JP7236692B2 - 光検出器及び光検出器の製造方法 - Google Patents

光検出器及び光検出器の製造方法 Download PDF

Info

Publication number
JP7236692B2
JP7236692B2 JP2019061971A JP2019061971A JP7236692B2 JP 7236692 B2 JP7236692 B2 JP 7236692B2 JP 2019061971 A JP2019061971 A JP 2019061971A JP 2019061971 A JP2019061971 A JP 2019061971A JP 7236692 B2 JP7236692 B2 JP 7236692B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
electrode
apd
pixel circuit
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061971A
Other languages
English (en)
Other versions
JP2020161736A (ja
Inventor
達也 可部
三佳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019061971A priority Critical patent/JP7236692B2/ja
Publication of JP2020161736A publication Critical patent/JP2020161736A/ja
Application granted granted Critical
Publication of JP7236692B2 publication Critical patent/JP7236692B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本開示は、光検出器及び光検出器の製造方法に関する。
近年、医療、通信、バイオ、化学、監視、車載、放射線検出等多岐に渡る分野において、高感度な固体撮像素子等の光検出器が利用されている。高感度化のための手段の一つとして、アバランシェフォトダイオード(Avalanche Photo Diode:以下、APDともいう)が用いられている。
APDは、光電変換層に入射された光が光電変換されることで発生した電荷を、アバランシェ降伏を用いて増倍することで光検出感度を高めるフォトダイオードである。APDを用いることで、わずかなフォトンの数でもフォトンを検出可能となる。
特許文献1には、小型化のために、同一基板内に複数の画素と、画素から電荷を読み出すための画素回路とが近接して配置された構造が開示されている。
特開2004-363437号公報
しかしながら、特許文献1に開示されている固体撮像素子では、APDと画素回路とに同じ電圧が印加されることとなる。そのため、例えば、APDの光検出感度を高めるために高電圧を印加すると、画素回路には過剰に高電圧が印加されることとなる。
本開示は、APDの光検出感度を高め、且つ、画素回路に過剰な高電圧が印加されることが抑制された光検出器等を提供する。
本開示の一態様に係る光検出器は、APD、及び、前記APDで発生した電荷を読み出すためのトランジスタを含む画素回路を表面に有する半導体層と、前記半導体層における前記表面とは反対側の面である裏面に配置され、前記APDに第1電圧を印加するための第1電極と、前記裏面に配置され、前記第1電圧とは異なる第2電圧を印加するための第2電極と、を備え、前記半導体層には、平面視で隣り合う前記APDと前記画素回路とを分離する第1分離溝が形成されている。
また、本開示の一態様に係る光検出器の製造方法は、半導体層に、APDと、前記APDから電荷を読み出すためのトランジスタを前記半導体層の表面に含む画素回路とを形成する画素形成ステップと、前記APDと前記画素回路と電気的に分離する分離溝を、平面視で隣り合う前記APDと前記画素回路との間に位置する前記半導体層に形成する分離溝形成ステップと、前記半導体層の裏面であって、前記APDに、前記APDに電圧を印加するための第1電極を形成する第1電極形成ステップと、前記半導体層の裏面であって、前記画素回路に、前記画素回路に電圧を印加するための第2電極を形成する第2電極形成ステップと、を含む。
本開示によれば、APDの光検出感度を高め、且つ、画素回路に過剰な高電圧が印加されることが抑制された光検出器等を提供できる。
図1は、実施の形態1に係る光検出器を示す平面図である。 図2は、図1の破線IIで囲まれた領域を示す拡大図である。 図3は、図2のIII-III線における、実施の形態1に係る光検出器を示す断面図である。 図4は、図2のIV-IV線における、実施の形態1に係る光検出器を示す断面図である。 図5Aは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Bは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Cは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Dは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Eは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Fは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Gは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Hは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Iは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Jは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Kは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Lは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Mは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Nは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Oは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Pは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図5Qは、実施の形態1に係る光検出器の製造方法を説明するための断面図である。 図6は、変形例1に係る光検出器を示す断面図である。 図7は、変形例2に係る光検出器を示す平面図である。 図8Aは、変形例3に係る光検出器の製造方法を説明するための断面図である。 図8Bは、変形例3に係る光検出器の製造方法を説明するための断面図である。 図8Cは、変形例3に係る光検出器の製造方法を説明するための断面図である。 図9は、実施の形態2に係る光検出器を示す平面図である。 図10は、実施の形態2に係る光検出器を示す断面図である。
以下、本開示の実施の形態について、図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程(ステップ)及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。
また、以下の実施の形態では、電圧の値は、グラウンドを基準とするとして記載している。
また、以下の実施の形態では、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構造における積層順を基に相対的な位置関係により規定される用語として用いる。本明細書では、半導体基板を基準として第1主面が設けられた側を「上方」、第2主面が設けられた側を「下方」としている。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
また、以下の実施の形態において、平面視とは、光検出器において光が入射される側の面(より具体的には、半導体層の裏面)を、当該面の法線方向から見たときのことをいう。
(実施の形態1)
[構成]
まず、図1~図4を参照しながら、実施の形態1に係る光検出器の構成について説明する。
図1は、実施の形態1に係る光検出器100を示す平面図である。図2は、図1の破線IIで囲まれた領域を示す拡大図である。図3は、図2のIII-III線における、実施の形態1に係る光検出器100を示す断面図である。図4は、図2のIV-IV線における、実施の形態1に係る光検出器100を示す断面図である。
なお、図1及び図2では、断面を示すものではないが、説明のためにハッチングを付して示している。
なお、図2では、図1に示すAPD110を、説明のためにAPD111、APD112、APD113、及び、APD114と区別して示している。また、図2では、図1に示す画素回路120を、説明のために画素回路121、画素回路122、画素回路123、及び、画素回路124と区別して示している。また、図2では、図1に示す第1電極130を、説明のために第1電極131及び第1電極132と区別して示している。また、図2では、図1に示す第2電極140を、説明のために第2電極141及び第2電極142と区別して示している。また、図2では、図3に示す第1分離溝150を、説明のために第1分離溝151、第1分離溝152、第1分離溝153、及び、第1分離溝154と区別して示している。また、図2では、図4に示す第2分離溝160を、説明のために第2分離溝161及び第2分離溝162と区別して示している。また、図2では、図4に示す反射部材170を、説明のために反射部材171及び反射部材172と区別して示している。
実施の形態1に係る光検出器100は、APD(Avalanche Photo Diode)を備える光検出センサである。光検出器100は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等に適用される。
また、光検出器100は、画素回路120においてトランジスタ220が下方、言い換えると、表面241側に配置された、いわゆる裏面照射型の光検出器である。
図1に示すように、光検出器100は、画素アレイ280を備える。
画素アレイ280は、光を検出するための検出部である。画素アレイ280は、複数のAPD110と、複数の画素回路120と、を備える。
なお、複数のAPD110及び複数の画素回路120のそれぞれの数は、任意に定められてよい。
APD110は、入射した光を光電変換して電荷を発生させ、発生させた電荷をアバランシェ増倍させる光電変換部である。
画素回路120は、APD110で発生した電荷を読み出すための回路である。
図3に示すように、APD110及び画素回路120は、半導体層240に形成される。
光検出器100は、半導体層240と、配線層210と、保護層230と、を備える。
半導体層240は、APD110と、画素回路120と、を含む層である。具体的には、半導体層240は、APD110及びAPD110で発生した電荷を読み出すためのトランジスタ220を含む画素回路120を表面241に有する。半導体層240は、例えば、成長基板320(例えば、図5A参照)上にエピタキシャル成長によって形成された半導体層である。成長基板320は、製造過程で、取り除かれる。
APD110には、裏面242側から光が入射される。APD110は、入射した光を光電変換することで、電荷を発生させる。APD110は、第1導電型の半導体層である第1導電型層200と、第1導電型とは反対の導電型の半導体層である第2導電型層201と、を有する。
例えば、第1導電型は、P型であり、第2導電型は、N型である。もちろん、第1導電型がN型であり、第2導電型がP型でもよい。この場合、APD110には、以下で説明する本実施の形態とは、正負が逆の電圧が印加される。
第1導電型層200と第2導電型層201とは、例えば、半導体層240にそれぞれ異なる不純物が注入されることで、半導体層240に形成される。第1導電型層200及び第2導電型層201を形成するために半導体層240に注入される不純物は、特に限定されない。第1導電型の不純物は、例えば、ホウ素、アルミニウム等である。また、第2導電型の不純物は、例えば、リン、ヒ素等である。
例えば、半導体層240には、全域に第1導電型の不純物が所定の不純物濃度で予め注入されている。第1導電型層200には、半導体層240の所定の不純物濃度より濃度が高い不純物が注入されている。第2導電型層201には、第2導電型の不純物が注入されている。
第1導電型層200及び第2導電型層201の不純物濃度は、例えば、1016cm-3~1020cm-3である。また、第1導電型層200及び第2導電型層201以外の半導体層240の不純物濃度は、例えば、1014cm-3~1018cm-3である。
第2導電型層201は、第1導電型層200との間で光電変換により発生した電荷をアバランシェ増倍する。
また、APD110は、不純物層203と、不純物層203より不純物濃度が高い側壁部202と、を含む。
不純物層203は、半導体層240が分離溝部250によって分離されたAPD110が形成される領域の半導体層である。
側壁部202は、APD110が形成される領域の半導体層240において、第1分離溝150によって形成された側壁部である。側壁部202は、不純物層203よりも不純物の不純物濃度が高くなっている。
画素回路120は、例えば、半導体層240の表面241に形成されたトランジスタ220を有する。
トランジスタ220は、第1導電型層200及び第2導電型層201の間で光電変換により発生した電荷を選択的に取り出すためのトランジスタである。例えば、トランジスタ220が有するソースは、取り出し配線211を介して第2導電型層201と電気的に接続されている。また、トランジスタ220が有するドレインは、電荷を読み出すための図示しない読み出し回路と電気的に接続されている。
トランジスタ220は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、バイポーラトランジスタ等である。
また、画素回路120は、さらに、不純物層222と、不純物層222より不純物濃度が高い側壁部221と、を含む。
不純物層222は、半導体層240が分離溝部250によって分離された画素回路120が形成される半導体層である。
側壁部221は、画素回路120に含まれる半導体層240において、第1分離溝150によって形成された側壁部である。側壁部221は、不純物層222よりも不純物の不純物濃度が高くなっている。
また、半導体層240には、平面視で画素アレイ280を囲むように複数のパッド電極が形成されている。複数のパッド電極は、第1パッド電極181と、第2パッド電極182と、を含む。
第1パッド電極181及び第2パッド電極182は、図示しない外部電源が接続される端子である。第1パッド電極181及び第2パッド電極182は、APD110及び画素回路120と電気的に接続されており、図示しない外部電源から供給された電圧をAPD110及び画素回路120に供給する。具体的には、第1パッド電極181は、APD110と電気的に接続されており、図示しない外部電源から供給された電圧をAPD110に供給する。また、第2パッド電極182は、画素回路120と電気的に接続されており、図示しない外部電源から供給された電圧を画素回路120に供給する。
例えば、APD110と画素回路120とには、異なる電圧が供給される。例えば、APD110には、-30Vが供給され、画素回路120には、0Vが供給される。
APD110と第1パッド電極181とは、第1電極130によって電気的に接続され、画素回路120と第2パッド電極182とは、第2電極140によって電気的に接続されている。
第1電極130は、半導体層240における表面241とは反対側の面である裏面242に配置され、APD110に第1電圧を印加するための配線である。第1電極130は、例えば、金属材料で形成されている。第1電極130に採用される材料は、例えば、W、Al、Cu、Ta、Ti、Ni、Cr、Co、Mn、又は、これらの窒素化合物等である。
第2電極140は、裏面242に配置され、第1電極130によってAPD110に印加される第1電圧とは異なる第2電圧を印加するための配線である。第2電極140は、例えば、金属材料で形成されている。第2電極140に採用される材料は、例えば、W、Al、Cu、Ta、Ti、Ni、Cr、Co、Mn、又は、これらの窒素化合物等である。
第1電極130及び第2電極140に採用される材料は、それぞれ同じでもよいし、異なっていてもよい。
本実施の形態では、第1パッド電極181及び第2パッド電極182は、それぞれ3つである。
なお、第1パッド電極181及び第2パッド電極182の数及び配置は、限定されない。例えば、第1パッド電極181及び第2パッド電極182は、APD110及び画素回路120に電位を安定して供給するために、平面視で空間的に分散させて可能な限り多数配置されるとよい。半導体層240に形成された複数のパッド電極の中から、第1電極130によってAPD110と電気的に接続される第1パッド電極181と第2電極140によって画素回路120と電気的に接続される第2パッド電極182とは任意に選択されてよい。
また、半導体層240に形成されている複数のパッド電極は、第3パッド電極183を含む。
第3電極パッド183は、TSV(Through-Silicon Via)等を介して表面241側に電位及び/又は信号を印加(言い換えると、伝播)させるための電極である。
なお、半導体層240には、特に利用されないパッド電極が形成されていてもよい。画素アレイ280におけるAPD110及び画素回路120の配列等に合わせて、第1パッド電極181及び第2パッド電極182が任意に選択されればよい。
第1パッド電極181、第2パッド電極182、及び、第3パッド電極183に採用される材料は、例えば、金属材料である。具体的に例えば、第1パッド電極181、第2パッド電極182、及び、第3パッド電極183に採用される材料は、W、Al、Cu、Ta、Ti、Ni、Cr、Co、Mn、又は、これらの窒素化合物等である。
また、APD110と画素回路120とは、配線層210が有する取り出し配線211によって電気的に接続されている。
配線層210は、APD110と画素回路120とを電気的に接続するための取り出し配線211を有する層である。配線層210は、取り出し配線211と、絶縁膜212と、を有する。
取り出し配線211は、APD110で生成された電荷を取り出して画素回路120へ送るための金属配線である。取り出し配線211に採用される材料は、例えば、W、Al、Cu、Ta、Ti、Ni、Cr、Co、Mn、又は、これらの窒素化合物等である。
絶縁膜212は、取り出し配線211を特定の箇所(例えば、APD110及び画素回路120)以外と電気的に絶縁させるための層である。絶縁膜212は、例えば、SiOからなる層である。
保護層230は、APD110及び画素回路120を封止して保護するための保護層である。保護層230は、半導体層240の裏面242に配置されている。保護層230に採用される材料は、絶縁性及び透光性を有していればよく、特に限定されない。保護層230は、例えば、SiOである。
また、本実施の形態では、保護層230は、APD110と画素回路120との間に位置する分離溝部250にも位置している。
図1に示すように、APD110及び画素回路120の周囲には、分離溝部250が形成されている。
分離溝部250は、隣り合うAPD110の間、並びに、隣り合うAPD110及び画素回路120の間で、半導体層240に形成されている溝である。分離溝部250は、隣り合うAPD110、並びに、隣り合うAPD110及び画素回路120を分離する。
具体的には、分離溝部250は、第1分離溝150と第2分離溝160とを含む。
第1分離溝150は、隣り合うAPD110と画素回路120とを分離する溝である。例えば、図2に示すように、第1分離溝151は、APD111と、画素回路121とを分離する。このように、半導体層240には、平面視で隣り合うAPD110と画素回路120とを分離する第1分離溝150が形成されている。
第1分離溝150によって、APD110と画素回路120とは、直接接触せずに配線層210上に配置されている。APD110と画素回路120とは、第1分離溝150によって分離されているために、第1電極130及び第2電極140によって、異なる電圧が印加(つまり、供給)され得る。
また、第1分離溝150の幅は、特に限定されない。第1分離溝150の幅は、例えば、0.1μm~1μmである。
第2分離溝160は、隣り合うAPD110を分離する溝である。例えば、図2に示すように、第2分離溝161は、APD111とAPD113とを分離する。このように、半導体層240は、第1APD(例えば、APD111)と隣り合う第2APD(例えば、APD113)を有し、半導体層240には、第1APD(例えば、APD111)と第2APD(例えば、APD113)とを分離する第2分離溝160(例えば、第2分離溝161)が形成されている。
また、図4に示すように、光検出器100は、さらに、第2分離溝160に位置する保護層230上に、反射部材170を備えてもよい。
反射部材170は、光検出器100に入射される光を反射する光反射性を有する部材である。反射部材170には、例えば、第1電極130及び第2電極140と同じ材料で形成される。
また、反射部材170は、第2電極140とは電気的に接続されておらず、且つ、平面視で隣り合うAPD110の間に配置されている。言い換えると、反射部材170は、第2電極140とは電気的に接続されておらず、且つ、平面視で第1APD(例えば、APD111)と第2APD(例えば、APD113)との間に配置されている。
また、光検出器100は、さらに、支持基板190を備える。
支持基板190は、画素アレイ280を支持し、半導体層240を補強するための基板である。支持基板190には、例えば、シリコン基板、又は、ガラス基板等が用いられる。
なお、本実施の形態では、半導体層240に第1パッド電極181及び第2パッド電極182が形成されているが、これに限定されない。例えば、第1パッド電極181及び第2パッド電極182は、支持基板190に形成されていてもよい。また、支持基板190には、トランジスタ等のアクティブな素子が配置されてもよい。
[製造方法]
続いて、図5A~図5Qを参照しながら、実施の形態1に係る光検出器100の製造方法について説明する。
図5A~図5Qは、実施の形態1に係る光検出器100の製造方法を説明するための断面図である。
図5Aに示すように、まず、成長基板320上に半導体層240を形成する。成長基板320は、例えば、P+のSi基板であり、Si基板上でエピタキシャル成長させたP-のSiからなる半導体層240を形成する。なお、P+とは、P-よりもP型の不純物が多いことを示す。また、例えば、Si基板上で傾斜エピタキシャル成長させることで、半導体層240に不純物の濃度むらを形成する。本実施の形態では、例えば、半導体層240は、裏面242から表面241に向かうにつれて、不純物濃度が薄くなっている。
次に、半導体層240にボロンを注入することで、第1導電型層200を形成する。
図5Bに示すように、次に、半導体層240にリン及びヒ素を注入することで、第1導電型層200上に第2導電型層201を形成する。
図5Cに示すように、次に、第1導電型層200及び第2導電型層201と隣り合う位置で、半導体層240の表面241にウェル340を形成する。
図5Dに示すように、次に、ウェル340上にゲート電極330を形成する。これにより、トランジスタ220は、形成される。ゲート電極330に採用される材料は、例えば、ポリシリコン、アルミニウム、Ti等である。
図5Eに示すように、次に、半導体層240の表面241に、絶縁膜212aを形成する。絶縁膜212aの形成には、例えば、CVD(Chemical Vapor Deposition)法と、CMP(Chemical Mechanical Polishing)法とが用いられる。
図5Fに示すように、次に、ウェル340と接続されるコンタクト213を形成する。コンタクト213に採用される材料は、例えば、W、Al、Cu、Ta、Ti、Ni、Cr、Co、Mn、又は、これらの窒素化合物等であるコンタクト213の形成には、例えば、リソグラフィと、ドライエッチングと、金属CVD法と、CMP法とが用いられる。
図5Gに示すように、次に、ウェル340と接続されたコンタクト213と、第2導電型層201に接続されたコンタクト213とを接続する取り出し配線211を形成し、さらに、図5Fに示す絶縁膜212aを厚くした絶縁膜212を形成することで、半導体層240の表面241に配線層210を形成する。
なお、図5E~図5Gに示す配線層210の形成には、例えば、一般的なダマシン法及びデュアルダマシン法が採用される。ダマシン法及びデュアルダマシン法は、例えば、薄く絶縁膜212aを形成するCVD法と、薄く形成した絶縁膜212aに溝を形成するリソグラフィ及びドライエッチングと、コンタクト213(電極)を形成するPVD(Physical Vapor Deposition)又はCVD法と、取り出し配線211を形成するCuめっき法と、さらに絶縁膜212aを厚くすることで絶縁膜212を形成するCMP法とを含む成膜方法である。
なお、図5E~図5Gに示す配線層210の形成には、ダマシン法が用いられなくてもよい。例えば、配線層210は、Al等のPVD法で成膜してエッチングした後、絶縁膜212をCVD法で成膜することで形成されてもよい。
図5Hに示すように、次に、配線層210の上面に支持基板190を貼り付ける。例えば、図5Hでは、CMP法を行った後で、配線層210と支持基板190とを貼り付ける。
図5Iに示すように、次に、図5Hに示す構造物350全体を図5Hに示す状態から天地を反対にする、つまり、フリップする。なお、構造物350をフリップさせる処理は、支持基板190を配線層210に貼り合わせる際に同時並行で行なわれてもよい。
図5Jに示すように、次に、成長基板320を取り除く。例えば、バックグラインドと、ウェットエッチングと、CMP法とを行うことで、図5Iに示す構造物351全体から成長基板320を削って取り除く。なお、成長基板320は、半導体層240についたまま一部が残っていてもよい。
図5Kに示すように、次に、半導体層240に第1分離溝150を形成する。これにより、APD110と画素回路120とが分離されて形成される。第1分離溝150の形成は、例えば、リソグラフィと、ドライエッチングとにより行われる。なお、図示しないが、同様に、第2分離溝160(例えば、図4参照)もあわせて形成する。
図5A~図5Kに示すように、第1導電型層200と第2導電型層201とを含むAPD110を形成し、さらに、半導体層240におけるAPD110とは異なる領域に、トランジスタ220等を形成することで画素回路120を形成する。
図5Lに示すように、次に、側壁部310にボロンを注入する。これにより、第1分離溝150によって形成されている半導体層240の側壁部310は、半導体層240の内部よりも不純物の不純物濃度が高くなる。
図5Mに示すように、次に、保護層230aを形成する。保護層230aは、例えば、CVD法により形成される。ここでは、第1分離溝150によって、保護層230aの厚みが位置によって異なるために、保護層230aの表面230bは、例えば、半導体層240の裏面242からの厚みが均一にならない。
そこで、図5Nに示すように、次に、図5Mに示す保護層230aの厚みを均一化することで、保護層230を形成する。図5Mに示す保護層230aの厚みを均一化するためには、例えば、CMP法が採用される。
図5Oに示すように、次に、保護層230の上面から半導体層240に到達する溝であるコンタクト溝300を形成する。
図5Pに示すように、次に、保護層230上に金属膜290を形成する。金属膜290の形成には、例えば、PVD法又はCVD法が採用される。
図5Qに示すように、次に、リソグラフィとドライエッチングとによって図5Pに示す金属膜290をパターニングすることにより、第1電極130と第2電極140とを形成する。これにより、光検出器100は、製造される。また、このとき、例えば図4に示す反射部材170をあわせて形成してもよい。
[効果等]
以上説明したように、実施の形態1に係る光検出器100は、APD110、及び、APD110で発生した電荷を読み出すためのトランジスタ220を含む画素回路120を表面241に有する半導体層240と、半導体層240における表面241とは反対側の面である裏面242に配置され、APD110に第1電圧を印加するための第1電極130と、裏面242に配置され、第1電圧とは異なる第2電圧を印加するための第2電極140と、を備える。半導体層240には、平面視で隣り合うAPD110と画素回路120とを分離する第1分離溝150が形成されている。
このような構成によれば、第1分離溝150によって、APD110と画素回路120が分断されているために、第1電極130及び第2電極140によってAPD110と画素回路120とに異なる電圧を印加できる。そのため、例えば、APD110の光検出感度を高めるために高電圧を印加しても、画素回路120には過剰に高電圧が印加されない。これにより、光検出器100によれば、APD110の光検出感度を高め、且つ、画素回路120に過剰な高電圧が印加されることを抑制できる。
また、第1分離溝150とAPD110との界面で光が反射されるため、APD110における光電変換が行われる第1導電型層200及び第2導電型層201に効果的に光を導くことができる。そのため、APD110における光の検出量は、向上される。
また、このような構成によれば、例えば、光検出器100が複数の画素回路120を有する場合において、APD110に印加させるような高電圧が画素回路120に印加されないため、隣り合う画素回路120を近づけても、ブレークダウンしにくくなる。そのため、このような構成によれば、画素回路120同士を近づけて配置できるため、光検出器100は、小型化される。
また、例えば、半導体層240は、不純物を含み、第1分離溝150によって形成されている半導体層240の側壁部310は、半導体層240の内部よりも不純物濃度が高い。
第1分離溝150を形成すると、半導体層240には電子欠陥が多く発生する。この電子欠陥により、APD110での光の検出においてノイズが発生される。そのため、APD110における光の検出感度が低下される。そこで、電子欠陥が多く発生する半導体層240の側壁部310に不純物を注入する。このような構成によれば、電子欠陥の量を低減させて、APD110での光の検出においてノイズが発生することを抑制できる。
また、例えば、半導体層240は、さらに、APD110を複数有し、半導体層240には、さらに、平面視で隣り合うAPD110を分離する第2分離溝160が形成されている。
このような構成によれば、例えば、光検出器100が図示しないカラーフィルタを有し、光検出器100がそれぞれのAPD110で異なる波長の光を検出する場合、それぞれのAPD110で検出される光の混色を抑制できる。
また、例えば、光検出器100は、さらに、第2電極140とは電気的に接続されておらず、且つ、平面視で隣り合うAPD110の間に配置された反射部材170を備える。
このような構成によれば、例えば、光検出器100が図示しないカラーフィルタを有し、光検出器100がそれぞれのAPD110で異なる波長の光を検出する場合、それぞれのAPD110で検出される光の混色をさらに抑制できる。
また、例えば、第1電極130及び第2電極140は、金属材料によって形成されている。
このような構成によれば、第1電極130及び第2電極140に透明電極等の金属酸化物が採用される場合と比較して、電気抵抗を低くできる。
また、実施の形態1に係る光検出器100の製造方法は、半導体層240に、APD110と、APD110から電荷を読み出すためのトランジスタ220を半導体層240の表面241に含む画素回路120とを形成する画素形成ステップと、APD110と画素回路120と電気的に分離する分離溝(例えば、第1分離溝150)を、平面視で隣り合うAPD110と画素回路120との間に位置する半導体層240に形成する分離溝形成ステップと、半導体層240の裏面242であって、APD110に、APD110に電圧を印加するための第1電極130を形成する第1電極形成ステップと、半導体層240の裏面242であって、画素回路120に、画素回路120に電圧を印加するための第2電極140を形成する第2電極形成ステップと、を含む。
このような製造方法によれば、第1分離溝150によって、APD110と画素回路120が分断された光検出器100を製造できる。そのため、このような製造方法によれば、APD110の光検出感度を高め、且つ、画素回路120に過剰な高電圧が印加されることを抑制できる光検出器100を製造できる。
(変形例1)
続いて、変形例1に係る光検出器について説明する。なお、変形例1に係る光検出器の説明においては、実施の形態1に係る光検出器との差異点を中心に説明し、実質的に同様の構成については同様の符号を付し、説明を省略又は簡略化する場合がある。
図6は、変形例1に係る光検出器101の断面図である。
なお、図6に示す断面は、図3に示す断面と同様の断面を示している。
図6に示すように、光検出器101は、光検出器100の構成に、さらに、金属材料360を備える。
金属材料360は、光検出器101に入射される光に対して光反射性を有する金属製の材料である。金属材料360は、半導体層240とは接触せずに、第1分離溝150に配置されている。
このような構成によれば、例えば、APD110を通過して画素回路120に光を、金属材料360によって反射させてAPD110に再度入射させることができる。そのため、APD110での光検出感度は、さらに向上される。
金属材料360は、例えば、Cu、Ta、Ti等の金属材料が採用される。
また、本実施の形態では、金属材料360は、第1金属体361と、第2金属体362とを含む。
第1金属体361は、Cu、Ti等の金属材料を含む構造体である。また、第2金属体362は、第1金属体361の周囲に配置される金属材料からなる構造体である。第2金属体362は、例えば、Ta等の金属材料を含む。
このように、金属材料360は、複数の金属部材を含む構造体からなっていてもよい。
金属材料360は、例えば、保護層230が形成された後で、TSVと同様の技術で形成される。
(変形例2)
続いて、変形例2に係る光検出器について説明する。なお、変形例2に係る光検出器の説明においては、実施の形態1に係る光検出器との差異点を中心に説明し、実質的に同様の構成については同様の符号を付し、説明を省略又は簡略化する場合がある。
図7は、変形例2に係る光検出器102の平面図である。
変形例2に係る光検出器102は、実施の形態1に係る光検出器100と、第1電極137及び第2電極147が異なる。具体的には、第1電極137及び第2電極147は、第1電極130及び第2電極140よりも、半導体層240における画素アレイ280が実装される面を、広い範囲で覆う。例えば、第1電極137及び第2電極147は、第1電極130及び第2電極140よりも、平面視で少なくとも一部の配線の幅が広い。こうすることで、第1電極137及び第2電極147は、第1電極130及び第2電極140と同じ材料が用いられた場合、第1電極130及び第2電極140よりも、電気抵抗が低い。
また、例えば、第2電極147は、平面視で画素アレイ280を囲むように半導体層240に配置されている。また、例えば、第2電極147は、平面視で画素回路120を覆うように配置されている。このような構成によれば、第2電極147によって、画素回路120に光が入射されることが抑制される。そのため、画素回路120でノイズが発生することが抑制される。
(変形例3)
続いて、変形例3について説明する。変形例3は、実施の形態1と光検出器100の製造方法が異なる。
図8A~図8Cは、変形例3に係る光検出器の製造方法を説明するための断面図である。
変形例3に係る光検出器の製造方法では、まず、光検出器100と同様に、図5A~図5Cに示す製造方法によって、半導体層240に第1導電型層200、第2導電型層、及び、ウェル340を形成する。
図8Aに示すように、次に、半導体層240の表面241における、第1導電型層200及び第2導電型層とウェル340との間に第1溝260を形成する。
第1溝260は、例えば、図1に示すAPD110と画素回路120との間、及び、隣り合うAPD110の間に形成される溝である。第1溝260は、APD110及び画素回路120それぞれが形成される領域、並びに、隣り合うAPD110が形成される領域を、完全には分離しない、つまり、半導体層240を分断しない溝である。第1溝260の形成は、例えば、リソグラフィと、ドライエッチングと、CVD法による成膜と、CMP法等の平坦化と、により行われる。
また、第1溝260には、絶縁膜231が埋め込まれる。
絶縁膜231は、例えば、図5Nに示す保護層230の一部となる絶縁膜である。絶縁膜231に採用される材料は、絶縁性及び透光性を有していればよく、特に限定されない。絶縁膜231は、例えば、SiOである。
図8Bに示すように、次に、半導体層240の表面241に、配線層210を形成する。
次に、図5H~図5Jに示す光検出器100の製造方法と同様に、支持基板190を配線層210側に配置して上下を反転させ、成長基板320を取り除く。
図8Cに示すように、次に、第1溝260と接続するように、半導体層240の裏面242から第2溝270を形成することで、第1分離溝155を形成する。なお、図示しないが、このとき、第1溝260と接続するように、半導体層240の裏面242から第2溝270を形成することで、第2分離溝も同様に形成する。第2溝270の形成は、例えば、リソグラフィと、ドライエッチングとにより行われる。
なお、第1溝260及び第2溝270は、STI(Shallow Trench Isolation)でもよい。
以上説明したように、変形例3に係る光検出器の製造方法は、光検出器100の製造方法において、さらに、APD110と画素回路120とを電気的に接続する取り出し配線211を含む配線層210を半導体層240の表面241に形成する配線形成ステップを含む。また、分離溝形成ステップは、配線形成ステップの前に、半導体層240に、半導体層240の表面241から第1溝260を形成する第1溝形成ステップと、配線形成ステップの後に、半導体層240に、半導体層の裏面242から第2溝270を形成することで、第1溝260及び第2溝270によってAPD110と画素回路120とを分離する分離溝(第1分離溝155)を形成する第2溝形成ステップと、を含む。
このような製造方法によれば、半導体層240を分断しない浅い第1溝260を表面241から形成し、さらに、裏面242から第1溝260と接続する第2溝270を形成する。そのため、第1分離溝155を形成する処理が、例えば、図5Kに示すように、一度に深い第1溝260を形成してAPD110と画素回路120とを分離する処理よりも浅い溝を形成する処理になるため、簡便になる。
(実施の形態2)
続いて、図9及び図10を参照しながら、実施の形態2に係る光検出器の構造を説明する。
なお、実施の形態2に係る光検出器の説明においては、実施の形態1に係る光検出器と実質的に同一の構成要素においては、同一の符号を付し、説明を一部省略又は簡略化する場合がある。
図9は、実施の形態2に係る光検出器103を示す平面図である。図10は、実施の形態2に係る光検出器103を示す断面図である。なお、図9では、断面を示すものではないが、説明のためにハッチングを付して示している。また、図10は、図3に示す光検出器100の断面に対応する位置における光検出器103の断面である。
光検出器103は、光検出器100と、第1電極138及び第2電極148が異なる。具体的には、第1電極138及び第2電極148は、第1電極130及び第2電極140と、採用されている材料及び配置レイアウトが異なる。
第1電極138及び第2電極148は、透明電極である。第1電極138及び第2電極148は、例えば、ITO(Indium Tin Oxide)によって形成されている。
このような構成によれば、第1電極138及び第2電極148によって光が反射されてAPD110に入射されないことが抑制される。また、このような構成によれば、例えば、第1電極138を平面視でAPD110を覆うように形成することで、光検出器103のサイズを大きくすることなく、且つ、APD110に入射される光量を低下させることなく、第1電極138を第1電極130よりも平面視での幅を広くできる。
また、平面視で、APD110及び画素回路120の間、隣り合うAPD110の間、並びに、隣り合う画素回路120の間には、反射部材173が配置されている。本実施の形態では、図10に示すように、第1電極137及び第2電極147は、保護層230の内部に形成されており、反射部材173は、保護層230の上面に形成されている。これにより、第1電極137及び第2電極147と、反射部材173とは、電気的に接続されないようになっている。
(その他の実施の形態)
以上、実施の形態に係る光検出器等について、実施の形態1及び実施の形態2に基づいて説明したが、本開示は、各実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、又は、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
例えば、光検出器は、特定の波長を透過させるカラーフィルタ、光を集光するためのレンズ等の光学部材等をさらに備えていてもよい。
また、例えば、光検出器が備える半導体層に含まれるAPD及び画素回路の数は、特に限定されない。
また、例えば、第1電極にITO等の透明電極材料が採用され、第2電極にCu等の不透明な金属材料が採用されてもよい。さらに、図7に示すように、第2電極は、画素回路を覆っていてもよい。これにより、APDへ入射される光量を高め、且つ、画素回路に入射される光量を低減できる。
また、第1電極の方が、第2電極より、電気抵抗が低くてもよい。これによれば、APDで光電変換される際に、画素回路から印加される電圧の揺らぎを抑制できる。
また、第1電極におけるAPDと画素回路との間を通過する配線部は、画素回路よりもAPD側に寄せて形成されていてもよい。これによれば、APDで光電変換される際に、画素回路から印加される電圧の揺らぎを抑制できる。
本開示に係る光検出器は、微弱な光を検出できる光検出感度の高いAPDを備えるCMOSイメージセンサ等に適用できる。
100、101、102、103 光検出器
110、111、112、113、114 APD
120、121、122、123、124 画素回路
130、131、132、137、138 第1電極
140、141、142、147、148 第2電極
150、151、152、153、154、155 第1分離溝
160、161、162 第2分離溝
170、171、172、173 反射部材
181 第1パッド電極
182 第2パッド電極
183 第3パッド電極
190 支持基板
200 第1導電型層
201 第2導電型層
202、221、310 側壁部
203、222 不純物層
210 配線層
211 取り出し配線
212、212a、231 絶縁膜
213 コンタクト
220 トランジスタ
230、230a 保護層
230b、241 表面
240 半導体層
242 裏面
250 分離溝部
260 第1溝
270 第2溝
280 画素アレイ
290 金属膜
300 コンタクト溝
320 成長基板
330 ゲート電極
340 ウェル
350、351 構造物
360 金属材料
361 第1金属体
362 第2金属体

Claims (9)

  1. APD(Avalanche Photo Diode)、及び、前記APDで発生した電荷を読み出すためのトランジスタを含む画素回路を表面に有する半導体層と、
    前記半導体層における前記表面とは反対側の面である裏面に配置され、前記APDに第1電圧を印加するための第1電極と、
    前記裏面に配置され、前記第1電圧とは異なる第2電圧を前記画素回路に印加するための第2電極と、を備え、
    前記半導体層には、平面視で隣り合う前記APDと前記画素回路とを分離する第1分離溝が形成されており、
    前記第2電極は、金属材料によって形成されており、前記画素回路と接触し且つ平面視で前記画素回路を全て覆うように設けられている
    光検出器。
  2. 前記半導体層は、不純物を含み、
    前記第1分離溝によって形成されている前記半導体層の側壁部は、前記半導体層の内部よりも前記不純物の不純物濃度が高い
    請求項1に記載の光検出器。
  3. さらに、前記半導体層とは接触せずに前記第1分離溝に配置された金属材料を備える
    請求項1又は2に記載の光検出器。
  4. 前記半導体層は、さらに、前記APDを複数有し、
    前記半導体層には、さらに、平面視で隣り合う前記APDを分離する第2分離溝が形成されている
    請求項1に記載の光検出器。
  5. さらに、前記第2電極とは電気的に接続されておらず、且つ、平面視で隣り合う前記APDの間に配置された反射部材を備える
    請求項4に記載の光検出器。
  6. 前記第1電極は、金属材料によって形成されている
    請求項1~5のいずれか1項に記載の光検出器。
  7. 前記第1電極及び前記第2電極は、ITO(Indium Tin Oxide)によって形成されている
    請求項1~5のいずれか1項に記載の光検出器。
  8. 半導体層に、APD(Avalanche Photo Diode)と、前記APDから電荷を読み出すためのトランジスタを前記半導体層の表面に含む画素回路とを形成する画素形成ステップと、
    前記APDと前記画素回路と電気的に分離する分離溝を、平面視で隣り合う前記APDと前記画素回路との間に位置する前記半導体層に形成する分離溝形成ステップと、
    前記半導体層の裏面であって、前記APDに、前記APDに電圧を印加するための第1電極を形成する第1電極形成ステップと、
    前記半導体層の裏面であって、前記画素回路に、前記画素回路に電圧を印加するための第2電極を形成する第2電極形成ステップと、を含み
    前記第2電極は、金属材料によって形成されており、
    前記第2電極形成ステップでは、前記第2電極を、前記画素回路と接触し且つ平面視で前記画素回路を全て覆うように形成する
    光検出器の製造方法。
  9. さらに、前記APDと前記画素回路とを電気的に接続する取り出し配線を含む配線層を前記半導体層の表面に形成する配線形成ステップを含み、
    前記分離溝形成ステップは、
    前記配線形成ステップの前に、前記半導体層に、前記半導体層の表面から第1溝を形成する第1溝形成ステップと、
    前記配線形成ステップの後に、前記半導体層に、前記半導体層の裏面から第2溝を形成することで、前記第1溝及び前記第2溝によって前記APDと前記画素回路とを分離する前記分離溝を形成する第2溝形成ステップと、を含む
    請求項8に記載の光検出器の製造方法。
JP2019061971A 2019-03-27 2019-03-27 光検出器及び光検出器の製造方法 Active JP7236692B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061971A JP7236692B2 (ja) 2019-03-27 2019-03-27 光検出器及び光検出器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061971A JP7236692B2 (ja) 2019-03-27 2019-03-27 光検出器及び光検出器の製造方法

Publications (2)

Publication Number Publication Date
JP2020161736A JP2020161736A (ja) 2020-10-01
JP7236692B2 true JP7236692B2 (ja) 2023-03-10

Family

ID=72639948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061971A Active JP7236692B2 (ja) 2019-03-27 2019-03-27 光検出器及び光検出器の製造方法

Country Status (1)

Country Link
JP (1) JP7236692B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311648A (ja) 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2013175494A (ja) 2011-03-02 2013-09-05 Sony Corp 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2014225647A (ja) 2013-04-01 2014-12-04 オムニヴィジョン テクノロジーズ インコーポレイテッド バイアス深溝分離部を有する高度光子検出装置
WO2017187957A1 (ja) 2016-04-25 2017-11-02 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
JP2018019039A (ja) 2016-07-29 2018-02-01 キヤノン株式会社 光検出装置および光検出システム
US20180090526A1 (en) 2016-09-23 2018-03-29 Apple Inc. Stacked Backside Illuminated SPAD Array
WO2018166805A1 (en) 2017-03-16 2018-09-20 PixQuanta Limited An electromagnetic radiation detection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311648A (ja) 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
JP2013175494A (ja) 2011-03-02 2013-09-05 Sony Corp 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2014225647A (ja) 2013-04-01 2014-12-04 オムニヴィジョン テクノロジーズ インコーポレイテッド バイアス深溝分離部を有する高度光子検出装置
WO2017187957A1 (ja) 2016-04-25 2017-11-02 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
JP2018019039A (ja) 2016-07-29 2018-02-01 キヤノン株式会社 光検出装置および光検出システム
US20180090526A1 (en) 2016-09-23 2018-03-29 Apple Inc. Stacked Backside Illuminated SPAD Array
WO2018166805A1 (en) 2017-03-16 2018-09-20 PixQuanta Limited An electromagnetic radiation detection device

Also Published As

Publication number Publication date
JP2020161736A (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US11756976B2 (en) Photoelectric conversion apparatus, camera, and moving body
US11430822B2 (en) Photoelectric conversion apparatus and camera
US9786710B2 (en) Image sensor device with sub-isolation in pixels
US9006807B2 (en) Solid-state image sensing device and camera
TWI299565B (en) An image sensing device and fabrication thereof
CN109461747B (zh) 成像器件及电子装置
TWI495095B (zh) 固態攝像裝置及照相機
US7821046B2 (en) Methods, structures and sytems for an image sensor device for improving quantum efficiency of red pixels
US9484376B2 (en) Semiconductor isolation structure and manufacturing method thereof
KR20190038353A (ko) Spad 이미지 센서 및 연관 제조 방법
JP2014011304A (ja) 固体撮像装置
JP5823780B2 (ja) 半導体装置の製造方法
KR101650278B1 (ko) 개선된 암전류 성능을 갖는 이미지 센서
US11670661B2 (en) Image sensor and method of fabricating same
KR20110079323A (ko) 이미지 센서 및 그 제조방법
US20210335862A1 (en) Image sensor
KR20200126477A (ko) 이미지 센서
KR100882979B1 (ko) 이미지센서 및 그 제조방법
JP7236692B2 (ja) 光検出器及び光検出器の製造方法
JP2014049671A (ja) 半導体装置およびその製造方法
JP2016046420A (ja) 半導体装置およびその製造方法
WO2022210149A1 (ja) 固体撮像素子および固体撮像素子の製造方法
US20240222401A1 (en) Semiconductor device, image sensor
TW202404059A (zh) 背面照射影像裝置結構及其方法
US20100006964A1 (en) Backside illuminated image sensor having biased conductive layer for increased quantum efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230217

R151 Written notification of patent or utility model registration

Ref document number: 7236692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151