的二极管段3(或3')的示例性实施例。
二极管段3可以以非晶硅(a-Si)来实现,并且J.-W.Hong等人的“TheHydrogenated Amorphous Silicon Reach-Through Avalanche Diodes”(IEEE Journalof Quantum Electronics,IEEE,1990)描述了制造非晶硅雪崩光电二极管的工艺。图8(a)示出了示例性a-Si二极管段3,其包括不同的掺杂层:
-在金属层21(诸如图5中所示的单元2的金属层部分21)上的重掺杂n型层41;
-在层41上方的轻掺杂n型层40;以及
-在层40上方和导电透明层25(诸如图5中所示的单元2的层25)下方的重掺杂p型层42。
可以使用离子注入(例如图案化离子注入)来掺杂二极管段3的层,以在连续层中掺杂二极管段3。
在图8(a)的叠层的替代中,在图8(b)中,在半导体层40b之下提供用于电子-空穴对产生的电介质子层40a,以用于光敏电子-空穴对产生。
在其他实施例中,二极管段3可以包括混合相硅。参考图9,这样的二极管段3包括:
-在金属层21上方的重掺杂n型层41;
-轻掺杂的n型混合相硅层43;以及
-在层43上方和导电透明层25下方的重掺杂p层42。
混合相硅层43由非晶硅和诸如多晶硅或纳米晶硅的晶体硅的交替区域44、45组成。该混合相硅层43降低了二极管段3的击穿电压。其公开内容通过引用包含在此的P.A.Beck的“High Current Density in μc-Si PECVD Diodes for Low TemperatureApplications”公开了制造这样的μc-Si二极管的方法。
应当理解,如上述实施例中所示的使用单独的电子-空穴产生和雪崩层允许使用薄的绝缘雪崩层。
还可以看出,可以交换图8(a)、图8(b)和图9中所示的重掺杂p型层42和重掺杂n型层41的位置。
如所提到的,在一些实施例中,FPD 1包括用于间接转换X射线/电荷的闪烁材料层。在其他实施例中,FPD 1可以用作直接探测器,例如用于探测红外(IR)光。在这种情况下,不需要闪烁材料,并且可以在矩阵单元2的二极管段3处发生IR射线/电荷的直接转换。
在这些实施例的又一些变型中,通过为二极管段3选择合适的材料,FPD1可以用于直接探测X射线,而无需闪烁材料。
例如,二极管段3可以包括一层或多层非互补半导体,诸如m型的镓铟锌氧化物(GIZO或IGZO)的层。
对X射线辐射直接敏感的其他二极管包括GaAs或SiC,例如,在R.B.Gomes等人的“GaAs/Al0.8Ga0.2As avalanche photodiodes for soft X-ray sp ectroscopy”(Journal of Instrumentation,第9卷,第03期,文章id.P03014(2014);并且位于http://www2.le.ac.uk/departments/physics/research/src/res/bi oimaging-unit/silicon-carbide-detectors)中所描述的。
在又一些变型中,二极管段3可以包括一层或多层有机半导体,诸如p型的并五苯的层。
虽然已经在有源矩阵方面描述了上述实施例,但是本发明的其他实施例也可以用无源矩阵电路来实现,其中矩阵单元2的二极管段3连接到FPD 1的相应行和列线,而无需使用开关器件。
还将看出,二极管和数据线之间不需要一一对应,并且可以组合数据线6的组以实现分段FPD 1。
应当理解,用于生产本发明的实施例的制造技术可以与用于生产平板显示器的制造技术相同,例如,如在其公开内容通过引用并入在此的W.Boer的“Active Matrix LiquidCrystal Displays”(2005,ISBN-10:0-7506-7813-5)中所公开的。因此,根据本发明的FPD可以集成在平板矩阵显示器中。
因此,在虚拟现实(VR)应用中,诸如在使用图像采集设备采集佩戴者眼睛的图像以便可以跟踪他们的注视的情况下,图像采集设备可以与VR显示器集成。这样的应用可以使用来自VR头戴式显示器的照射,以通过图像采集设备在低光水平和高速下提供佩戴者眼睛的高质量图像。
应当理解,除了VR之外的应用可以受益于通过将该图像采集设备集成到用于显示器的背板中而提供的改进的形状因子,诸如指纹或手势识别或显示器集成的辐射监测。
这样的探测器的生产可以是基于CMOS的。这样的应用涉及简单的能谱确定设备;或者探测设备可以与用于测距应用的时间-距离转换器(TDC)组合。在这样的应用中,根据本发明的更灵敏的探测设备的捕获较短的锐化窗口内的反射脉冲的能力有助于提高这样的测距设备的精度。
还应当理解,在上述实施例的更复杂的实现方式中,温度补偿电路(未示出)可以并入单元2或驱动电路7中,以确保设备在不同环境中的一致操作。
最后,将看出,上述实施例的原理可以应用于生成飞行时间(ToF)图像,以便生成场景的深度图。现在参照图17和图18,矩阵与光(辐射)源(未示出)可操作地耦合,光(脉冲)源在与每个设备行的读出相比的已知时间处被脉冲以照射场景。一旦初始化,连接到二极管段3”'的阳极的晶体管14就以线性模式开启并且用作与电容器19并联的电阻元件;选择电容器19的RC时间,使得像素上的电荷随时间变化并且在对应于TOF探测器的所需范围的时间段内放电。对于典型的室内应用,可应用的最大范围为10m,因此可以选择与67ns的总往返时间相当的RC时间。当来自被照射场景的反射光子到达探测器像素处时,雪崩二极管段3”'点火(fire),关闭晶体管14以停止像素电容器19到Vdd的放电。然后,像素上剩余的电荷唯一地与光的飞行时间相关,并且可以以传统方式读出像素阵列,从而允许生成在形成焦平面阵列的矩阵中的每个位置的距离图。
图19是用于图17的飞行时间成像电路的示例性时序图。在初始化期间,当如图15的示例中那样断言(assert)Vreset时,二极管段3”'被复位。当仍然断言Vreset时,行驱动器信号(Vrow)被断言以使得电容器19能够充电到被示为Vpixel的已知电压。一旦行驱动器信号Vrow被解断言,电容器19就以已知的速率开始放电,直到二极管段3”'响应于所接收的光子而接通。除了轻微泄漏之外,电荷将保持在电容器19上,直到然后行驱动器信号被重新断言。在该阶段,可以在Vrow信号被断言的同时读出电容器19上的模拟电荷值(VTOF)。图20示出了较长的飞行时间,例如50ns;而图21示出了较短的飞行时间,例如10ns。
图17的矩阵可以响应单个辐射脉冲,其中每行被顺序读取。在这种情况下,可能需要进行一些校准以考虑行与行之间的不同泄漏。
替代地,可以响应于单个辐射脉冲建立图像的每一行,以避免需要采用这样的校准。
虽然上述实施例基于测量电容器19的放电程度以确定飞行时间,但是应当理解,在图17的电路的替代实现方式中,电容器可以在放电状态下开始,并且可以根据在二极管段3”'点火时电容器的电荷状态来确定飞行时间。

Claims (27)

1.一种电磁辐射探测设备(1),包括:
矩阵,具有被划分为多个M列的多个N行的单元(2),每个单元包括响应于入射在所述设备(1)上的电磁辐射的多个二极管段(3);
扫描驱动器(4),向所述矩阵的各行提供多个N个扫描线信号,每个用于使得能够读取来自所述矩阵的所选行的单元(2)的电荷值;
读取器(5),从所述矩阵的各列读取多个M个可变电荷值信号,每个对应于所述矩阵的所选行内的单元(2);
其中,每个二极管段(3):
连接到足以在雪崩倍增盖革模式下操作每个二极管段(3)的驱动电压;以及
与雪崩猝灭电阻器(8)串联连接到所述读取器。
2.如权利要求1所述的设备,还包括在所述单元的二极管段上方的至少一个导电透明层(25)。
3.如权利要求2所述的设备,还包括在所述单元(2)的二极管段(3)上方的至少一个闪烁材料层。
4.如权利要求3所述的设备,其中所述导电透明层(25)设置在二极管段(3)和闪烁材料层之间。
5.如权利要求2所述的设备,其中所述导电透明层(25)以将入射的电磁辐射会聚到所述单元(2)的二极管段(3)上的这种方式来成形。
6.如权利要求5所述的设备,其中所述导电透明层(25)对于每个二极管段(3)包括位于所述二极管段(3)上方的圆顶形状部分(27)。
7.如权利要求2所述的设备,其中所述至少一个导电透明层(25)包括导电氧化物。
8.如权利要求1所述的设备,其中所述单元(2)的二极管段(3)包括半导体材料的混合非晶和结晶区域。
9.如权利要求1所述的设备,其中所述单元(2)的二极管段(3)包括以下中的至少一种:非晶、多晶和纳米晶半导体材料。
10.如权利要求1所述的设备,其中所述单元(2)的二极管段(3)包括电介质材料层。
11.如权利要求1所述的设备,其中所述单元(2)的二极管段(3)包括以下中的至少一种:硅、镓-铟-锌-氧化物和有机半导体材料。
12.如权利要求11所述的设备,其中所述有机半导体材料包括并五苯。
13.如权利要求1所述的设备,其中所述二极管段(3)中的每一个包括至少:第一层(40,43)半导体材料,用于响应于入射的电磁辐射而产生电荷;以及第二不同层(41,42)的半导体材料,用于从在第一层中产生的电荷产生盖革雪崩倍增过程。
14.如权利要求1所述的设备,其中:
-每个单元(2)包括电子开关器件(10),用于选择性地将所述单元(2)的二极管段(3)连接到与读取器(5)可操作地相关联的数据线(6);以及
-来自扫描驱动器(4)的扫描线信号适合于接通所选行的单元(2)的开关器件(10),以便将所选行的单元(2)的二极管段(3)连接到数据线(6)。
15.如权利要求14所述的设备,其中,对于每个二极管段(2),所述导电透明层(25)连接所述二极管段(3)和所述电子开关器件(10)。
16.如权利要求14所述的设备,其中,对于每个二极管段(2),所述雪崩猝灭电阻器(8)在所述驱动电压和所述单元(3)的电子开关器件(10)之间串联连接到所述二极管段(3)。
17.如权利要求16所述的设备,其中,所述雪崩猝灭电阻器(8)被集成到或图案化到导电透明层(25)上。
18.如权利要求16所述的设备,其中,所述雪崩猝灭电阻器(8)被集成到所述二极管段(3)中。
19.如权利要求1所述的设备,其中,所述二极管段(3)具有彼此面对并且彼此分开的侧壁(22),并且其中所述设备(1)包括覆盖所述二极管段(3)的侧壁(22)的电介质材料。
20.如权利要求1所述的设备,其中,所述多个二极管段(3)包括至少间隔开的第一二极管段(3b)的上部阵列和第二二极管段(3a)的下部阵列,其中所述第二二极管段(3a)相对于所述第一二极管段(3b)横向偏移,以便在所述第一二极管段(3b)和基底(20)之间设置在所述第一二极管段(3b)之间的空间下方。
21.如权利要求1所述的设备,其中,每个单元还包括存储电容器,用于存储由所述二极管段生成的电荷。
22.如权利要求1所述的设备,其中,所述猝灭电阻器连接在相关联的二极管段和所述读取器之间,或者连接在相关联的二极管段和所述驱动电压之间。
23.如权利要求1所述的设备,其中,所述二极管阳极或阴极连接到所述驱动电压。
24.如权利要求1所述的设备,其中,每个二极管经由电子开关器件(12)连接到所述驱动电压,所述电子开关器件(12)由复位电路(9)控制。
25.一种飞行时间成像设备,包括:
电磁辐射源,被布置成发射至少一个辐射脉冲;
矩阵,具有被划分为多个M列的多个N行的单元,每个单元包括:
连接到驱动电压的多个二极管段,所述驱动电压足以响应于由所述辐射源发射并从所述设备的视场入射在所述设备上的反射电磁辐射,在雪崩倍增盖革模式下操作每个二极管段;以及
电荷存储元件,其电荷状态由所述二极管段控制;
扫描驱动器,向所述矩阵的各行提供多个N个扫描线信号,每个用于使得能够读取来自所述矩阵的所选行的单元的电荷值;以及
读取器,读取来自所述矩阵的各列的多个M个可变电荷信号,每个对应于所述矩阵的所选行内的单元。
26.如权利要求25所述的设备,其中,所述电荷状态是充电或放电,并且其中所述二极管段响应于探测到由所述辐射源发射的反射电磁辐射而停止所述电荷存储元件充电或放电。
27.如权利要求26所述的设备,其中,每个单元可操作地连接到复位电路,所述复位电路被布置成在发射辐射脉冲之前复位所述二极管和所述电荷存储元件中的每一个。
CN201880017244.7A 2017-03-16 2018-03-01 电磁辐射探测设备 Active CN110392846B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1704203.7 2017-03-16
GBGB1704203.7A GB201704203D0 (en) 2017-03-16 2017-03-16 An electromagnetic radiation detection device
PCT/EP2018/055039 WO2018166805A1 (en) 2017-03-16 2018-03-01 An electromagnetic radiation detection device

Publications (2)

Publication Number Publication Date
CN110392846A true CN110392846A (zh) 2019-10-29
CN110392846B CN110392846B (zh) 2023-06-16

Family

ID=58688509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880017244.7A Active CN110392846B (zh) 2017-03-16 2018-03-01 电磁辐射探测设备

Country Status (7)

Country Link
US (1) US10718873B2 (zh)
EP (1) EP3596509B1 (zh)
JP (1) JP2020516056A (zh)
KR (1) KR102499097B1 (zh)
CN (1) CN110392846B (zh)
GB (1) GB201704203D0 (zh)
WO (1) WO2018166805A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201704203D0 (en) 2017-03-16 2017-05-03 Pixquanta Ltd An electromagnetic radiation detection device
WO2020144211A1 (en) 2019-01-11 2020-07-16 PixQuanta Limited An electromagnetic radiation detection device
JP7236692B2 (ja) * 2019-03-27 2023-03-10 パナソニックIpマネジメント株式会社 光検出器及び光検出器の製造方法
EP4080588A1 (en) 2021-04-23 2022-10-26 Pixquanta Limited Short-wave infra-red radiation detection device
GB202208202D0 (en) 2022-06-03 2022-07-20 Pixquanta Ltd Short-wave infra-red radiation detection device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283961A (ja) * 1988-05-11 1989-11-15 Toshiba Corp 固体撮像装置
JPH04261073A (ja) * 1991-01-11 1992-09-17 Canon Inc 光電変換装置
WO2003067663A1 (en) * 2002-02-08 2003-08-14 Qinetiq Limited Photodetector circuit
CN1717810A (zh) * 2002-12-02 2006-01-04 昭和电工株式会社 磷化硼基化合物半导体器件、其制造方法以及发光二极管
US20060202129A1 (en) * 2005-02-14 2006-09-14 Cristiano Niclass Integrated circuit comprising an array of single photon avalanche diodes
JP2009054806A (ja) * 2007-08-27 2009-03-12 Canon Inc 撮像素子及び撮像装置
US20110147567A1 (en) * 2009-12-22 2011-06-23 Slemens Medical Solutions USA, Inc. SiPM Photosensor With Early Signal Digitization
CN102422135A (zh) * 2009-05-05 2012-04-18 恩德莱斯和豪瑟尔两合公司 辐射量测量装置
WO2013018006A1 (en) * 2011-08-03 2013-02-07 Koninklijke Philips Electronics N.V. Position-sensitive readout modes for digital silicon photomultiplier arrays
DE102012101393A1 (de) * 2012-02-21 2013-08-22 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils und optoelektronisches Halbleiterbauteil
US20160093652A1 (en) * 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US20160181458A1 (en) * 2009-04-30 2016-06-23 Massachusetts Institute Of Technology Cross-Talk Suppression in Geiger-Mode Avalanche Photodiodes
WO2017004663A1 (en) * 2015-07-08 2017-01-12 The Commonwealth Of Australia Spad array structures and methods of operation
US20170025544A1 (en) * 2015-07-24 2017-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065204A (ja) * 1996-08-21 1998-03-06 Fuji Xerox Co Ltd 半導体受光素子の製造方法
US7323692B2 (en) 2004-08-10 2008-01-29 Research Foundation Of State University Of New York Flat-panel detector with avalanche gain
WO2008113067A2 (en) * 2007-03-15 2008-09-18 Johns Hopkins University Deep submicron and nano cmos single photon photodetector pixel with event based circuits for readout data-rate reduction
US8269181B2 (en) * 2007-10-10 2012-09-18 Positron Corporation Avalanche pixel sensors and related methods
US8110806B2 (en) 2008-10-31 2012-02-07 General Electric Company Solid-state photomultiplier having improved timing resolution
DE102010041805B4 (de) * 2010-09-01 2018-03-22 Siemens Medical Solutions Usa, Inc. Vorrichtung mit mehreren zeilen- oder matrixförmig angeordneten photoempfindlichen Mikrozellen
JP5808592B2 (ja) 2011-07-04 2015-11-10 浜松ホトニクス株式会社 基準電圧決定方法及び推奨動作電圧決定方法
WO2013058715A1 (en) * 2011-10-20 2013-04-25 Agency For Science, Technology And Research Avalanche photodiode
US20160300973A1 (en) * 2013-05-24 2016-10-13 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector with enhanced high photon energy response and method thereof
US9299732B2 (en) 2013-10-28 2016-03-29 Omnivision Technologies, Inc. Stacked chip SPAD image sensor
DE112015001704T5 (de) * 2014-04-07 2016-12-29 Samsung Electronics Co., Ltd. Bildsensor mit hoher Auflösung, Frame-Rate und niedrigem Stromverbrauch
WO2016003451A1 (en) * 2014-07-02 2016-01-07 The Johns Hopkins University Photodetection circuit and operating method thereof
FR3046495B1 (fr) * 2015-12-30 2018-02-16 Stmicroelectronics (Crolles 2) Sas Pixel de detection de temps de vol
US11374043B2 (en) 2016-07-27 2022-06-28 Hamamatsu Photonics K.K. Photodetection device with matrix array of avalanche diodes
GB201704203D0 (en) 2017-03-16 2017-05-03 Pixquanta Ltd An electromagnetic radiation detection device
US10451748B1 (en) * 2018-12-05 2019-10-22 Canon Medical Systems Corporation Readout circuit for a silicon photomultiplier (SiPM) array using charge sharing and anger logic

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283961A (ja) * 1988-05-11 1989-11-15 Toshiba Corp 固体撮像装置
JPH04261073A (ja) * 1991-01-11 1992-09-17 Canon Inc 光電変換装置
WO2003067663A1 (en) * 2002-02-08 2003-08-14 Qinetiq Limited Photodetector circuit
CN1717810A (zh) * 2002-12-02 2006-01-04 昭和电工株式会社 磷化硼基化合物半导体器件、其制造方法以及发光二极管
US20060202129A1 (en) * 2005-02-14 2006-09-14 Cristiano Niclass Integrated circuit comprising an array of single photon avalanche diodes
JP2009054806A (ja) * 2007-08-27 2009-03-12 Canon Inc 撮像素子及び撮像装置
US20160181458A1 (en) * 2009-04-30 2016-06-23 Massachusetts Institute Of Technology Cross-Talk Suppression in Geiger-Mode Avalanche Photodiodes
CN102422135A (zh) * 2009-05-05 2012-04-18 恩德莱斯和豪瑟尔两合公司 辐射量测量装置
US20110147567A1 (en) * 2009-12-22 2011-06-23 Slemens Medical Solutions USA, Inc. SiPM Photosensor With Early Signal Digitization
WO2013018006A1 (en) * 2011-08-03 2013-02-07 Koninklijke Philips Electronics N.V. Position-sensitive readout modes for digital silicon photomultiplier arrays
DE102012101393A1 (de) * 2012-02-21 2013-08-22 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils und optoelektronisches Halbleiterbauteil
US20160093652A1 (en) * 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
WO2017004663A1 (en) * 2015-07-08 2017-01-12 The Commonwealth Of Australia Spad array structures and methods of operation
US20170025544A1 (en) * 2015-07-24 2017-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device

Also Published As

Publication number Publication date
US10718873B2 (en) 2020-07-21
US20190146100A1 (en) 2019-05-16
GB201704203D0 (en) 2017-05-03
KR102499097B1 (ko) 2023-02-14
KR20190128650A (ko) 2019-11-18
JP2020516056A (ja) 2020-05-28
CN110392846B (zh) 2023-06-16
EP3596509B1 (en) 2021-06-16
EP3596509A1 (en) 2020-01-22
WO2018166805A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
CN110392846B (zh) 电磁辐射探测设备
CN102401906B (zh) 辐射探测器及其成像装置、电极结构和获取图像的方法
US7956332B2 (en) Multi-layer radiation detector assembly
US5198673A (en) Radiation image detector with optical gain selenium photosensors
EP0724729B1 (en) Thin-film, flat panel, pixelated detector array for real-time digital imaging and dosimetry of ionizing radiation
US10656290B2 (en) Direct photon conversion detector
CN201852941U (zh) 辐射探测器及其成像装置和电极结构
US9121766B2 (en) Multi pixel photo detector array of Geiger mode avalanche photodiodes
JP2020516056A5 (zh)
CN107112337B (zh) X射线束开始和停止的检测
US9698193B1 (en) Multi-sensor pixel architecture for use in a digital imaging system
CN107425020A (zh) 辐射传感器
JP2004080010A (ja) 直接変換に基づく画像化x線検出器
CN107768390A (zh) 图像探测器
CN202305447U (zh) 数字x射线影像检查装置
US10136075B2 (en) Compensation circuit for an x-ray detector
US8415634B2 (en) Apparatus and method for detecting radiation
Sultana et al. Digital X-ray imaging using avalanche a-Se photoconductor
JP2003240861A (ja) 放射線検出素子、放射線撮像装置及び放射線検出方法
KR101103790B1 (ko) 방사선 촬영 시스템 및 그 제조 방법
JP2013545965A (ja) 放射線検出器及び放射線検出方法
Avendano In-Pixel Sensor Amplification Platforms Based on Polycrystalline Silicon Thin-Film Transistors
WO2020144211A1 (en) An electromagnetic radiation detection device
Pellion et al. APD photodetectors in the Geiger photon counter mode
Mann et al. System design of a low-cost digital x-ray detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant